
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 22037–22060
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

IndicSynth: A Large-Scale Multilingual Synthetic Speech Dataset for
Low-Resource Indian Languages

Divya V. Sharma
SBILab, IIIT-Delhi

divyas@iiitd.ac.in

Vijval Ekbote
SBILab, IIIT-Delhi

vijval22569@iiitd.ac.in

Anubha Gupta
SBILab, IIIT-Delhi

anubha@iiitd.ac.in

Abstract

Recent advances in synthetic speech generation
technology have facilitated the generation of
high-quality synthetic (fake) speech that emu-
lates human voices. These technologies pose
a threat of misuse for identity theft and the
spread of misinformation. Consequently, the
misuse of such powerful technologies necessi-
tates the development of robust and generaliz-
able audio deepfake detection (ADD) and anti-
spoofing models. However, such models are
often linguistically biased. Consequently, the
models trained on datasets in one language ex-
hibit a low accuracy when evaluated on out-of-
domain languages. Such biases reduce the us-
ability of these models and highlight the urgent
need for multilingual synthetic speech datasets
for bias mitigation research. However, most
available datasets are in English or Chinese.
The dearth of multilingual synthetic datasets
hinders multilingual ADD and anti-spoofing
research. Furthermore, the problem intensi-
fies in countries with rich linguistic diversity,
such as India. Therefore, we introduce Indic-
Synth, which contains 4,000 hours of synthetic
speech from 989 target speakers, including 456
females and 533 males for 12 low-resourced In-
dian languages. The dataset includes rich meta-
data covering gender details and target speaker
identifiers. Experimental results demonstrate
that IndicSynth is a valuable contribution to
multilingual ADD and anti-spoofing research.
The dataset can be accessed from https://
github.com/vdivyas/IndicSynth.

1 Introduction

Recent advances in text-to-speech (TTS) and voice
conversion (VC) models have enabled the gener-
ation of high-quality synthetic speech recordings
that emulate human voices (Ba et al., 2023). Such
recordings have applications in diverse domains,
including assistive technologies, media, entertain-
ment, and education (Bird and Lotfi, 2023; Rabhi

et al., 2024; Yi et al., 2023). Despite these ap-
plications, there exists a severe threat of misuse
of these technologies to spread fake news, malign
personalities, financial fraud, or other criminal ac-
tivities (Müller et al., 2024b; Ju et al., 2024). It is
because these technologies can generate realistic
synthetic speech recordings that can deceive both
humans and security systems, such as speaker veri-
fication. Therefore, to prevent potential misuse, it
is crucial to develop robust systems to detect fake
(synthetic) audio generated by these technologies
(Müller et al., 2024b).

An audio deepfake is a synthetic speech record-
ing that appears natural enough to deceive humans
and can potentially be used to spread misinforma-
tion that can cause public unrest and panic (Müller
et al., 2024b). In contrast, audio spoofing refers
to the techniques used to generate synthetic au-
dios that mimic a target speaker’s voice. Such
techniques are often misused to deceive biomet-
ric security systems, such as speaker verification
(Kawa et al., 2022; Müller et al., 2024b). Conse-
quently, audio spoofing can lead to impersonation
and identity theft. For instance, in 2019, imposters
used spoofed audios of a corporate executive for fi-
nancial fraud of 243,000 US dollars (USD) (Munir
et al., 2024; Frank and Schönherr, 2021). Simi-
larly, an audio deepfake-based cybercrime caused a
loss of 35 million USD for a UAE-based company
(Rabhi et al., 2024). Audio deepfakes are often
misused to tarnish the reputation of celebrities and
politicians and to manipulate public opinion during
elections (Kawa et al., 2022). Therefore, devel-
oping robust audio deepfake detection and anti-
spoofing technologies is crucial for social good.

For the development of robust audio deepfake
detection (ADD) models, realistic synthetic speech
datasets are vital. However, most existing datasets
are in high-resource languages, such as English
and Chinese (Müller et al., 2024b; Ba et al., 2023;
Munir et al., 2024; Frank and Schönherr, 2021;
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Khalid et al., 2021). Consequently, due to the ease
of availability of datasets, most previous works on
ADD focus on these languages (Yi et al., 2024).
However, the ADD models trained on synthetic
speech datasets in one language often exhibit a sig-
nificantly lower accuracy when evaluated on out-
of-domain languages (Müller et al., 2024b). There-
fore, synthetic speech datasets in low-resource lan-
guages are urgently needed to enhance the global
usability of these models. The need for such
datasets intensifies in countries with rich linguistic
diversity, such as India. India has 22 constitution-
ally recognized languages spoken by one billion
speakers, and around 75% of Indians come across
some deepfake content in a year (Javed et al., 2023;
T and T, 2024).

In this work, we introduce IndicSynth, a novel
large-scale multilingual synthetic speech dataset
for 12 low-resourced Indian languages. IndicSynth
contains approximately 4,000 hours of synthetic
speech from 989 target speakers, including 456 fe-
males and 533 males. The dataset includes rich
metadata covering the gender and identifiers of
the target speakers. Additionally, to enhance In-
dicSynth’s utility for multilingual audio deepfake
detection (ADD) and anti-spoofing research, we
partition our dataset into mimicry and diversity
subsets. The mimicry subset contains synthetic au-
dios closely mimicking the bonafide target voices.
In contrast, the diversity subset contains a more di-
verse set of realistic synthetic voices. To generate
IndicSynth, we apply state-of-the-art (SOTA) TTS
and VC models on a publicly available bonafide
(real) speech dataset. After generation, we inves-
tigate whether SOTA ADD models can accurately
classify IndicSynth’s synthetic audio as fake. Next,
we evaluate the linguistic authenticity of our dataset
using a SOTA language identification model. Sub-
sequently, we evaluate whether the IndicSynth’s
mimicry subset can deceive SOTA speaker verifica-
tion models through impersonation attacks. For the
ease of reproducibility of our results, we use only
publicly available models for experimentation.

Key contributions of this study are:

1. We introduce IndicSynth, a novel multilingual
synthetic speech dataset for 12 low-resourced
Indian languages containing approximately
4,000 hours of audio from 989 target speakers,
including 456 females and 533 males. We
partition the dataset into mimicry and diversity
subsets.

2. We evaluate the linguistic bias in state-of-the-
art audio deepfake detection (ADD) models
and the vulnerability of SOTA speaker verifi-
cation models to impersonation attacks from
multilingual audio spoofs. Consequently, we
investigate IndicSynth’s utility towards gener-
alizable ADD and anti-spoofing.

3. We qualitatively and quantitatively assess the
linguistic authenticity of our dataset through
t-SNE plots and a state-of-the-art language
identification model.

2 Related Works

Audio DeepFake Detection and Anti-Spoofing:
The proliferation of audio deepfakes and audio
spoofs-related fraud prompted research communi-
ties to organize Audio DeepFake Detection (ADD)
and ASVspoof challenges (Yi et al., 2022, 2023;
Wang et al., 2020; Liu et al., 2023). Despite these
initiatives, a critical yet underexplored challenge
is the lack of generalizability of ADD and anti-
spoofing models to out-of-domain scenarios (Kor-
shunov and Marcel, 2022; Yousif et al., 2024; Xie
et al., 2024; Kawa et al., 2022; Müller et al., 2024a).
ADD and anti-spoofing models trained on speech
datasets in one language exhibit significantly re-
duced accuracy when evaluated on out-of-domain
languages. Such linguistic biases reduce the util-
ity of these models (Sharma and Buduru, 2022;
Sharma, 2024).

