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Abstract

Knowledge distillation (KD) is a widely used
approach for BERT compression, where a
larger BERT model serves as a teacher to trans-
fer knowledge to a smaller student model. Prior
works have found that distilling a larger BERT
with superior performance may degrade stu-
dent’s performance than a smaller BERT. In this
paper, we investigate the limitations of existing
KD methods for larger BERT models. Through
Canonical Correlation Analysis, we identify
that these methods fail to fully exploit the po-
tential advantages of larger teachers. To ad-
dress this, we propose an improved distillation
approach that effectively enhances knowledge
transfer. Comprehensive experiments demon-
strate the effectiveness of our method in en-
abling larger BERT models to distill knowledge
more efficiently.

1 Introduction

BERT (Devlin, 2018) has achieved significant suc-
cess in natural language processing (NLP). How-
ever, deploying large BERT models is challenging
on resource-constrained platforms such as mobile
device. Knowledge distillation (KD) provides an
effective approach for compressing large BERT
models into smaller ones. Specifically, it leverages
a pretrained teacher model to guide the training of
a lightweight student model (Hinton, 2015).

KD applied to BERT has made significant
progress (Sun et al., 2019; Jiao et al., 2019; Sanh,
2019; Guo et al., 2023). However, the classical
PKD method (Sun et al., 2019) reveals an intu-
itive yet surprising phenomenon: despite their su-
perior performance, utilizing larger BERT models
as teacher does not necessarily lead to better KD
performance. This reflects the well-known capac-
ity mismatch problem in KD (Wang et al., 2022),
where increasing teacher size does not always en-
hance distillation effectiveness (Cho and Hariharan,
2019). While this issue has been widely studied,

Figure 1: A larger BERT teacher model fails to achieve
better distillation as the student’s intermediate layers ex-
hibit smaller linear differences. The color variation of in-
termediate layers represents their linear differences. The
student trained by the smaller teacher (red-yellow-green)
shows greater overall variation than the one trained by
the larger teacher (green-blue-purple).

existing solutions face limitations in BERT distilla-
tion. Some external model-based approaches like
TAKD (Mirzadeh et al., 2020) overlook internal
data transformations within the model and fail to
explain why larger teachers underperform in distil-
lation. Other methods (Huang et al., 2022; Li et al.,
2022; Fan et al., 2024) can explain the reason but
rely heavily on category information, making them
unsuitable for tasks with limited categories, such
as GLUE (Wang, 2018) in NLP.

Instead of category information, this paper in-
vestigates why larger BERT teacher models fail
to achieve better distillation performance from the
perspective of linear relationships between inter-
mediate layers. We find larger teacher models ex-
hibit greater overall linear differences across layers,
which contribute to improved pre-training perfor-
mance. However, in previous KD methods, stu-
dents trained by larger teachers do not show greater
linear differences among intermediate layers than
those trained by smaller teachers, limiting their gen-
eralization ability. As a result, larger teachers fail
to distill more effectively, as illustrated in Figure 1.
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We propose a method to increase the linear differ-
ences among the student’s intermediate layers from
two perspectives. (1) We argue that if a teacher
model’s intermediate layer exhibits a larger linear
difference with its preceding layer, it extracts more
critical information. We should select such layer as
teacher. (2) We also directly maximize the linear
relationship between the student model’s interme-
diate layers and the teacher’s corresponding distil-
lation layers following (Andrew et al., 2013). As a
result, the student model’s intermediate layers will
exhibit significant linear differences, enhancing
generalization ability. Consequently, larger teacher
models yield better distillation performance.

Our contributions are as follows:

• We claim that larger BERT teachers fail to in-
crease linear differences among the student’s
intermediate layers, resulting in poorer KD
performance.

• We propose MC3KD framework, which can
amplify the linear differences among student’s
intermediate layers by selecting suitable teach-
ers’ intermediate layers and minimizing linear
differences between selected teachers and stu-
dent’s layers.

• Extensive experimental comparisons demon-
strate that our MC3KD framework does maxi-
mize the effectiveness of larger BERT models
for compression.

2 Related Work

Language Model Compression Model compres-
sion can make deep neural networks more compact
(Buciluǎ et al., 2006). Language models can be
compressed by network pruning (He et al., 2017),
weight quantization (Polino et al., 2018), weight
sharing (Dehghani et al., 2018), low-rank approxi-
mation (Ma et al., 2019) or knowledge distillation
(Sun et al., 2019; Sanh, 2019; Jiao et al., 2019). In
this paper, we focus on knowledge distillation.

Knowledge Distillation for BERT Similar to
leveraging pre-trained models to assist in training
(Zhou, 2016), Knowledge Distillation (KD) im-
proves a smaller student model’s generalization by
learning from a larger teacher model. KD meth-
ods can be broadly classified into three types (Gou
et al., 2021) based on the knowledge transferred:
(1) Logit-based KD, where the student mimics the
teacher’s logit outputs (Hinton, 2015; Sun et al.,

2024; Yang et al., 2024b; Zhang et al., 2025); (2)
Feature-based KD, which transfers intermediate-
layer representations (Romero et al., 2014; Yang
et al., 2021a, 2023a, 2024a,c,d); (3) Relation-based
KD, which captures relationships between layers
or samples within the teacher model (Tian et al.,
2019; Kweon et al., 2021; Yang et al., 2021b). KD
has been widely applied to compress BERT mod-
els. DistilBERT (Sanh, 2019), a logit-based KD
method, uses the teacher model’s output as a su-
pervision signal to align the student’s predictions.
PKD (Sun et al., 2019), a feature-based KD ap-
proach, extracts CLS token representations from
the teacher’s intermediate layers for teaching. Tiny-
BERT (Jiao et al., 2019) combines logit-based and
feature-based KD, transferring knowledge through
word embeddings, self-attention heads and selected
intermediate-layer representations. CoDIR (Sun
et al., 2020), a relation-based KD method, captures
structural knowledge within intermediate layers.
While these approaches leverage different types
of knowledge, they overlook how data properties
transform throughout the model, leading to subop-
timal knowledge extraction.

In PKD, researchers observed that a larger BERT
teacher model does not necessarily yield better dis-
tillation performance. This reflects a phenomenon
in KD named capacity mismatch that as the size
of teacher increases, student may perform worse
generalization. Existing solutions to capacity mis-
match fall into two categories. The first employs ex-
ternal strategies, such as auxiliary models or early
stopping (Mirzadeh et al., 2020; Cho and Hariha-
ran, 2019; Wang et al., 2022; Yang et al., 2023b).
These methods keep overall model outputs pre-
served, while they do not explicitly explain why
larger teachers underperform in distillation. The
second examines intrinsic properties, such as rank-
ing, variance and calibration of outputs (Huang
et al., 2022; Li et al., 2022; Fan et al., 2024), but
these approaches rely on class diversity and are
mainly designed for vision tasks with large label
spaces, making them unsuitable for NLP tasks like
GLUE (Wang, 2018). Our method addresses both
limiations by identifying the root cause of ineffec-
tive distillation in large teachers to compress larger
BERT models more effectively.

