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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in language
generation and general task performance.
However, their application to spoken lan-
guage understanding (SLU) remains challeng-
ing—particularly for token-level tasks, where
the autoregressive nature of LLMs often leads
to misalignment issues. They also struggle
to capture nuanced interrelations in semantic-
level tasks through direct fine-tuning alone. To
address these challenges, we propose the Entity-
level Language Model (ECLM) framework,
which reformulates slot-filling as an entity
recognition task and introduces a novel concept,
Chain of Intent, to enable step-by-step multi-
intent recognition. Experimental results show
that ECLM significantly outperforms strong
baselines such as Uni-MIS, achieving gains of
3.7% on MixATIS and 3.1% on MixSNIPS.
Compared to standard supervised fine-tuning
of LLMs, ECLM further achieves improve-
ments of 8.5% and 21.2% on these datasets,
respectively. Our code is available at https:
//github.com/SJY8460/ECLM.

1 Introduction

The rapid advancement of large language models
(LLMs) has markedly accelerated progress in the
field of natural language processing (NLP) (Ge-
ogle., 2023; Touvron et al., 2023). Trained on ex-
tensive datasets, these models demonstrate excep-
tional performance across a wide range of NLP
tasks, including natural language inference, sum-
marization, and dialog systems, often achieving im-
pressive results through in-context learning alone
(Hu et al., 2022; Kavumba et al., 2023).

Spoken language understanding (SLU) is a crit-
ical component of task-oriented dialog systems,
which are designed to construct a semantic frame
that accurately captures the user’s request. This
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Intent Weather Inquiry P Navigation

Utterance Get the weather and drive to the airport

Slot o o B-WT [0} (¢} (¢} [0} B-LOC

Figure 1: An example with multi-intent SLU, where
B-WT donates B-Weather, B-LOC donates B-Location
and “TP” denote “Transition Point”.

semantic frame is typically built through two sub-
tasks: intent detection, which identifies the user’s
intent, and slot filling, which extracts relevant se-
mantic elements. Given the close interdependence
of these sub-tasks (Tur and Mori, 2011), state-of-
the-art SLU systems often employ joint models to
effectively capture the correlations between them
(Goo et al., 2018; Qin et al., 2019).

In real-life scenarios, users often express mul-
tiple intents within a single utterance, and the
Amazon internal dataset showed that 52% of
examples are multi-intent (Gangadharaiah and
Narayanaswamy, 2019). Figure 1 shows a two-
intent example, which contains a classification task
to classify the intent labels (i.e., predict the intents
as : Weather_Inquiry and Navigation) and a se-
quence labeling task to predict the slot label se-
quence (i.e., label the utterance as {0, O, B-WT, 0, O,
0, 0, B-LOC }). To deal with multi-intent scenarios,
an increasing number of studies have begun to fo-
cus on modeling SLU in multi-intent settings. Xu
and Sarikaya (2013) and Kim et al. (2017) first ex-
plored the multi-intent SLU. Then Qin et al. (2020a,
2021b) incorporated graph attention networks to
model fine-grained intent-slot guiding. Recently,
Huang et al. (2022) proposed a chunk-level intent
detection (CLID) framework to split multi-intent
into single-intent with an intent transition point.
Furthermore, Yin et al. (2024) develop an united
multi-view intent-slot interaction framework(Uni-
MIS), achieving promising performance.

Whether LLMs can effectively handle multi-
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intent SLU remains an open question. While a
straightforward approach might involve fine-tuning
LLMs for this specific task, several challenges per-
sist. For example, although LLMs exhibit strong
capabilities in entity-level intent detection, their
autoregressive architecture can lead to issues such
as error propagation and misalignment, particularly
in token-level slot filling tasks. This is because
LLMs may generate undesirable outputs that do
not align one-to-one with the original tokens from
the utterance.