Dearth of Datasets: To mitigate linguistic bi-
ases in ADD and anti-spoofing, researchers have
explored domain adaptation and data augmenta-
tion techniques (Ba et al., 2023; Xie et al., 2024).
However, these techniques require synthetic speech
datasets in the target languages. Most publicly
available synthetic datasets, such as FakeAVCeleb,
the ASVspoof 2019 dataset, and the ADD 2023
challenge dataset, are in English or Chinese (Yi
et al., 2023; Müller et al., 2024b; Munir et al., 2024;
Ba et al., 2023; Khalid et al., 2021; Wang et al.,
2020). Consequently, researchers introduced the
Urdu audio deepfake detection dataset that contains
16,830 spoofed audios (Munir et al., 2024). Simi-
larly, the WaveFake dataset containing 196 hours of
synthetic audios in English and Japanese was intro-
duced (Frank and Schönherr, 2021). Additionally,
the MLAAD dataset and the MLADDC datasets
were introduced (Müller et al., 2024b; SHAH et al.,
2024). However, these datasets do not include
gender details and target speaker identifiers. Gen-
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der details are essential for studies related to gen-
der bias in ADD (Xu et al., 2024; Ju et al., 2024;
Kawa et al., 2022; Haut et al., 2022). The target
speaker identifiers are crucial for developing de-
fense mechanisms against impersonation attacks.
In addition to these datasets, the MADD dataset
contains 155.66 hours of synthetic audio for six
languages (Qi et al., 2024). Thus, to address the
dearth of publicly available large-scale multilin-
gual synthetic speech datasets containing gender
information and identifiers of the target speakers,
we introduce the IndicSynth.

3 IndicSynth: Generation and Overview

This study introduces IndicSynth, a novel large-
scale multilingual synthetic speech dataset. In-
dicSynth contains approximately 4,000 hours of
speech recordings for 12 low-resourced target lan-
guages: Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Marathi, Odia, Punjabi, Sanskrit, Tamil, Tel-
ugu, and Urdu, as illustrated in Figure 1. This
section describes IndicSynth’s generation method-
ology and its statistical details.
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Figure 1: Total duration (in hours) of synthetic male and
female voices in IndicSynth for each target language.

IndicSynth Generation Methodology: Firstly,
we selected the IndicSuperb dataset to create the
IndicSynth (Javed et al., 2023). IndicSuperb is
licensed under the Creative Commons CC0 li-
cense ("no rights reserved") agreement. It con-
tains bonafide (real) speech recordings and their
associated transcripts for the 12 target languages,
as shown in Figure 2. Following the bonafide
dataset selection, the next step is to apply publicly
available text-to-speech (TTS) based voice cloning
models and voice conversion (VC) models to the
bonafide IndicSuperb data1. TTS and VC mod-
els are widely used for synthetic data generation
(Zhu et al., 2024). TTS models take a bonafide

1Models used for IndicSynth generation: https://
github.com/coqui-ai/TTS. The training datasets of these
models are not fully disclosed.

target speech recording (vtgt) and a transcript (ttxt)
as inputs. Subsequently, these models generate
a synthetic speech recording (vtgt

tts) as output, as
illustrated Equation 1:

vtgt
tts = TTS(ttxt, vtgt) (1)

IndicSuperb
Transcripts Bonafide Audios

Target (vtgt) Target (vtgt) Source (vsrc) 

ttxt

Text-to-Speech Voice Conversion

IndicSynth
Synthetic (vtgt

tts) Synthetic (vtgt
vc) 

1

"भारत म� हर 
 भाषा का स�ान 
 िकया जाता है।"

 

"भारत म� हर 
 भाषा का स�ान 
 िकया जाता है।"

 

"भारत म� हर भाषा  
का स�ान िकया  
जाता है।"

 2

3

Figure 2: IndicSynth’s generation methodology. We
apply publicly available text-to-speech and voice con-
version models to the publicly available bonafide Indic-
Superb dataset to generate IndicSynth. IndicSuperb is
licensed under CC0 ("no rights reserved").

The generated synthetic speech (vtgt
tts) articu-

lates the transcript (ttxt) while attempting to mimic
the target voice (vtgt). In contrast to the TTS mod-
els, voice conversion (VC) models take a bonafide
source speech recording (vsrc) and a bonafide tar-
get speech recording (vtgt) as inputs. Subsequently,
these models generate a synthetic speech recording
(vtgt

vc) as output, as illustrated in Equation 2:

vtgt
vc = V C(vsrc, vtgt) (2)

The generated synthetic speech (vtgt
vc) articu-

lates the transcript of the source audio (vsrc), while
attempting to mimic the target voice (vtgt).

Mimicry and Diversity: IndicSynth includes
two types of synthetic data, illustrated in Table 1:

1. Mimicry: The mimicry subset contains syn-
thetic audios that closely mimic target voices.
This subset is valuable for assessing the vul-
nerability of speaker verification systems to
impersonation attacks (Munir et al., 2024).

2. Diversity: The diversity subset includes syn-
thetic audios with low voice similarity to tar-
get voices. Consequently, this subset has more
diversity in synthetic voices. The diversity
subset is valuable because training audio deep-
fake detection models on such diverse, mul-
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Language Model Category #Females #Male #Clips Duration (hrs)

Bengali
XTTS-v2 Mimicry 18 10 28,056 50.67
FreeVC24 Diversity 18 10 27,336 51.46
VITS Diversity 18 10 28,056 49.30

Gujarati XTTS-v2 Mimicry 25 34 59,118 97.22
FreeVC24 Diversity 25 34 59,660 99.70

Hindi XTTS-v2 Diversity 53 48 101,202 171.36
FreeVC24 Diversity 53 48 104,736 167.77

Kannada XTTS-v2 Mimicry 13 43 55,611 127.44
FreeVC24 Diversity 16 43 59,412 140.89

Malayalam XTTS-v2 Mimicry 10 7 17,034 46.35
FreeVC24 Diversity 10 7 17,094 48.61

Marathi XTTS-v2 Mimicry 51 72 123,246 231.74
FreeVC24 Diversity 51 72 130,150 246.461

Odia XTTS-v2 Mimicry 22 4 26,052 45.34
FreeVC24 Diversity 22 4 26,184 46.30

Punjabi XTTS-v2 Mimicry 67 55 122,244 191.60
FreeVC24 Diversity 67 55 126,110 199.11

Sanskrit XTTS-v2 Diversity 100 85 185,370 422.862
FreeVC24 Diversity 100 85 192,134 576.21

Tamil XTTS-v2 Mimicry 32 106 138,276 280.42
FreeVC24 Diversity 32 106 144,036 298.42

Telugu XTTS-v2 Mimicry 41 43 84,168 175.65
FreeVC24 Diversity 41 43 85,728 179.41

Urdu XTTS-v2 Mimicry 21 26 47,094 72.34
FreeVC24 Diversity 21 26 47,804 73.95

Table 1: Overview of IndicSynth, including generative model name, subset type (category), number of male and
female target speakers, number of audio clips, and total duration of synthetic audio (in hours) for each language.

tilingual synthetic datasets can enhance their
generalizability to out-of-domain languages.