Analysis of Similarity of Representation Sev-
eral methods measure neural network similarity.
Canonical Correlation Analysis (CCA) is a clas-
sical statistical approach for assessing similarity
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between two sets of multivariate data (Hotelling,
1936; Anderson, 1985; Hardoon et al., 2004).
Singular Value Canonical Correlation Analysis
(SVCCA) (Raghu et al., 2017) extends CCA by
applying Singular Value Decomposition (SVD) to
reduce dimensionality. Recently, CKA (Kornblith
et al., 2019), a kernel-based method, has been intro-
duced to capture nonlinear relationships between
networks. However, the computational expense of
CKA is high so it is impractical for resource-heavy
models like BERT. We use CCA, which also offers
a stable theoretical foundation, to probe BERT. The
study by (Hao et al., 2020) closely aligns with our
work, it employs SVCCA to analyze how BERT
layers change during fine-tuning. Unlike them, we
use SVCCA to explore the layer-wise correlations
that well-generalizing models exhibit and propose
a method to enhance distillation performance based
on this analysis.

3 Background and Notations

3.1 Vanilla KD
In our setting, each sample in training set is de-
fined as {x, y}, where x refers to text input and y
refers to label. Suppose there is a teacher network
denoted as T and a student network S. The out-
puts of teacher network and student network can
be denoted as T (x) and S(x), respectively.

The vanilla Knowledge Distillation (KD) loss
consists of two parts (Hinton, 2015). The first part
minimizes the difference between the teacher and
the student, allowing the student to acquire knowl-
edge from teacher. This difference is typically mea-
sured using the Kullback-Leibler (KL) divergence.
The second part is to account for potential errors
in teacher by aligning the student’s output with the
labels via Cross-Entropy (CE) loss. The total loss
of vanilla KD can be written as:

LKD = αKL(S(x), T (x)) + (1− α)CE(S(x), y)
(1)

where α is the weight balancing the two parts, with
a value range from 0 to 1.

3.2 Comparison of Canonical Correlation
The Singular Vector Canonical Correlation Anal-
ysis (SVCCA) matrix measures the similarity be-
tween the representations of different layers in a
neural network (Raghu et al., 2017). We regard
the elements in SVCCA matrix as Canonical Cor-
relation Coefficients (CCC). Suppose there is an
SVCCA matrix S for network f , a CCC Sij in

S indicates linear relationship between i-th layer
and j-th layer in f . Larger Sij indicate stronger
correlations between layer i and layer j.

Suppose the m-dimensional SVCCA matrices
of models distilled (or trained) by method A and
method B are respectively denoted as A and B. If
almost all CCCs in matrix A is smaller than all cor-
responding CCCs in matrix B, we can say model A
shares larger linear differences among its interme-
diate layers than B. From all our experimental data
in Figure 9, we find that for the same model, the
relative magnitudes of corresponding CCC in the
SVCCA matrix remain almost consistent across dif-
ferent training methods. That is, given 1 ≤ p ≤ m
and 1 ≤ q ≤ m, if Apq > Bpq, then Aij > Bij for
almost all i ∈ [1,m] and j ∈ [1,m]. So comparing
two SVCCA matrices can be sufficed to select a
representative element from each matrix for com-
parison. In the example above, we choose the CCC
element A1m as our Representative Canonical
Correlation Coefficient (RCCC) to represent lin-
ear differences among the model’s intermediate
layers.

In all the tables that follow in this paper, RCCC
represents the whole SVCCA matrix for compar-
ison, with smaller values indicating greater linear
differences among the model’s intermediate layers.

4 Why Larger BERT Teachers Fail to
Teach Well?

We aim to identify a metric that reflects both the su-
perior finetuning performance of the larger BERT
teacher and those are not well inherited by the
BERT student taught by larger teacher.

In NLP, the category space for many tasks is
quite small. Take the classical GLUE benchmark
as an example, there are only two classes in many
classification tasks. To answer why larger BERT
teachers fail to teach well, we cannot analyze the
category information contained in the output log-
its as some methods (Huang et al., 2022; Li et al.,
2022; Fan et al., 2024) for addressing capacity mis-
match in the vision field do. A natural idea is to
study the corrlation of hidden outputs from the
intermediate layers of the BERT teacher. To im-
plement this idea, we select teacher models that
have been fine-tuned on the task and compute the
SVCCA matrix (Raghu et al., 2017) for all their
intermediate layers.

From the heatmap of SVCCA matrices of pre-
trained models on RTE task in Figure 2, we observe
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Figure 2: Heatmaps of SVCCA for BERT pre-trained models of varying sizes, with the RTE task as an example.

that as the teacher model size increases, linear dif-
ferences between intermediate layers become more
pronounced. For instance, in the first column (or
row) of a matrix, which represents the relation-
ship between the first intermediate layer and all
others, a 3-layer model maintains strong linear cor-
relations across layers. However, in larger models,
the correlation between the first and last few lay-
ers weakens significantly. As shown in Figure 6,
this pattern also holds for other tasks. This indi-
cates that increasing model size amplifies linear
differences between intermediate layers, thereby
improving generalization performance. From this
perspective, better generalization can be attributed
to the greater diversity of features extracted across
layers.

Building on this, we investigate whether greater
layer differences in the student model correlate
with better distillation performance. Table 1 shows
the KD performance and SVCCA matrix (repre-
sented by RCCC) for student models taught by dif-
ferent teacher models on the RTE task, with results
for other tasks in Table 3.

Teacher-Student Acc RCCC
BERT12-BERT6 (KD) 65.70% 70.60%
BERT24-BERT6 (KD) 64.98% 70.74%

BERT12-BERT6 (PKD) 65.34% 70.85%
BERT24-BERT6 (PKD) 64.62% 71.25%

Table 1: KD performance and SVCCA matrix for stu-
dent models on the RTE task (with different KD meth-
ods in parentheses). Better results are bolded.

From Table 1, we observe that the distillation
performance is positively correlated with the linear
differences between the student model’s intermedi-
ate layers. Additionally, we find that under classical
methods such as KD and PKD, a larger teacher
model does not effectively enhance the diversity of
representations across the student model’s interme-

diate layers (the reason will be explained further in
Section 5.1). As a result, the larger model fails to
achieve improved distillation performance.