IndicSynth Generation: To generate synthetic
data for the mimicry subset, we fine-tuned the
XTTS-v2 model on IndicSuperb for each of the fol-
lowing 10 target languages: Bengali, Gujarati, Kan-
nada, Malayalam, Marathi, Odia, Punjabi, Tamil,
Telugu, and Urdu2. Fine-tuning XTTS-v2 and
generating synthetic data using the same bonafide
dataset (IndicSuperb) helps ensure a high similarity
between synthetic and target voices. In contrast,
the diversity subset includes synthetic audios di-
rectly generated from TTS and VC models without
fine-tuning on IndicSuperb. We utilized the pub-
licly available Coqui VITS model (a TTS model
trained on undisclosed Bengali data) to generate
Bengali synthetic data for diversity subset (Eren
and The Coqui TTS Team, 2021). Additionally, we
generated synthetic data for each of the 12 target
languages using the publicly available XTTS-v2
text-to-speech model and the FreeVC24 voice con-
version model (Eren and The Coqui TTS Team,
2021), as illustrated in Table 1. The bonafide audios
and transcripts were randomly chosen for Indic-
Synth creation. Also, we ensured that the genders
of the randomly chosen source and target speakers

2Code for fine-tuning XTTS-v2: https://github.com/
anhnh2002/XTTSv2-Finetuning-for-New-Languages

were the same for high-quality voice conversion.
IndicSynth Metadata: IndicSynth contains sep-

arate metadata files for voice cloning done through
each model for each target language3. For the TTS
models, the metadata includes the target speaker
ID, the ID of the bonafide target voice sample, the
target speaker’s gender, the transcript, and the ID
of the generated synthetic audio clip. Similarly, for
the VC models, the metadata includes the source
speaker ID, bonafide IndicSuperb source audio clip
ID, target speaker ID, bonafide IndicSuperb target
audio clip ID, the gender of the speakers, and the ID
of the synthetic audio clip. Such metadata is also
valuable for studying gender bias in multilingual au-
dio deepfake detection (ADD) (Xu et al., 2024; Ju
et al., 2024). Overall, utilizing the bonafide Indic-
Superb with the synthetic IndicSynth can facilitate
multilingual ADD and anti-spoofing research.

4 Evaluation of IndicSynth

4.1 IndicSynth for Audio DeepFake Detection

Audio deepfake detection (ADD) models accept
a speech recording as input and determine if it is
bonafide (real) or synthetic (fake). These models
are vital to prevent the spread of fake news or misin-
formation from synthetic audio. Thus, we urgently
need ADD models that are inclusive and general-

3IndicSynth’s directory structure is in Appendix (A).
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izable to unseen languages. A crucial first step in
developing generalizable ADD models is bench-
marking state-of-the-art (SOTA) models on unseen
language datasets. Benchmarking can help inves-
tigate potential biases in these models. Therefore,
we used IndicSynth to benchmark three state-of-
the-art (SOTA) publicly available ADD models:
Aasist, Aasist-L, and RawNet2 (Jung et al., 2022;
Tak et al., 2021)4. The benchmark ADD models are
trained on an English dataset (LA partition of the
ASVspoof 2019 challenge) (Wang et al., 2020). We
evaluated them on IndicSynth without fine-tuning.

Setup: We created separate test sets for each
target language and generative model, as illustrated
in Table 2. Each set includes randomly chosen
4000 bonafide female voice samples, 4000 bonafide
male voice samples, 4000 synthetic female voice
samples, and 4000 synthetic male voice samples.
The bonafide data was taken from IndicSuperb,
whereas synthetic data was taken from IndicSynth.
We refer to them as IndicSynth-IndicSuperb sets.

Evaluation Metric: False Match Rate (FMR)
and False Non-Match Rate (FNMR) are widely
used metrics for evaluating biometric systems.
FMR is the rate at which an ADD model incorrectly
classifies synthetic audios as bonafide. In contrast,
FNMR is the rate at which an ADD model incor-
rectly classifies bonafide audios as synthetic. The
FMR and FNMR values of an ADD model vary
with classification thresholds. At a particular classi-
fication threshold, FMR becomes equal to FNMR.
The value of FMR when it becomes equal to the
FNMR is known as the Equal Error Rate (EER).
Equal Error Rate (EER) is a standard evaluation
metric for audio deepfake detection systems (Wang
et al., 2020; Liu et al., 2023). Therefore, we bench-
marked ADD models using EER(%). Lower EER
indicates that the models accurately distinguished
between bonafide and synthetic audios.

Observations: The Aasist and Aasist-L achieve
an EER of 0.83% and 0.99% on the LA evaluation
set of the ASVspoof 2019 (Jung et al., 2022). Sim-
ilarly, the RawNet-2 achieved an EER of 22.38%
in the DF track of the ASVspoof 2021 (Liu et al.,
2023). However, as illustrated in Table 2, these
benchmark models achieved significantly higher
EERs on IndicSynth-IndicSuperb test sets. Ele-
vated EERs on these test sets indicate that the mod-
els struggled to distinguish between bonafide and

4Aasist: https://github.com/clovaai/aasist
RawNet2: https://github.com/asvspoof-challenge/

2021/tree/main/DF/Baseline-RawNet2

EER (%)
Language G. Model Aasist Aasist-L RawNet-2

Bengali
XTTS-v2 70.125 56.150 56.737
FreeVC24 87.963 86.563 53.537
VITS 93.200 89.363 48.287

Gujarati XTTS-v2 65.050 55.150 50.113
FreeVC24 86.163 86.888 53.425

Hindi XTTS-v2 42.013 45.438 14.525
FreeVC24 81.775 81.913 48.513

Kannada XTTS-v2 55.563 49.188 42.425
FreeVC24 73.30 78.950 50.874

Malayalam XTTS-v2 67.575 55.013 46.888
FreeVC24 85.825 83.600 55.675

Marathi XTTS-v2 56.712 52.825 48.037
FreeVC24 79.512 81.587 52.525

Odia XTTS-v2 57.488 51.575 48.487
FreeVC24 78.888 82.975 44.350

Punjabi XTTS-v2 57.575 52.863 47.225
FreeVC24 81.925 82.225 53.775

Sanskrit XTTS-v2 33.438 38.775 7.95
FreeVC24 84.238 86.563 58.35

Tamil XTTS-v2 61.725 51.188 51.650
FreeVC24 81.700 83.138 54.999

Telugu XTTS-v2 54.275 52.700 46.275
FreeVC24 75.650 79.000 52.787

Urdu XTTS-v2 62.763 55.363 49.250
FreeVC24 78.088 79.825 50.438

Table 2: Benchmarking audio deepfake detection (ADD)
models in IndicSynth-IndicSuperb test sets without do-
main adaptation. For a given target language and a
particular ADD model, the highest Equal Error Rate
(EER%) achieved across various generative models is
highlighted in bold. When evaluated without domain
adaptation, the benchmark ADD models achieve ele-
vated EER% on IndicSynth-IndicSuperb test sets. Train-
ing ADD models on multilingual synthetic datasets,
such as IndicSynth, can enhance their generalizability.

Figure 3: Receiver Operating Characteristic (ROC)
Curve for Malayalam IndicSynth-IndicSuperb test set
created using XTTS-v2. Low Area Under the Curve
(AUC%) indicates poor discriminative power of ADD
models.

synthetic clips. Furthermore, we plotted the Re-
ceiver Operating Characteristic (ROC) curves as il-
lustrated in Figure 3. The ROC curve demonstrates
that the ADD models achieve extremely low Area
Under the Curve (AUC) scores on the Malayalam
test set created using the synthetic clips obtained
from the XTTS-v2 model. Low AUC indicates
poor discriminative power of the models. These ob-
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servations demonstrate a significant performance
degradation of benchmark ADD models on unseen
language test sets5. Training such models on large-
scale multilingual synthetic speech datasets can
potentially enhance their generalizability (Müller
et al., 2024b). Therefore, IndicSynth is a valuable
contribution towards generalizable ADD.

4.2 Linguistic Authenticity of IndicSynth
Next, we investigate whether IndicSynth’s syn-
thetic speech recordings accurately capture the lin-
guistic traits of the target languages. For this ex-
periment, we created bonafide (IndicSuperb) and
synthetic (IndicSynth) test sets for each genera-
tive model and target language, as illustrated in
Table 3. Each test set contains 8,000 audio clips.
These sets contain an equal number of male and
female voice samples. Subsequently, we evaluated
IndicSynth’s linguistic authenticity by running the
publicly available VoxLingua107 ECAPA-TDNN
spoken language identification model (Valk and
Alumäe, 2021; Ravanelli et al., 2021) on these sets6.
The model is trained on the VoxLingua107 dataset,
which includes speech recordings from 107 lan-
guages (Valk and Alumae, 2021).

Observations: Table 3 illustrates the accuracy
achieved on running the language identification
model through the test sets. We observe an ac-
curacy of more than 80% for most sets. Addi-
tionally, we compared the accuracy difference be-
tween bonafide and synthetic test sets defined as:
∆ Accuracy%=Accuracysynthetic−Accuracybonafide.
For most languages, the accuracy drop is below
10%. Interestingly, the accuracies of Bengali syn-
thetic audios from FreeVC24 and VITS are higher
than bonafide audios, which indicates that these
models are trained on diverse Bengali datasets.

Figure 4: t-SNE visualization of bonafide (IndicSuperb)
and synthetic (IndicSynth) Odia dataset. The plot in-
dicates that the IndicSynth-Odia subset has effectively
captured the linguistic traits of Odia.

Qualitative evaluation: The VoxLingua107
5Appendix (B) includes additional plots.
6Language identification model: https://huggingface.

co/speechbrain/lang-id-voxlingua107-ecapa

Language Source Accuracy ∆ Accuracy (%)

Bengali

Bonafide 89.925 -
XTTS-v2 89.763 −0.162
FreeVC24 90.338 +0.413
VITS 98.425 +8.500

Gujarati
Bonafide 98.612 -
XTTS-v2 96.762 −1.850
FreeVC24 96.475 −2.137

Hindi
Bonafide 92.250 -
XTTS-v2 86.175 −6.075
FreeVC24 85.525 −6.725

Kannada
Bonafide 88.550 -
XTTS-v2 84.800 −3.750
FreeVC24 85.638 −2.912

Malayalam
Bonafide 97.425 -
XTTS-v2 96.200 −1.225
FreeVC24 96.362 −1.063

Marathi
Bonafide 94.900 -
XTTS-v2 89.725 −5.175
FreeVC24 89.950 −4.950

Punjabi
Bonafide 78.388 -
XTTS-v2 66.600 −11.788
FreeVC24 65.938 −12.450

Sanskrit
Bonafide 41.350 -
XTTS-v2 9.050 −32.300
FreeVC24 9.175 −32.175

Tamil
Bonafide 97.500 -
XTTS-v2 94.500 −3.000
FreeVC24 94.812 −2.688

Telugu
Bonafide 98.625 -
XTTS-v2 96.100 −2.525
FreeVC24 95.638 −2.987

Urdu
Bonafide 39.900 -
XTTS-v2 33.975 −5.925
FreeVC24 33.763 −6.137

Table 3: Language identification results. We evaluated
IndicSynth’s linguistic authenticity by running language
identification model through various test sets for each
generative model and target language (except Odia). We
observe above 80% accuracy in most test sets.

ECAPA-TDNN spoken language identification
model does not support Odia. However, the train-
ing set of the model covers 107 languages. There-
fore, its embeddings should capture linguistic traits
effectively. Thus, we obtained the 256-dimensional
language identification embeddings of the Odia
test sets and visualized them through t-SNE using
a perplexity of 40 (Munir et al., 2024), as shown
in Figure 4. Figure 4 shows no clear separation be-
tween the bonafide (IndicSuperb) and the synthetic
(IndicSynth) embeddings. The plot indicates that
IndicSynth’s Odia subset has effectively captured
linguistic traits of Odia7.

4.3 Utility of the Mimicry Subset
Speaker verification systems accept two speech
recordings as input and determine if they are from
the same speaker. The input speech recordings

7The t-SNE plots for Punjabi, Sanskrit, and Urdu are in
Appendix (D)
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Language SV Model Female Test Set Male Test Set Combined Test Set

Bengali
ECAPA-TDNN 31.580 29.180 31.110
ResNet TDNN 23.960 22.960 25.160
X-Vector 43.860 44.520 43.639

Gujarati
ECAPA-TDNN 23.280 34.440 28.880
ResNet TDNN 18.520 30.560 24.730
X-Vector 31.040 32.640 32.200

Kannada
ECAPA-TDNN 25.880 22.700 24.360
ResNet TDNN 22.740 20.060 21.470
X-Vector 35.020 28.740 31.770

Malayalam
ECAPA-TDNN 30.140 33.680 32.070
ResNet TDNN 30.700 31.480 31.170
X-Vector 38.460 38.240 38.520

Marathi
ECAPA-TDNN 20.620 28.820 24.710
ResNet TDNN 17.680 25.140 21.600
X-Vector 28.260 31.160 31.080

Odia
ECAPA-TDNN 29.300 36.800 32.940
ResNet TDNN 23.580 21.420 25.680
X-Vector 33.440 48.100 42.450

Punjabi
ECAPA-TDNN 25.800 33.420 29.610
ResNet TDNN 23.360 30.640 27.050
X-Vector 32.330 36.160 34.350

Tamil
ECAPA-TDNN 20.160 27.760 23.840
ResNet TDNN 17.820 25.500 21.540
X-Vector 28.280 31.860 30.070

Telugu
ECAPA-TDNN 26.380 27.500 26.930
ResNet TDNN 23.320 25.140 24.550
X-Vector 31.760 32.120 32.180