Do larger BERT teachers have the potential
to teach better? If we can more effectively ex-
tract the "dark knowledge" from the teacher model,
a larger teacher could indeed teach better. Given
that the logits in BERT models contain limited in-
formation for tasks such as GLUE, we focus on
identifying intermediate layers that encode more
knowledge. We analyze the magnitude of changes
in linear relationships between each layer and its
preceding layer to identify key layers that perform
significant feature transformations. Therefore, in
Figure 2, we focus on the elements below the di-
agonal, specifically Ai,i−1 in the given SVCCA
matrix A. These elements reflect the magnitude
of CCC changes between adjacent intermediate
layers. As the model size increases, these values
become smaller or more dispersed. Larger figures
in Figure 8 provide a clearer illustration of this phe-
nomenon. This suggests that as the model size in-
creases, adjacent intermediate layers exhibit more
abrupt changes, making it easier to identify layers
that extract critical information. Thus, for larger
models, if we can select intermediate layers prac-
tically, it is possible to utilize more knowledge
contained in larger BERT for distillation, increas-
ing the potential for better distillation performance
with a larger teacher.

5 Proposed Method

Building on the previous findings, enabling a larger
teacher BERT to teach more effectively requires
increasing the differences between the student
model’s layers. To achieve this, we adopt a two-
step approach. First, we select the teacher’s inter-
mediate layers that exhibit the largest linear dif-
ferences from their preceding layers to guide the
student. Second, we employ a distillation objective
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Figure 3: The framework of our proposed MC3KD.

that strengthens the linear relationships between the
corresponding teacher and student layers, thereby
amplifying the linear differences across the stu-
dent model’s layers. We refer to our method as
Maximizing Canonical Correlation Coefficients
Knowledge Distillation (MC3KD). The overall
framework is illustrated in Figure 3.

5.1 Find Proper Teacher

We first answer why KD and PKD fail to reduce
RCCC, as observed in Table 1. KD relies solely
on the teacher model’s logits, which are unrelated
to RCCC. PKD selects intermediate layers either
at fixed intervals (PKD-Skip) or from the last few
layers (PKD-Last), which may also neglect suit-
able teacher layers. For example, as shown in the
SVCCA matrix A (Figure 7) of teacher models in
Table 1, A1,0 = 0.93 is the second largest among
Ai,i−1, which means that the first layer has the
second largest linear difference from the previous
layer and is well-suited as a teacher layer. However,
neither PKD selection strategies will select the first
layer. So PKD fails to select the most linearly
distinct layers, thereby restricting the effective uti-
lization of the larger BERT teacher’s intermediate
layer differences to reduce RCCC.

To address this, we aim to select intermediate lay-
ers that capture the most valuable knowledge, char-
acterized by minimal RCCC with their preceding
layers. Given a student model with m intermediate
layers and a teacher model with N intermediate
layers, our goal is to identify the m layers from
the N available in the teacher model that satisfy
these criteria. Formally, we define the output of

the l-th intermediate layer of the teacher model as
Tl(x), where l ∈ [0, 1, 2, ..., N ] (abbreviated as Tl).
Note that TN (x) is equivalent to T (x) as defined
in Section 3.1. The "intermediate layers" we refer
to here are the Transformer encoders in BERT, with
the embedding layer typically considered as layer
0, which is output alongside the hidden features in
the official implementation1. Therefore, the index
l starts from 0, but this does not affect our results,
as we are selecting appropriate Transformer layers,
not the embedding layer. Starting from l = 1, we
compute CCC between each intermediate layer and
its preceding layer, forming a CCC sequence:

CT (l) = CCA(Tl−1, Tl). (2)

We denote the set of selected intermediate layer
indices as S = {li | i ∈ [1,m]} and define R
as the set of remaining layer indices, where R =
[1, N ] \ S. The selected intermediate layers satisfy
the following conditions:

max{CT (l1), ..., CT (lm))} < min
j∈R

{CT (j)} (3)

where 1 ≤ l1 ≤ l2 ≤ ... ≤ lm ≤ N ensures that
the selected m teacher intermediate layers maintain
their original order in teacher model.

5.2 Maximizing CCC Between Intermediate
Layers

After selecting the most suitable teacher intermedi-
ate layers, we need to design a more effective distil-
lation objective. The MSE loss used in PKD is not
optimal for maximizing linear relationship between

1https://github.com/huggingface/transformers
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teacher’s and student’s corresponding intermediate
layer(Hastie, 2009; Trigeorgis et al., 2016; Tzirakis
et al., 2017; Köprü and Erzin, 2020; Zhou et al.,
2024). To address this, we define the loss function
directly based on the core objective—maximizing
the CCC between corresponding layers. However,
CCC computation involves the Pearson correla-
tion coefficient, which is non-differentiable and
obstructs gradient backpropagation, making it un-
suitable as an optimization objective. Therefore,
we adopt the surrogate function used in (Andrew
et al., 2013) to compute CCC between the corre-
sponding intermediate layers of the teacher and
student models.

We denote the selected intermediate layer out-
puts of the teacher model as Tli and the correspond-
ing intermediate layer outputs of the student model
as Si for each layer, where i ∈ [1,m]. Then,
the centered matrix data of Tli is calculated as
T̄li = Tli − 1

mTli1 (resp. S̄i). We define a whitened
cross-covariance matrix Ti as

T = (Σ̂i
tt)

−1/2Σ̂i
ts(Σ̂

i
ss)

−1/2 (4)

where

Σ̂i
tt =

1

m− 1
T̄li(T̄li)⊤ + rtI

Σ̂i
ts =

1

m− 1
T̄li(S̄i)

⊤

Σ̂i
ss =

1

m− 1
S̄i(S̄i)

⊤ + rsI

(5)

As mentioned in (Andrew et al., 2013), the total
correlation of the top K components of Tli and Si

is the sum of the top K singular values of Ti. So
calculation of CCC can be modified as:

corr (Tli ,Si) = ∥Ti∥tr = tr
(
T⊤
i Ti

)1/2
(6)

and the CCC loss is defined as:

LCCC = −
m∑

i=1

corr (Tli ,Si) (7)

5.3 MC3KD
Similar to PKD, we use the hyper-parameter β
to weight the importance of the CCC loss. The
complete loss definition is as follows:

L = LKD + βLCCC (8)

The entire process described in Sections 5.1 and
5.2 constitutes the full MC3KD framework. The
algorithm is shown in Algorithm 1.

Algorithm 1 MC3KD
1: Input: A sequence of words x with label y
2: Params: Ti Teacher output at the i-th layer

Si Student output at the i-th layer
N Number of layers of teacher
m Number of layers of student
α Hyper-parameter for KD Loss
β Hyper-parameter for CCC Loss

3: Output: Total loss function L
4:

5: for i = 1 to N − 1 do
6: Calculate CT (i) according to Equation (2).
7: end for
8: Pick out the m smallest teacher layers

{Tl1 , ..., Tlm} that satisfies Equation (3).
9: Calculate LCCC according to Equation (7).

10: Calculate LKD according to Equation (1).
11: Calculate L according to Equation (8).
12: return L

6 Experiments

This section presents a comprehensive evaluation
of MC3KD from multiple perspectives.