Table 4: Investigating the vulnerability of state-of-the-art (SOTA) speaker verification models (SV) against imper-
sonation attacks. We observe elevated equal error rates (EER%) when the negative trial pairs contain IndicSynth’s
mimicry subset’s synthetic speech recordings and the target speaker’s bonafide speech from IndicSuperb. It suggests
that the mimicry subset audios closely mimic the bonafide target voices. Therefore, the mimicry subset of IndicSynth
is a valuable resource for enhancing the robustness of SOTA SV models.

form a trial pair. Such systems are vital in forensics,
business, e-commerce, and access control mecha-
nisms. However, the malicious use of voice cloning
models may lead to the generation of synthetic
speech recordings that closely mimic the target
voice. Such synthetic recordings (audio spoofs)
may be misused to deceive speaker verification
systems, leading to impersonation attacks against
the target speaker. Fine-tuning speaker verification
models on multilingual synthetic speech datasets
can enhance their generalizability and robustness to
out-of-domain audio spoofs. Therefore, this exper-
iment explores the utility of IndicSynth’s mimicry
subset for enhancing the robustness of speaker veri-
fication models. We evaluate whether the synthetic
audios of mimicry subset can deceive three pub-
licly available state-of-the-art (SOTA) speaker ver-
ification models: ECAPA-TDNN, X-Vector, and
ResNet TDNN (Desplanques et al., 2020; Snyder
et al., 2018; Villalba et al., 2020)8.

8ECAPA-TDNN:https://huggingface.co/
speechbrain/spkrec-ecapa-voxceleb
X-Vector:https://huggingface.co/speechbrain/
spkrec-xvect-voxceleb
ResNet TDNN: https://huggingface.co/speechbrain/
spkrec-resnet-voxceleb

Methodology: We created speaker verification
test sets, as illustrated in Table 4. Each set contains
randomly generated 20,000 trial pairs with equal
positives and negatives. A positive trial pair con-
tains two bonafide (IndicSuperb) speech recordings
of the same target speaker, X. In contrast, a neg-
ative trial pair contains a bonafide (IndicSuperb)
speech recording of a target speaker X and a syn-
thetic (IndicSynth) speech recording of X. Since
each set contains an equal number of male and
female speaker trial pairs, we refer to them as com-
bined test sets. Each combined test set contains
5000 bonafide female trial pairs, 5000 bonafide
male trial pairs, 5000 synthetic female trial pairs,
and 5000 synthetic male trial pairs. Subsequently,
to evaluate gender bias in speaker verification mod-
els with respect to impersonation attacks, we also
split the combined test set and created separate
male and female speaker test sets.

Evaluation Metric: We evaluate the mimicry
subset using EER. A higher EER indicates that the
speaker verification model struggled to distinguish
between positive and negative trial pairs. It im-
plies that the synthetic speech recordings closely
mimic the target speaker’s bonafide voice sample
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in a negative trial pair.
Observations: The SOTA speaker verification

models typically achieve an EER of less than
10% when evaluated on unseen language test sets
(Akram et al., 2024; Xia et al., 2019; Mandalapu
et al., 2021). However, as illustrated in Table 4,
we observed significantly elevated EERs ranging
from 21.470% to 43.639% on the combined test
sets. Elevated EERs suggest that the speech record-
ings in IndicSynth’s mimicry subset closely mimic
the bonafide (IndicSuperb) target voices. Further-
more, we compared the EERs of the male and fe-
male speaker test sets. The EERs of male and fe-
male speaker test sets for the Bengali, Malayalam,
and Telugu test sets are comparable. However,
the EER values for Kannada female test sets are
higher than the male test sets (with absolute differ-
ences of 2.68% to 6.28% across the speaker veri-
fication models). This observation indicates that
the Kannada female voices mimic the target speak-
ers more closely than the Kannada male voices in
IndicSynth. Similarly, the EERs of the male test
sets are higher than the female test sets for Gujarati,
Marathi, Odia, Punjabi, and Tamil. This observa-
tion indicates that in IndicSynth, male voices in
these languages closely mimic the target speakers
compared to female voices.

Figure 5: The t-SNE plot of bonafide (IndicSuperb)
Odia and IndicSynth’s mimicry subset’s female speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 6: The t-SNE plot of bonafide (IndicSuperb)
Odia and IndicSynth’s mimicry subset’s male speakers.
The plot reveals the proximity of the bonafide and syn-
thetic audios.

Qualitative Evaluation: For an extensive evalu-
ation, we visualized the proximity of the bonafide
(IndicSuperb) and IndicSynth’s mimicry subset
through t-SNE. Figure 5 and Figure 6 represent

the t-SNE plots for Odia female and male voices.
For each plot, we randomly sampled 500 bonafide
and 500 synthetic clips of the same target speak-
ers. Next, we created t-SNE plots with a perplexity
of 40 using 80-dimensional Mel-Frequency Cep-
stral Coefficients (MFCC) features of these audios
(Munir et al., 2024). MFCCs are biologically in-
spired speech features that mimic the human au-
ditory system. The proximity of the bonafide and
synthetic embeddings in t-SNE indicates that the
mimicry subset’s synthetic audios closely mimic
the bonafide target voices9.

5 Discussion

This section reflects on our rationale behind cre-
ating mimicry and diversity subsets in IndicSynth.
Additionally, we briefly review the potential utility
of these subsets with our experimental results.

Rationale behind Mimicry Subset: Indic-
Synth’s mimicry subset consists of synthetic voices
closely mimicking the target speaker’s bonafide
voice. Such synthetic audios—also called au-
dio spoofs—can deceive speaker verification sys-
tems, leading to impersonation attacks. Section
4.3 demonstrates that speaker verification systems
are vulnerable to multilingual audio spoofs (Indic-
Synth’s mimicry subset). This observation under-
scores the potential utility of the mimicry subset
for developing multilingual anti-spoofing technolo-
gies.

Need for a Diversity Subset: Synthetic speech
is not only misused for impersonation but also for
spreading misinformation. Synthetic voices cir-
culating in social media to spread misinformation
often do not mimic a specific target speaker’s voice.
Instead, misinformation campaigns often involve
diverse synthetic voices. Therefore, training audio
deepfake detection (ADD) models on a broad range
of synthetic voices is crucial for enhancing the ro-
bustness of these models. However, as we know,
the mimicry subset has a limited speaker diver-
sity as it only includes voices mimicking IndicSu-
perb speakers. Therefore, we introduced the diver-
sity subset in IndicSynth to incorporate a broader
range of synthetic voices beyond speaker mimicry
into our dataset. Table 1 provides an overview of
mimicry and diversity subsets.

Utility of Diversity Subset: As described in Sec-
tion 4.1, we evaluated three state-of-the-art (SOTA)
audio deepfake detection (ADD) models on Indic-

9Additional t-SNE plots are in Appendix (C).
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Synth (both diversity and mimicry subsets) without
domain adaptation. These ADD models achieve
low Equal Error Rates (EERs) on ASVSpoof chal-
lenge datasets. However, we observed a significant
performance degradation of these models on Indic-
Synth test sets, as illustrated by elevated EERs and
low Area Under the Curve (AUC) in Table 2 and
Figure 3. Munir et al. (2024) also reported a similar
observation. In their work, the authors proposed
an Urdu audio deepfake detection dataset. Such
observations indicate a lack of generalizability of
existing audio deepfake detection models to out-of-
domain languages. It suggests that training or fine-
tuning audio deepfake detection models on multi-
lingual ADD datasets can potentially enhance the
generalizability of these models to out-of-domain
languages. Thus, bonafide IndicSuperb data com-
bined with the synthetic IndicSynth data (diversity
and mimicry subsets) can potentially serve as a
valuable dataset for multilingual audio deepfake
detection.