6.1 Datasets

We conduct evaluation experiments on the GLUE
(Wang, 2018) benchmark. Specifically, we evaluate
our proposed approach on tasks including Senti-
ment Classification, Paraphrase Similarity Match-
ing, Natural Language Inference, and Linguistic
Acceptability. For Sentiment Classification, we
test on the Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013). For Paraphrase Simi-
larity Matching, we use the Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005) and Quora Question Pairs (QQP) datasets.
For Natural Language Inference, we evaluate on
Multi-Genre Natural Language Inference (MNLI)
(Williams et al., 2017), Question-answering Natu-
ral Language Inference (QNLI) (Rajpurkar, 2016),
and Recognizing Textual Entailment (RTE). For
Linguistic Acceptability, we use Corpus of Lin-
guistic Acceptability (CoLA) (Warstadt, 2019).

The label space in tasks of the GLUE benchmark
is relatively small. For example, QQP is designed
to predict whether a pair of questions is a duplicate,
based on data from the popular online question-
answering website Quora. As a result, all samples
in QQP only belong to one of two categories.
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CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm
Teacher-Student Matt (Acc) (F1/Acc) (Pear/Spear) (Acc) (Acc) (F1/Acc) (Acc) (Acc)

BERT12 (teacher) 57.79 70.40 99.29/99.02 87.42/87.18 91.86 89.58 87.67/90.73 84.49 84.72
BERT24 (teacher) 59.40 71.12 99.46/99.27 88.19/87.99 92.89 91.74 87.98/91.08 84.90 85.27
BERT12-BERT3 16.97 60.29 91.57/87.5 83.21/82.72 88.19 84.57 84.79/88.19 76.32 76.58
BERT24-BERT3 20.05 61.73 92.28/88.97 83.71/83.50 88.53 85.10 85.09/88.48 76.85 77.35
BERT12-BERT6 44.12 66.43 98.58/98.04 88.26/87.97 91.17 88.67 87.22/90.50 81.93 82.00
BERT24-BERT6 44.81 67.15 99.64/99.51 88.37/87.98 91.40 88.94 87.17/90.43 82.14 82.21

Table 2: KD performance (%) of teacher models of different capacity on GLUE benchmark.

CoLA RTE MRPC STS-B
Method (Matt) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Pear/Spear) (RCCC)

Teacher: BERT12 Student: BERT3

KD 16.29 21.51 57.40 82.15 86.71/79.41 86.10 80.99/80.85 83.27
PKD 16.72 19.06 59.21 80.43 90.46/85.78 84.99 82.48/82.11 79.78

MC3KD 16.97 17.40 60.29 79.71 91.57/87.50 80.82 83.21/82.72 68.81
Teacher: BERT24 Student: BERT3

KD 14.89 38.78 57.76 81.67 88.05/82.11 85.73 82.38/82.30 70.31
PKD 15.28 34.37 58.84 81.26 86.00/79.41 86.54 81.43/80.69 84.29

MC3KD 20.05 15.32 61.73 78.41 92.28/88.97 70.75 83.71/83.50 64.11

Table 3: The relationship between distillation performance (%) and RCCC (%).

CoLA RTE MRPC STS-B SST-2
Method (Matt) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Pear/Spear) (RCCC) (Acc) (RCCC)

PKD 15.28 34.37 58.84 81.26 86.00/79.41 86.54 81.43/80.69 84.29 87.73 0.52
TAKD 14.61 55.67 59.21 80.38 88.23/82.60 85.47 82.22/81.84 77.36 86.81 3.41

MC3KD 20.05 15.32 61.73 78.41 92.28/88.97 70.75 83.71/83.50 64.11 88.53 0.48

Table 4: Distillation performance (%) and RCCC (%) of MC3KD with TAKD.

6.2 Implementation Details

Following prior works (Sun et al., 2019; Zhou and
Xu, 2022; Guo et al., 2023), we evaluate MC3KD
in a task-specific setting, where the teacher model
is fine-tuned on downstream tasks, and the student
model is trained on these tasks during distillation.
We fine-tune BERT-Base (denoted as BERT12) as
teacher model and a 24-layer Transformer model
(BERT24) as the larger teacher for each task. Pre-
trained weights are sourced from the official BERT
repository on HuggingFace. For student models,
we use 3-layer and 6-layer Transformer architec-
tures (BERT3 and BERT6), respectively. Hyperpa-
rameter details are displayed in Appendix A.

6.3 Experimental Results

We apply our MC3KD to distill the same student
model using teacher models of varying sizes, with
results shown in Table 2. As observed, the larger
teacher model, BERT24, outperforms the smaller
BERT12 in its own performance. Moreover, under
MC3KD, larger teachers consistently yield better

distillation results, suggesting that MC3KD can
enhance the effectiveness of larger BERT teach-
ers. Table 3 shows that MC3KD outperforms both
KD and PKD in distillation performance, while
MC3KD really enlarges linear differences among
student BERTs’ intermediate layers. Table 7 in
appendix B.2 presents more comparative data.

We also compare MC3KD with TAKD
(Mirzadeh et al., 2020), a classic method designed
to enhance the teaching ability of larger teacher
models. TAKD introduces an intermediate assis-
tant model, whose size falls between the teacher
and student, to facilitate knowledge transfer. In
our experiments, we use BERT24 as the teacher,
BERT6 as the assistant, and BERT3 as the student.
TAKD improves upon PKD by increasing the di-
versity of the student model, leading to moderate
performance gains. However, as shown in Table 4,
TAKD fails to fully leverage the substantial linear
differences across the intermediate layers of larger
teacher models, resulting in a smaller RCCC reduc-
tion and worse performance compared to MC3KD.
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CoLA RTE MRPC STS-B SST-2
Method (Matt) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Pear/Spear) (RCCC) (Acc) (RCCC)

only selection 16.25 32.35 60.29 80.25 88.42/82.60 85.45 82.63/81.92 75.60 88.07 0.56
only MC3 18.14 24.87 59.57 80.35 88.93/83.82 82.22 81.90/81.50 79.68 88.53 0.45
MC3KD 20.05 15.32 61.73 78.41 92.28/88.97 70.75 83.71/83.50 64.11 88.53 0.48

QNLI QQP MNLI-m MNLI-mm
Method (Acc) (RCCC) (F1/Acc) (RCCC) (Acc) (RCCC) (Acc) (RCCC)

only selection 84.64 68.87 84.83/88.32 0.44 76.66 42.78 76.85 54.66
only MC3 84.84 65.47 84.81/88.26 0.45 76.54 46.71 76.83 61.09
MC3KD 85.10 62.28 85.09/88.48 0.39 76.85 35.85 77.35 50.54

Table 5: Ablation Study: Distillation performance (%) and RCCC (%) of different partial MC3KD and full MC3KD.

RTE SST-2 MRPC CoLA STS-B
Teacher-Student (Method) (Acc) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Matt) (RCCC) (Pear/Spear) (RCCC)

XLNet6 (teacher) (Yang et al., 2019) 66.07 - 91.86 - 97.32/96.32 - 34.86 - 84.91/85.04 -
XLNet12 (teacher) (Yang et al., 2019) 66.43 - 94.50 - 96.34/94.85 - 42.90 - 85.32/85.31 -

XLNet6-XLNet3 (PKD) 53.07 93.72 89.56 94.94 88.46/82.35 94.01 15.72 90.37 82.06/82.69 93.77
XLNet6-XLNet3 (MC3KD) 57.04 93.34 90.14 93.76 89.40/84.07 93.73 16.74 88.97 82.15/83.05 93.36
XLNet12-XLNet3 (MC3KD) 58.12 92.74 90.71 83.67 90.57/86.27 93.00 17.82 85.28 82.30/82.84 93.15

Electra6 (teacher) (Clark et al., 2020) 56.68 - 88.88 - 93.52/90.93 - 33.66 - 76.70/77.26 -
Electra12 (teacher) (Clark et al., 2020) 79.78 - 95.30 - 99.11/98.78 - 67.63 - 88.48/88.63 -

Electra6-Electra3 (PKD) 53.79 99.53 87.16 3.73 83.22/74.51 98.39 12.90 86.76 75.01/75.49 8.67
Electra6-Electra3 (MC3KD) 55.23 97.50 87.73 2.02 83.78/75.74 97.34 13.08 31.61 75.85/76.06 5.40
Electra12-Electra3 (MC3KD) 56.68 96.61 87.96 0.58 84.21/77.21 96.57 14.65 23.48 75.97/76.53 2.03
Albert6 (teacher) (Lan, 2019) 67.51 - 91.63 - 98.76/98.28 - 47.46 - 87.30/87.28 -
Albert12 (teacher) (Lan, 2019) 77.26 - 92.32 - 98.59/98.04 - 58.12 - 89.01/88.85 -

Albert6-Albert3 (PKD) 63.18 92.92 89.22 77.88 96.00/94.36 91.68 31.19 26.79 84.60/84.63 86.36
Albert6-Albert3 (MC3KD) 64.26 92.09 89.45 54.91 97.18/96.08 90.88 33.13 25.24 84.88/85.09 81.82
Albert12-Albert3 (MC3KD) 65.70 90.34 89.79 14.26 98.21/97.55 88.22 35.89 8.10 85.23/85.61 80.12

Deberta6 (teacher) (He et al., 2021) 68.23 - 93.58 - 98.40/97.79 - 53.35 - 87.14/87.10 -
Deberta12 (teacher) (He et al., 2021) 57.76 - 94.95 - 96.93/95.83 - 55.76 - 86.93/86.88 -

Deberta6-Deberta3 (PKD) 55.60 17.21 91.63 25.71 87.88/81.62 15.45 32.80 11.33 78.52/79.44 20.81
Deberta6-Deberta3 (MC3KD) 57.04 17.06 91.86 25.29 88.71/82.84 15.38 34.77 11.32 79.48/80.00 20.25
Deberta12-Deberta3 (MC3KD) 58.84 16.67 91.74 25.62 90.42/86.03 15.33 34.89 11.17 80.24/80.68 19.86

Table 6: Distillation performance (%) and RCCC (%) of BERT-relevant and other models.

6.4 Ablation Study

Our method comprises two key components:
teacher layer selection in Section 5.1 and maxi-
mizing canonical correlation coefficients (MC3) in
Section 5.2. We also conduct ablation experiments
comparing partial MC3KD variants (denoted as
‘only selection’ and ‘only MC3’) which each only
contains one single component in MC3KD with the
full MC3KD containing both components. In ‘only
selection’, we choose proper intermediate layers
as teacher layer using the criteria we propose in
Section 5.1, while vanilla KD loss is applied as
distillation loss. In ‘only MC3’, teacher layers are
selected by PKD-skip strategy and distillation loss
is based on MC3 we propose in Section 5.2.

As shown in Table 5, only the complete MC3KD
yields optimal distillation performance and max-
imizes the linear differences among the student
model’s intermediate layers, underscoring the in-
dispensability of both components.

6.5 Generalizability and Transferability

We also evaluate MC3KD on additional models.
Some are BERT variants (Clark et al., 2020; Lan,
2019; He et al., 2021) and others are unrelated to
BERT (Yang et al., 2019). As shown in Table 6,
MC3KD not only enhances the effectiveness of
BERT compression but also enables larger teacher
models to achieve superior distillation performance.
The experimental results further demonstrate that
better distillation performance is also reflected in
greater linear diversity among the intermediate lay-
ers of student models.

These results show that our method generalizes
to other models and provides a solution for capacity
mismatch in classification tasks with few classes,
demonstrating strong generalizability and transfer-
ability. We hope our approach can provide insights
for related research, particularly in the compres-
sion of other language models and feature-based
knowledge distillation methods.
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7 Conclusion

In this paper, we address the challenge of larger
BERT models failing to achieve better distillation
performance. Our analysis reveals a strong cor-
relation between enhanced generalization and in-
creased linear differences among intermediate lay-
ers. We find existing methods like PKD fail to
effectively amplify these differences, limiting the
distillation potential of larger models. To over-
come this, we propose MC3KD, which maximizes
Canonical Correlation Coefficients (CCC) between
intermediate layers. Experimental results demon-
strate that MC3KD successfully increases CCC and
enables larger BERT models to achieve superior
distillation performance.

Limitations

Experiments show that MC3KD’s training time is
approximately 1.6 times that of the original method.
A promising direction for future work is to develop
more efficient alternatives.

Another recently popular metric for analyzing
linear relationships is the Concordance Correlation
Coefficient (Lawrence and Lin, 1989). Our work
focuses on providing new insights into improving
knowledge distillation for large BERT teachers. We
leave exploring the application of this metric to
increase linear differences among student model
layers for future work.
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A Setting of Hyperparameters

We set the number of hidden units in the final soft-
max layer to 768, the batch size to 32, and the num-
ber of training epochs to 4 across all experiments.
We adopt AdamW (Loshchilov, 2017) as optimizer.
Following prior works (Sun et al., 2019; Guo et al.,
2023), we conduct a hyperparameter search over
the student learning rate from {2e−5, 3e−5, 5e−5},
hyperparameter α from {0.2, 0.5, 0.6, 0.7} and hy-
perparameter β from {0.1, 1.0, 10.0}. The temper-
ature parameter is fixed at T = 20 since it pri-
marily influences the output distribution, while our
method focuses on the linear relationships between
intermediate layers and remains largely unaffected
by temperature. Thus, tuning the temperature is
unnecessary. The remaining hyperparameters are
identical to those used in pre-training the teacher
network.