6 Conclusions and Future Work

This paper introduces IndicSynth, a novel large-
scale multilingual synthetic speech dataset to fa-
cilitate multilingual audio deepfake detection and
anti-spoofing research. The dataset contains about
4,000 hours of synthetic audio from 989 target
speakers, including 456 females and 533 males
for 12 low-resourced Indian languages. Addition-
ally, IndicSynth includes rich metadata covering
the identifiers and gender information of the target
speakers. Thus facilitating research on gender bi-
ases in audio deepfake detection and anti-spoofing.
The dataset consists of mimicry and diversity sub-
sets. The mimicry subset includes synthetic au-
dios that closely mimic bonafide target voices. In
contrast, the diversity subset contains a diverse
set of realistic synthetic voices. Experimental re-
sults demonstrate that the synthetic audios of the
mimicry subset can deceive state-of-the-art (SOTA)
speaker verification models through impersonation
attacks. Similarly, empirical results demonstrate
poor performance of SOTA audio deepfake detec-
tion models on Indian language test sets. Further-
more, qualitative and quantitative evaluation using
a SOTA language identification model validated
the linguistic authenticity of our dataset. It turns
out that IndicSynth is a valuable contribution to
preventing impersonation attacks on speaker verifi-
cation systems and facilitating multilingual audio

deepfake detection research.
This work opens up several avenues for research

on linguistic biases in audio deepfake detection and
anti-spoofing. For instance, IndicSynth can be used
to investigate the underexplored problem of gender
biases in multilingual audio deepfake detection and
for defense against impersonation attacks through
multilingual spoofs. The dataset is licensed under
the CC BY-NC 4.0 license.

7 Limitations

This work introduces IndicSynth, a novel, large-
scale multilingual synthetic speech dataset to fa-
cilitate multlingual audio deepfake detection and
anti-spoofing research. We acknowledge that our
work has the following limitations:

IndicSynth’s Scope and Experimentation: In-
dicSynth contains synthetic speech recordings for
only 12 languages. Also, the mimicry subsets for
Hindi and Sanskrit are absent in IndicSynth. In
the future, the dataset can be extended by cover-
ing more low-resourced languages and more voice
cloning models for dataset creation. Additionally,
we evaluated IndicSynth using sample test sets. We
believe that the results from these sets indicate the
overall dataset quality.

Absence of User Study: Ideally, the naturalness
of synthetic speech datasets should be evaluated
through a user study. The user study participants
must be proficient in the target languages for au-
thentic results. However, for large-scale multilin-
gual datasets, such as IndicSynth, recruiting partic-
ipants proficient in low-resource languages is chal-
lenging. Thus, meeting our paper’s objectives, we
experimentally evaluated IndicSynth using state-
of-the-art speaker verification models, audio deep-
fake detection models, and a language identifica-
tion model. Additionally, we have included t-SNE
plots in the appendix for a qualitative evaluation of
our dataset.

We highlight that the challenge of recruiting par-
ticipants proficient in low-resourced languages is
not unique to IndicSynth. Instead, it is a common
issue faced by researchers working towards gener-
ating multilingual datasets for social good. How-
ever, with around 7,000 global languages and rising
cases of deepfake-related fraud, there is an urgent
need for multilingual synthetic datasets to facilitate
research on multilingual audio deepfake detection.
Therefore, the absence of user studies should not
hinder the release of such datasets. Instead, the
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community members with access to computational
resources can contribute by constructing and releas-
ing more multilingual datasets. Subsequently, the
members who can connect to native speakers of
those languages can contribute by conducting user
studies to evaluate human perception of synthetic
speech.

Despite these limitations, the dearth of multilin-
gual synthetic speech datasets makes IndicSynth a
valuable resource that can facilitate research on
multilingual audio deepfake detection and anti-
spoofing.

8 Ethical Considerations

Synthetic speech datasets are essential to advance
audio deepfake detection and anti-spoofing re-
search. However, we realize that such datasets can
inadvertently contribute to the refinement of au-
dio deepfake generation technologies by malicious
users. Therefore, responsible management of these
resources is crucial. Thus, we release IndicSynth
under CC BY-NC 4.0, restricting commercial use
of our dataset. Furthermore, IndicSynth is a syn-
thetic speech dataset generated from the publicly
available bonafide IndicSuperb dataset. IndicSu-
perb is licensed under the Creative Commons CC0
license (“no rights reserved”). The CC0 license
allows users to freely build upon, reuse, or enhance
the dataset without restriction. We strongly encour-
age the community to use IndicSynth for social
good and advance research on multilingual audio
deepfake detection and anti-spoofing.
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A IndicSynth Directory Structure

Figure 7 shows the directory structure of Indic-
Synth. The dataset contains a folder for each target
language. Each language folder includes subfold-
ers for generative models: XTTS_v2, FreeVC24,
or the VITS. Each generative model folder has a
metadata file and subfolders for anonymous target
speaker IDs. Within each target speaker’s folder,
there are synthetic audio clips. The speaker IDs
used in the IndicSynth are the same as those used
in IndicSuperb.

IndicSynth/
|-- <language>/
| |-- XTTS_v2/
| | |-- Male/
| | | |-- <speaker_id>/
| | | | |-- <clip_id>.wav
| | | | `-- ...
| | |-- Female/
| | | |-- <speaker_id>/
| | | | |-- <clip_id>.wav
| | | | `-- ...
| | `-- metadata.csv
| |-- FreeVC24/
| | |-- Male/
| | | |-- <speaker_id>/
| | | | |-- <clip_id>.wav
| | | | `-- ...
| | |-- Female/
| | | |-- <speaker_id>/
| | | | |-- <clip_id>.wav
| | | | `-- ...
| | `-- metadata.csv

Figure 7: IndicSynth directory structure.

B IndicSynth for Audio DeepFake
Detection: Additional Plots

Figures 8–56 illustrate the Receiver Operating
Characteristic (ROC) Curves and the Detection Er-
ror Trade-off (DET) Curves for IndicSynth test sets
created using various generative models. The plots
indicate that the benchmark audio deepfake detec-
tion models lack generalizability on out-of-domain
(Indian) language test sets.

Figure 8: The Receiver Operating Characteristic (ROC)
Curve for the Bengali test set created using XTTS-v2.
Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.
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Figure 9: The Detection Error Trade-off (DET) Curve
for the Bengali test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 10: The Receiver Operating Characteristic
(ROC) Curve for the Bengali test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 11: The Detection Error Trade-off (DET) Curve
for the Bengali test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 12: The Receiver Operating Characteristic
(ROC) Curve for the Bengali test set created using
VITS. Low Area Under the Curve (AUC) values of
audio deepfake detection models indicate poor discrimi-
native power of these models on our test set.

Figure 13: The Detection Error Trade-off (DET) Curve
for the Bengali test set created using VITS. The trend of
DET curves towards the upper right indicates the poor
capability of the audio deepfake detection models in
distinguishing between bonafide and synthetic audios.