B Supplementary Experimental Results

B.1 Variation of CCC across epochs

To further illustrate the relationship between dis-
tillation performance and the linear differences
among the student’s intermediate layers, we
track the student’s generalization performance and
SVCCA matrix (represented by RCCC in figures)
at the end of each epoch during distillation and vi-
sualize the results as line charts. In each subplot of
Figure 4, using BERT24 as the teacher and BERT6

as the student, we observe that as distillation pro-
gresses, the student model’s performance consis-
tently improves while the RCCC value decreases.
This indicates that across different datasets, lower
RCCC values correlate with improved distillation
performance. Figure 5 further confirms that this
trend holds consistently across different teacher-
student pairs on the given QQP dataset. These
findings reinforce our conclusion: increasing the
linear differences among the student model’s inter-
mediate layers enhances its generalization ability,
thereby improving distillation performance.

B.2 More Comparative Data of MC3KD

Table 7 serves as a supplement to Table 3, it com-
pares the distillation performance and RCCC val-
ues of MC3KD against PKD and KD across addi-
tional teacher–student pairs.

We perform comparisons with another classic
method DynaKD (Ding et al., 2024). Table 8 shows
that our method not only achieves a lower RCCC,
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Figure 4: The relationship between KD performance
and the linear differences among the student’s interme-
diate layers across different datasets, given a specific
teacher and student model.
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Figure 5: The relationship between KD performance
and the linear differences among the student’s interme-
diate layers for different teacher-student pairs on a given
dataset. In the legend, T represents the teacher model,
and S represents the student model.

but also outperforms DynaKD in distillation perfor-
mance.

We have also tested our method on GPT style
models (Radford et al., 2019) on Wikitext-2 test
dataset. In Table 9, “PPL” stands for perplexity,
quantifying the model’s uncertainty in predicting
the next token within long text sequences—lower
perplexity indicates stronger performance. Table 9
demonstrates that, vertically, MC3KD consistently
outperforms KD, and, horizontally, it mitigates per-
formance degradation when distilling from increas-
ingly larger GPT teachers.
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CoLA RTE MRPC STS-B
Method (Matt) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Pear/Spear) (RCCC)

Teacher: BERT12 Student: BERT3

KD 16.29 21.51 57.40 82.15 86.71/79.41 86.10 80.99/80.85 83.27
PKD 16.72 19.06 59.21 80.43 90.46/85.78 84.99 82.48/82.11 79.78

MC3KD 16.97 17.40 60.29 79.71 91.57/87.50 80.82 83.21/82.72 68.81
Teacher: BERT24 Student: BERT3

KD 14.89 38.78 57.76 81.67 88.05/82.11 85.73 82.38/82.30 70.31
PKD 15.28 34.37 58.84 81.26 86.00/79.41 86.54 81.43/80.69 84.29

MC3KD 20.05 15.32 61.73 78.41 92.28/88.97 70.75 83.71/83.50 64.11
Teacher: BERT12 Student: BERT6

KD 42.97 7.84 65.70 70.60 97.02/95.83 75.68 88.18/87.85 78.48
PKD 42.50 8.98 65.34 70.85 98.05/97.30 74.23 87.91/87.61 79.46

MC3KD 44.12 6.47 66.43 70.25 98.58/98.04 73.81 88.26/87.97 77.84
Teacher: BERT24 Student: BERT6

KD 42.35 9.27 64.98 70.74 94.55/92.40 75.76 88.01/87.76 78.83
PKD 42.12 10.04 64.62 71.25 97.15/96.08 74.97 88.07/87.85 79.24

MC3KD 44.81 6.14 67.15 69.71 99.64/99.51 69.87 88.37/87.98 73.01

Table 7: The relationship between distillation performance (%) and RCCC (%) on various teacher-student pairs.

CoLA RTE MRPC STS-B SST-2
Method (Matt) (RCCC) (Acc) (RCCC) (F1/Acc) (RCCC) (Pear/Spear) (RCCC) (Acc) (RCCC)
DynaKD 42.39 10.02 66.43 70.07 97.01/95.83 74.87 88.12/87.84 78.86 90.94 1.33
MC3KD 44.81 6.14 67.15 69.71 99.64/99.51 69.87 88.37/87.98 73.01 91.40 0.46

QNLI QQP MNLI-m MNLI-mm
Method (Acc) (RCCC) (F1/Acc) (RCCC) (Acc) (RCCC) (Acc) (RCCC)
DynaKD 88.36 73.87 87.24/90.49 0.33 81.80 13.97 82.04 13.76
MC3KD 88.94 71.52 87.17/90.43 0.53 82.14 3.65 82.21 9.03

Table 8: Distillation performance (%) and RCCC (%) of MC3KD and DynaKD.

Method Teacher Student PPL Teacher Student PPL
KD GPT2-medium GPT2-small 28.50 GPT2-large GPT2-small 29.24

MC3KD GPT2-medium GPT2-small 23.71 GPT2-large GPT2-small 23.57

Table 9: Distillation performance (%) on sequence generation tasks.

C Supplementary Figures

The following figures provide supplementary infor-
mation to support the main text.

Figure 6 provides a more detailed illustration of
Figure 2 across additional tasks, showing that the
larger the teacher model, the more pronounced the
linear differences among its intermediate layers.

Figure 7 is a large-scale visualization that clearly
reflects the specific values of linear differences
across the teacher model’s intermediate layers. It
echoes the discussion in Section 5.1, highlighting
that the PKD method may miss intermediate layers
well-suited for teaching.

Figure 8 shows that the below-diagonal elements
in the SVCCA matrix—indicating linear diversity
between adjacent layers—tend to have smaller val-
ues as model size grows. This suggests larger mod-
els are more likely to contain intermediate layers
that capture critical information, reinforcing the
potential of larger teacher models for better distil-
lation, as discussed in Section 4.

Figure 9 depicts the observation in Section 3.2: if
one element in an SVCCA matrix is greater than its
counterpart in another, this pattern typically holds
across most corresponding elements. Thus, com-
paring SVCCA matrices can be effectively reduced
to comparing their RCCC values.
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Figure 6: Heatmaps of SVCCA for BERT pre-trained models of varying sizes on several tasks.
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Figure 7: Heatmaps of RTE
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0.57 0.62 0.62 0.63 0.64 0.65 0.7 0.74 0.73 0.71 0.78 0.78 0.94 1 0.99 0.92 0.8 0.63 0.52 0.45 0.37 0.31 0.27 0.25 0.23

0.51 0.55 0.56 0.56 0.57 0.58 0.63 0.67 0.67 0.65 0.73 0.73 0.91 0.99 1 0.97 0.87 0.73 0.62 0.55 0.46 0.4 0.37 0.34 0.31

0.38 0.42 0.42 0.42 0.42 0.43 0.47 0.52 0.54 0.54 0.61 0.62 0.82 0.92 0.97 1 0.97 0.87 0.79 0.72 0.64 0.58 0.53 0.5 0.47