Figure 14: The Receiver Operating Characteristic
(ROC) Curve for the Gujarati test set created using
XTTS-v2. Low Area Under the Curve (AUC) values of
audio deepfake detection models indicate poor discrimi-
native power of these models on our test set.
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Figure 15: The Detection Error Trade-off (DET) Curve
for the Gujarati test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 16: The Receiver Operating Characteristic
(ROC) Curve for the Gujarati test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 17: The Detection Error Trade-off (DET) Curve
for the Gujarati test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 18: The Receiver Operating Characteristic
(ROC) Curve for the Hindi test set created using XTTS-
v2. Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.

Figure 19: The Detection Error Trade-off (DET) Curve
for the Hindi test set created using XTTS-v2.

Figure 20: Receiver Operating Characteristic (ROC)
Curve for the Hindi IndicSynth-IndicSuperb test set
created using FreeVC24. Low Area Under the Curve
(AUC%) indicates poor discriminative power of ADD
models.
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Figure 21: The Detection Error Trade-off (DET) Curve
for the Hindi test set created using FreeVC24. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

Figure 22: The Receiver Operating Characteristic
(ROC) Curve for the Kannada test set created using
XTTS-v2. Low Area Under the Curve (AUC) values of
audio deepfake detection models indicate poor discrimi-
native power of these models on our test set.

Figure 23: The Detection Error Trade-off (DET) Curve
for the Kannada test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 24: The Receiver Operating Characteristic
(ROC) Curve for the Kannada test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 25: The Detection Error Trade-off (DET) Curve
for the Kannada test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 26: The Detection Error Trade-off (DET) Curve
for the Malayalam test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.
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Figure 27: The Receiver Operating Characteristic
(ROC) Curve for the Malayalam test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 28: The Detection Error Trade-off (DET) Curve
for the Malayalam test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 29: The Receiver Operating Characteristic
(ROC) Curve for the Marathi test set created using
XTTS-v2. Low Area Under the Curve (AUC) values of
audio deepfake detection models indicate poor discrimi-
native power of these models on our test set.

Figure 30: The Detection Error Trade-off (DET) Curve
for the Marathi test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 31: The Receiver Operating Characteristic
(ROC) Curve for the Marathi test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 32: The Detection Error Trade-off (DET) Curve
for the Marathi test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.
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Figure 33: The Receiver Operating Characteristic
(ROC) Curve for the Odia test set created using XTTS-
v2. Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.

Figure 34: The Detection Error Trade-off (DET) Curve
for the Odia test set created using XTTS-v2. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

Figure 35: The Receiver Operating Characteristic
(ROC) Curve for the Odia test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 36: The Detection Error Trade-off (DET) Curve
for the Odia test set created using FreeVC24. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

Figure 37: The Receiver Operating Characteristic
(ROC) Curve for the Punjabi test set created using
XTTS-v2. Low Area Under the Curve (AUC) values of
audio deepfake detection models indicate poor discrimi-
native power of these models on our test set.

Figure 38: The Detection Error Trade-off (DET) Curve
for the Punjabi test set created using XTTS-v2. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.
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Figure 39: The Receiver Operating Characteristic
(ROC) Curve for the Punjabi test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 40: The Detection Error Trade-off (DET) Curve
for the Punjabi test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 41: The Receiver Operating Characteristic
(ROC) Curve for the Sanskrit test set created using
XTTS-v2.

Figure 42: The Detection Error Trade-off (DET) Curve
for the Sanskrit test set created using XTTS-v2. The
trend of DET curves towards the bottom left indicates
the capability of the audio deepfake detection models in
distinguishing between bonafide and synthetic audios.

Figure 43: The Receiver Operating Characteristic
(ROC) Curve for the Sanskrit test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 44: The Detection Error Trade-off (DET) Curve
for the Sanskrit test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.
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Figure 45: The Receiver Operating Characteristic
(ROC) Curve for the Tamil test set created using XTTS-
v2. Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.

Figure 46: The Detection Error Trade-off (DET) Curve
for the Tamil test set created using XTTS-v2. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

Figure 47: The Receiver Operating Characteristic
(ROC) Curve for the Tamil test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 48: The Detection Error Trade-off (DET) Curve
for the Tamil test set created using FreeVC24. The trend
of DET curves towards the upper right indicates the poor
capability of the audio deepfake detection models in
distinguishing between bonafide and synthetic audios.

Figure 49: The Receiver Operating Characteristic
(ROC) Curve for the Telugu test set created using XTTS-
v2. Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.
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Figure 50: The Detection Error Trade-off (DET) Curve
for the Telugu test set created using XTTS-v2. The trend
of DET curves towards the upper right indicates the poor
capability of the audio deepfake detection models in
distinguishing between bonafide and synthetic audios.

Figure 51: The Receiver Operating Characteristic
(ROC) Curve for the Telugu test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.

Figure 52: The Detection Error Trade-off (DET) Curve
for the Telugu test set created using FreeVC24. The
trend of DET curves towards the upper right indicates
the poor capability of the audio deepfake detection mod-
els in distinguishing between bonafide and synthetic
audios.

Figure 53: The Receiver Operating Characteristic
(ROC) Curve for the Urdu test set created using XTTS-
v2. Low Area Under the Curve (AUC) values of audio
deepfake detection models indicate poor discriminative
power of these models on our test set.

Figure 54: The Detection Error Trade-off (DET) Curve
for the Urdu test set created using XTTS-v2. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

Figure 55: The Receiver Operating Characteristic
(ROC) Curve for the Urdu test set created using
FreeVC24. Low Area Under the Curve (AUC) values
of audio deepfake detection models indicate poor dis-
criminative power of these models on our test set.
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Figure 56: The Detection Error Trade-off (DET) Curve
for the Urdu test set created using FreeVC24. The trend
of DET curves towards the upper right indicates the
poor capability of the audio deepfake detection models
in distinguishing between bonafide and synthetic audios.

C Authenticity of Mimicry Subset

Figures 57–73 illustrate the proximity of the
mimicry subset audios with the bonafide IndicSu-
perb audios for the target languages.

Figure 57: The t-SNE plot of bonafide (IndicSuperb)
Gujarati and IndicSynth’s mimicry subset’s female
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.

Figure 58: The t-SNE plot of bonafide (IndicSuperb)
Gujarati and IndicSynth’s mimicry subset’s male speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 59: The t-SNE plot of bonafide (IndicSuperb)
Kannada and IndicSynth’s mimicry subset’s female
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.

Figure 60: The t-SNE plot of bonafide (IndicSuperb)
Kannada and IndicSynth’s mimicry subset’s male speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 61: The t-SNE plot of bonafide (IndicSuperb)
Malayalam and IndicSynth’s mimicry subset’s female
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.
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Figure 62: The t-SNE plot of bonafide (IndicSuperb)
Malayalam and IndicSynth’s mimicry subset’s male
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.

Figure 63: The t-SNE plot of bonafide (IndicSuperb)
Marathi and IndicSynth’s mimicry subset’s female
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.

Figure 64: The t-SNE plot of bonafide (IndicSuperb)
Marathi and IndicSynth’s mimicry subset’s male speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 65: The t-SNE plot of bonafide (IndicSuperb)
Punjabi and IndicSynth’s mimicry subset’s female
speakers. The plot reveals the proximity of the bonafide
and synthetic audios.

Figure 66: The t-SNE plot of bonafide (IndicSuperb)
Punjabi and IndicSynth’s mimicry subset’s male speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 67: The t-SNE plot of bonafide (IndicSuperb)
Tamil voices and IndicSynth’s mimicry subset’s syn-
thetic clips of the same target female speakers. The
plot reveals the proximity of the bonafide and synthetic
audios.

Figure 68: The t-SNE plot of bonafide (IndicSuperb)
Tamil voices and IndicSynth’s mimicry subset’s syn-
thetic clips of the same target male speakers. The plot
reveals the proximity of the bonafide and synthetic au-
dios.

Figure 69: The t-SNE plot of bonafide (IndicSuperb)
Tamil voices and IndicSynth’s mimicry subset’s syn-
thetic clips of the same target female speakers. The
plot reveals the proximity of the bonafide and synthetic
audios.
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Figure 70: The t-SNE plot of bonafide (IndicSuperb)
Telugu and IndicSynth’s mimicry subset’s female speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 71: The t-SNE plot of bonafide (IndicSuperb)
Telugu and IndicSynth’s mimicry subset’s male speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 72: The t-SNE plot of bonafide (IndicSuperb)
Urdu and IndicSynth’s mimicry subset’s female speak-
ers. The plot reveals the proximity of the bonafide and
synthetic audios.

Figure 73: The t-SNE plot of bonafide (IndicSuperb)
Urdu and IndicSynth’s mimicry subset’s male speakers.
The plot reveals the proximity of the bonafide and syn-
thetic audios.

D IndicSynth Linguistic Authenticity:
Additional Plots

Figures 74–76 illustrate the t-SNE plots from the
embeddings obtained through the language iden-
tification model for Sanskrit, Punjabi, and Urdu.
The plots demonstrate the linguistic authenticity of
IndicSynth’s Sanskrit, Punjabi, and Urdu audios.

Figure 74: t-SNE visualization of bonafide (IndicSu-
perb) and synthetic (IndicSynth) Sanskrit dataset. The
plot indicates that the IndicSynth-Sanskrit subset has
effectively captured Sanskrit’s linguistic traits.

Figure 75: t-SNE visualization of bonafide (IndicSu-
perb) and synthetic (IndicSynth) Punjabi dataset. The
plot indicates that the IndicSynth-Punjabi subset has
effectively captured Punjabi’s linguistic traits.

Figure 76: t-SNE visualization of bonafide (IndicSu-
perb) and synthetic (IndicSynth) Urdu dataset. The plot
indicates that the IndicSynth-Urdu subset has effectively
captured Urdu’s linguistic traits.

E Costs

This section highlights the costs of various experi-
ments conducted for this study in terms of carbon
emissions, electricity consumption, and execution
time. The data generation and experimentation
were done using the NVIDIA RTX A6000 GPU.
Below are the details:

1. Cost of fine-tuning XTTS-v2: Fine-tuning
the XTTS-v2 for one epoch for a particular
target language takes approximately 1.5 hours.
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In those 1.5 hours, the process causes approx-
imately 0.403 kgCO2eq carbon emission and
consumes 0.564 kWh of electricity. This re-
sult is for the training set containing 70,692
audio clips. We fine-tuned each model for
45 epochs. The XTTS-v2 model contains
470,751,571 parameters.

2. XTTS-v2: It takes about 45 minutes to gen-
erate 1,000 audio clips from the XTTS-v2
model for Hindi. The average duration of a
Hindi audio clip in IndicSuperb is 2.65 sec-
onds. For generating 1000 synthetic audios us-
ing the XTTS-v2 model, approximately 0.106
kgCO2eq carbon emission and 0.148 kWh
of electricity are consumed. The XTTS-v2
model has 470,751,571 parameters and occu-
pies 2,110 MB of memory.

3. FreeVC24: It takes about 4 minutes to gen-
erate 1000 audio clips from the FreeVC24
model for Hindi. The average duration of
a Hindi audio clip in IndicSuperb is 2.65
seconds. For generating 1000 synthetic au-
dios using the FreeVC24 model, approxi-
mately 0.010 kgCO2eq carbon emissions and
0.014 kWh of electricity are consumed. The
FreeVC24 model contains 356,216,448 pa-
rameters and occupies 1690 MB of memory.

4. VITS: The VITS model has 83,050,540 pa-
rameters and occupies 586 MB of memory.

5. Language identification: It took about 2 min-
utes to run the VoxLingua107 ECAPA-TDNN
spoken language identification model on a test
set containing 8,000 audio clips. The model
caused approximately 0.004 kgCO2eq carbon
emission and energy consumption of 0.006
kWh.

6. ResNet TDNN speaker verification model:
It took about 4 minutes to generate ResNet
TDNN embeddings for 10,000 audio clips.
The model caused approximately 0.012
kgCO2eq carbon emission and energy con-
sumption of 0.018 kWh for 10,000 em-
beddings. The ResNet TDNN model has
17,282,816 parameters and occupies 334 MB
of memory.

7. Ecapa-TDNN speaker verification model:
It took about 3 minutes to generate ResNet
TDNN embeddings for 10,000 audio clips.
The model caused approximately 0.007
kgCO2eq carbon emission and energy con-
sumption of 0.009 kWh for 10,000 em-
beddings. The Ecapa-TDNN model has

22,150,912 parameters and occupies 364 MB
of memory.

8. X-Vector speaker verification model: It took
about 1.5 minutes to generate ResNet TDNN
embeddings for 10,000 audio clips. The
model caused approximately 0.003 kgCO2eq
carbon emission and energy consumption of
0.004 kWh for 10,000 embeddings. The X-
Vector model has 8,172,473 parameters and
occupies 300 MB of memory.

9. AASIST Audio Deepfake Detection Model:
The AASIST model has 297,866 parameters
and occupies 264 MB of memory.

10. AASIST-L Audio Deepfake Detection
Model: The AASIST model has 85,306 pa-
rameters and occupies 262 MB of memory.

11. RawNet-2 Audio DeepFake Detection
Model: The RawNet-2 model contains
17,623,671 parameters and occupies 67.2 MB
of disk space.

F Tools and Software used

We used the following tools and software for this
study (other than the ones already cited in the pa-
per):

1. We used Grammarly and ChatGPT for better
sentence construction at occasional places and
to enhance clarity in our draft.

2. We used draw.io and the matplotlib for dia-
grams.

3. We used Librosa to generate the MFCC fea-
tures.

4. We used Pytorch for experimentation: version
2.5.1+cu124.

G Licenses

In this section, we specify the licenses of the
datasets and models that we have used for this
study.

1. IndicSuperb: Creative Commons CC0 license
("no rights reserved").

2. Aasist, Aasist-L, and the RawNet-2: The
ADD models used are licensed under the MIT
License.

3. The speechbrain models (Ecapa-TDNN,
ResNet TDNN, X-Vector, VoxLingua107
ECAPA-TDNN spoken language identifica-
tion model) is licensed under the Apache Li-
cense 2.0.

22060