0.26 0.28 0.29 0.28 0.28 0.29 0.33 0.37 0.39 0.39 0.46 0.48 0.69 0.8 0.87 0.97 1 0.97 0.91 0.86 0.79 0.74 0.7 0.67 0.64

0.15 0.16 0.16 0.16 0.16 0.16 0.19 0.22 0.24 0.25 0.3 0.33 0.53 0.63 0.73 0.87 0.97 1 0.99 0.96 0.92 0.88 0.84 0.82 0.79

0.09 0.1 0.1 0.0980.0980.0970.12 0.14 0.16 0.17 0.21 0.24 0.42 0.52 0.62 0.79 0.91 0.99 1 0.99 0.97 0.94 0.92 0.9 0.87

0.0590.0660.0670.0640.0640.0630.081 0.1 0.11 0.12 0.16 0.18 0.35 0.45 0.55 0.72 0.86 0.96 0.99 1 0.99 0.97 0.96 0.94 0.92

0.0330.0360.0370.0350.0350.0340.0470.0610.0720.0780.11 0.13 0.28 0.37 0.46 0.64 0.79 0.92 0.97 0.99 1 0.99 0.99 0.97 0.96

0.0190.0220.0220.0210.020.0190.0290.040.0480.0530.0790.0980.23 0.31 0.4 0.58 0.74 0.88 0.94 0.97 0.99 1 1 0.99 0.98

0.0120.0140.0140.0130.0130.0120.020.0290.0350.0390.0620.079 0.2 0.27 0.37 0.53 0.7 0.84 0.92 0.96 0.99 1 1 1 0.99

0.00810.00920.00980.00870.00820.00760.0140.0210.0270.0310.0510.0670.18 0.25 0.34 0.5 0.67 0.82 0.9 0.94 0.97 0.99 1 1 1

0.00530.00610.00660.00570.00530.00480.00970.0160.0210.0240.0410.0570.16 0.23 0.31 0.47 0.64 0.79 0.87 0.92 0.96 0.98 0.99 1 1

BERT24 on MRPC task
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Matthews Correlation Coefficient: 57.79%
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1 0.95 0.9 0.84 0.71 0.44 0.32 0.14 0.24 0.25 0.270.00596.4e-05

0.95 1 0.96 0.91 0.78 0.48 0.36 0.14 0.25 0.26 0.290.00675.6e-05

0.9 0.96 1 0.95 0.83 0.54 0.41 0.13 0.23 0.25 0.270.00594.2e-05

0.84 0.91 0.95 1 0.94 0.72 0.56 0.15 0.27 0.28 0.280.00330.00065

0.71 0.78 0.83 0.94 1 0.88 0.75 0.085 0.19 0.19 0.180.000380.0022

0.44 0.48 0.54 0.72 0.88 1 0.91 0.036 0.11 0.11 0.0860.000990.0046

0.32 0.36 0.41 0.56 0.75 0.91 1 0.00640.00540.00470.0020.00630.007

0.14 0.14 0.13 0.15 0.0850.0360.0064 1 0.96 0.93 0.89 0.04 0.005

0.24 0.25 0.23 0.27 0.19 0.110.00540.96 1 0.98 0.94 0.0360.003

0.25 0.26 0.25 0.28 0.19 0.110.00470.93 0.98 1 0.97 0.0310.0018

0.27 0.29 0.27 0.28 0.18 0.0860.002 0.89 0.94 0.97 1 0.0740.019

0.00590.00670.00590.00330.000380.000990.00630.04 0.0360.0310.074 1 0.94

6.4e-055.6e-054.2e-050.000650.00220.00460.0070.0050.0030.00180.019 0.94 1

BERT12 on CoLA task
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1 0.95 0.9 0.85 0.76 0.54 0.5 0.37 0.32 0.3 0.34 0.330.00330.0350.0160.00910.00570.00290.00150.000690.000430.000236.3e-059.3e-062.9e-06

0.95 1 0.96 0.91 0.82 0.58 0.54 0.4 0.35 0.33 0.37 0.360.00470.0380.0170.00950.0060.00310.00160.000720.000460.000246.8e-059.9e-062.9e-06

0.9 0.96 1 0.95 0.88 0.65 0.61 0.38 0.33 0.29 0.33 0.310.000370.0240.00920.00440.00240.000680.000144.5e-072.7e-050.000120.000310.000530.00076

0.85 0.91 0.95 1 0.97 0.8 0.74 0.46 0.39 0.33 0.36 0.320.000680.020.00610.00220.000813.4e-058.3e-050.000460.000720.00110.00160.00210.0025

0.76 0.82 0.88 0.97 1 0.91 0.86 0.44 0.36 0.28 0.31 0.260.00110.0140.00440.00140.000481.1e-060.000150.000520.000770.00110.00160.0020.0024

0.54 0.58 0.65 0.8 0.91 1 0.96 0.34 0.25 0.17 0.19 0.140.0210.00390.00130.000199.7e-060.000180.000520.000890.00120.00150.00190.00220.0026

0.5 0.54 0.61 0.74 0.86 0.96 1 0.21 0.140.0770.0960.0640.0790.000930.000770.000131.8e-058.6e-050.000250.000410.000540.000690.000880.00110.0013

0.37 0.4 0.38 0.46 0.44 0.34 0.21 1 0.97 0.91 0.87 0.79 0.390.0530.00870.00230.000718.5e-060.00030.00110.00170.00240.00350.00430.0047

0.32 0.35 0.33 0.39 0.36 0.25 0.14 0.97 1 0.97 0.92 0.84 0.470.0520.00670.00130.000218.4e-050.000920.00220.0030.0040.00530.00620.0068

0.3 0.33 0.29 0.33 0.28 0.170.0770.91 0.97 1 0.96 0.91 0.570.0820.0180.0080.00450.00190.000462.2e-051.2e-050.000150.000520.000830.0011

0.34 0.37 0.33 0.36 0.31 0.190.0960.87 0.92 0.96 1 0.97 0.56 0.150.0550.0360.0280.0210.0150.0110.00970.0080.00640.00540.0049

0.33 0.36 0.31 0.32 0.26 0.140.0640.79 0.84 0.91 0.97 1 0.6 0.210.0960.0710.0610.05 0.040.0340.0310.0280.0250.0230.022

0.00330.00470.000370.000680.00110.0210.0790.39 0.47 0.57 0.56 0.6 1 0.22 0.110.0910.0840.0760.0660.060.0570.0530.050.0470.047

0.0350.0380.0240.020.0140.00390.000930.0530.0520.0820.15 0.21 0.22 1 0.97 0.94 0.92 0.91 0.89 0.87 0.86 0.85 0.83 0.82 0.82

0.0160.0170.00920.00610.00440.00130.000770.00870.00670.0180.0550.0960.11 0.97 1 0.99 0.98 0.98 0.97 0.95 0.94 0.93 0.92 0.91 0.91

0.00910.00950.00440.00220.00140.000190.000130.00230.00130.0080.0360.0710.0910.94 0.99 1 1 0.99 0.98 0.98 0.97 0.96 0.95 0.94 0.94

0.00570.0060.00240.000810.000489.7e-061.8e-050.000710.000210.00450.0280.0610.0840.92 0.98 1 1 1 0.99 0.99 0.98 0.98 0.97 0.96 0.96

0.00290.00310.000683.4e-051.1e-060.000188.6e-058.5e-068.4e-050.00190.0210.050.0760.91 0.98 0.99 1 1 1 0.99 0.99 0.99 0.98 0.97 0.97

0.00150.00160.000148.3e-050.000150.000520.000250.00030.000920.000460.0150.040.0660.89 0.97 0.98 0.99 1 1 1 0.99 0.99 0.99 0.98 0.98

0.000690.000724.5e-070.000460.000520.000890.000410.00110.00222.2e-050.0110.0340.06 0.87 0.95 0.98 0.99 0.99 1 1 1 1 0.99 0.99 0.99

0.000430.000462.7e-050.000720.000770.00120.000540.00170.0031.2e-050.00970.0310.0570.86 0.94 0.97 0.98 0.99 0.99 1 1 1 1 0.99 0.99

0.000230.000240.000120.00110.00110.00150.000690.00240.0040.000150.0080.0280.0530.85 0.93 0.96 0.98 0.99 0.99 1 1 1 1 1 1

6.3e-056.8e-050.000310.00160.00160.00190.000880.00350.00530.000520.00640.0250.05 0.83 0.92 0.95 0.97 0.98 0.99 0.99 1 1 1 1 1

9.3e-069.9e-060.000530.00210.0020.00220.00110.00430.00620.000830.00540.0230.0470.82 0.91 0.94 0.96 0.97 0.98 0.99 0.99 1 1 1 1

2.9e-062.9e-060.000760.00250.00240.00260.00130.00470.00680.00110.00490.0220.0470.82 0.91 0.94 0.96 0.97 0.98 0.99 0.99 1 1 1 1

BERT24 on CoLA task
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Figure 8: Zoomed-in view of the SVCCA matrix elements for the large BERT model.
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0 1 2 3 4 5 6

0

1

2

3

4

5

6

1.000000 0.965127 0.907442 0.874424 0.830179 0.755798 0.738093

0.965127 1.000000 0.975207 0.957379 0.924673 0.854659 0.835502

0.907442 0.975207 1.000000 0.987990 0.959139 0.899160 0.878000

0.874424 0.957379 0.987990 1.000000 0.985840 0.941353 0.917420

0.830179 0.924673 0.959139 0.985840 1.000000 0.973727 0.949990

0.755798 0.854659 0.899160 0.941353 0.973727 1.000000 0.977242

0.738093 0.835502 0.878000 0.917420 0.949990 0.977242 1.000000

BERT6 taught by BERT12 on QNLI task (RCCC:0.73809278)
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1.000000 0.965707 0.900448 0.866257 0.825447 0.752823 0.715210

0.965707 1.000000 0.971448 0.951162 0.916834 0.845167 0.805046

0.900448 0.971448 1.000000 0.985959 0.955398 0.892559 0.848684

0.866257 0.951162 0.985959 1.000000 0.984379 0.938335 0.887462

0.825447 0.916834 0.955398 0.984379 1.000000 0.971012 0.915152

0.752823 0.845167 0.892559 0.938335 0.971012 1.000000 0.941135

0.715210 0.805046 0.848684 0.887462 0.915152 0.941135 1.000000

BERT6 taught by BERT24 on QNLI task (RCCC:0.71521022)
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1.000000 0.964777 0.922374 0.900402 0.875039 0.829561 0.778423

0.964777 1.000000 0.981930 0.965300 0.945062 0.900783 0.845442

0.922374 0.981930 1.000000 0.985040 0.967410 0.927026 0.869373

0.900402 0.965300 0.985040 1.000000 0.990103 0.964891 0.913617

0.875039 0.945062 0.967410 0.990103 1.000000 0.984555 0.945232

0.829561 0.900783 0.927026 0.964891 0.984555 1.000000 0.973402

0.778423 0.845442 0.869373 0.913617 0.945232 0.973402 1.000000

BERT6 taught by BERT12 on STS-B task (RCCC:0.77842334)
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1.000000 0.968930 0.918354 0.888337 0.852670 0.809643 0.730079

0.968930 1.000000 0.973078 0.958538 0.932477 0.890748 0.797022

0.918354 0.973078 1.000000 0.980658 0.955244 0.912280 0.805650

0.888337 0.958538 0.980658 1.000000 0.986440 0.957445 0.846301

0.852670 0.932477 0.955244 0.986440 1.000000 0.983960 0.871881

0.809643 0.890748 0.912280 0.957445 0.983960 1.000000 0.897745

0.730079 0.797022 0.805650 0.846301 0.871881 0.897745 1.000000

BERT6 taught by BERT24 on STS-B task (RCCC:0.73007933)
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0
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2
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1.000000 0.970366 0.923128 0.901310 0.865732 0.788030 0.336417

0.970366 1.000000 0.976138 0.957746 0.926329 0.853029 0.365278

0.923128 0.976138 1.000000 0.989470 0.968666 0.910833 0.391960

0.901310 0.957746 0.989470 1.000000 0.986462 0.940734 0.405834

0.865732 0.926329 0.968666 0.986462 1.000000 0.972158 0.417751

0.788030 0.853029 0.910833 0.940734 0.972158 1.000000 0.433810

0.336417 0.365278 0.391960 0.405834 0.417751 0.433810 1.000000

BERT6 taught by BERT12 on MNLI-mm task (RCCC:0.33641687)
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1.000000 0.967996 0.920078 0.894631 0.853413 0.763094 0.090338

0.967996 1.000000 0.976963 0.956430 0.923365 0.837278 0.099982

0.920078 0.976963 1.000000 0.989536 0.961622 0.889908 0.106922

0.894631 0.956430 0.989536 1.000000 0.979011 0.919967 0.110344

0.853413 0.923365 0.961622 0.979011 1.000000 0.962063 0.116541

0.763094 0.837278 0.889908 0.919967 0.962063 1.000000 0.124816

0.090338 0.099982 0.106922 0.110344 0.116541 0.124816 1.000000

BERT6 taught by BERT24 on MNLI-mm task (RCCC:0.09033827)

Figure 9: Comparison of SVCCA matrices for student models distilled by different teacher models. Each row shows
the benchmark on the left, with the corresponding element on the right colored red if it is larger than the left matrix,
otherwise green. In each row, if the RCCC element in the upper-right corner of the right matrix is smaller than the
corresponding element in the left matrix, then almost all other elements are smaller than left as well. As a result, the
comparison of RCCC element sizes reflects the overall size comparison of the SVCCA matrices.

21990