To address these challenges, we introduce a
novel method that leverages the strengths of LLMs
for multi-intent SLU by transforming the tradi-
tional token-level slot-filling task into an entity
detection problem. By shifting the focus to entity-
level slot detection, LLMs can concentrate on iden-
tifying relevant slot labels without the need to label
every token within a sentence. This approach ef-
fectively mitigates the issues of misalignment and
uncontrolled generation length. Moreover, we pro-
pose the concept of a chain of intent, inspired by
the chain-of-thought reasoning framework (Wei
et al., 2022). This strategy enhances the ability of
LLMs to differentiate and separate multi-intent ut-
terances into distinct sub-intent segments, enabling
the models to handle multi-intent recognition in a
systematic, step-by-step manner.

Our experimental results demonstrate that
ECLM achieves substantial improvements over
state-of-the-art pre-trained models, such as Uni-
MIS. Specifically, ECLM achieves overall accuracy
gains of 3.7% on the MixATIS dataset and 3.1%
on the MixSNIPS dataset. Furthermore, the ECLM
framework surpasses conventional supervised fine-
tuning of LL.Ms, delivering improvements of 8.5%
and 21.2% in overall accuracy on MixATIS and
MixSNIPS, respectively. In terms of slot filling
F1 score, ECLM outperforms vanilla LLM fine-
tuning by 22% and 8.1%. We also conduct fur-
ther experiments to evaluate the performance of
ECLM across different numbers of intents within
the datasets. Our model consistently outperforms
Uni-MIS in overall accuracy across all settings, par-
ticularly in scenarios with a high number of intents,
showing improvements of 1.1%, 4.3%, and 7.8%
for intent counts ranging from 1 to 3. Addition-
ally, we find that ECLM requires only 60% of the
data to surpass Uni-MIS, with more training fur-
ther enhancing its performance. In summary, the
contributions of this work can be outlined as fol-

lows: (1) We design an entity-slot framework that
transforms the traditional token-level slot-filling
task into an entity detection problem, thereby mit-
igating issues of misalignment and uncontrolled
generation length. (2) We introduce the chain of
intent concept, which enables LLMs to effectively
handle multi-intent recognition in a step-by-step
manner. (3) We demonstrate that our proposed
model, ECLM, outperforms strong baselines on
two widely used datasets, MixATIS and MixSNIPS,
across the majority of metrics.

2 Problem Definition

2.1 Multi-Intent Detection

Given an input sequence x = (x1, ..., Ty), multi-
intent detection can be defined as a multi-label
classification task that outputs a sequence of intent
labels o; = (of,..., 0l ), where m is the number
of intents in a given discourse and n is the length
of the discourse.

2.2 Slot Filling

Slot filling can be considered as a sequence annota-
tion task that maps the input discourse z to a slot
output sequence og = (07,...,03).

3 Approach

As shown in Figure 2, our approach establishes a
comprehensive framework for integrating LLMs
into the domain of multi-intent SLU. By showing
an example of the ECLM training process, the key
components of the framework are highlighted: the
Entity Slots and the Chain of Intent. Finally, we
perform supervised fine-tuning to adapt the LLM
to the multi-intent SLU task. Detail information of
the prompt template can be seen in the Figure 3.

3.1 Entity Slots Construction and Recovery

Our approach introduces a novel two-phase pro-
cess: Entity Slots Construction for training, and
Entity Slots Recovery for inference, designed to
bridge the gap between traditional sequence label-
ing and the generative capabilities of LLMs.

3.1.1 Entity Slots Construction

In the Entity Slots Construction phase, we trans-
form conventional BIO sequence labeling into a
structured entity-slot representation, optimizing for
generative modeling with LLMs. Given a token se-
quence T' = {t1, 1o, ...,t,} and its corresponding
BIO-annotated tags S = {s1, s2, ..., Sp}, we map
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Figure 2: The key components of the ECLM and the different operations performed by the same example in the

training phase as well as in the inference phase.

these to a set of entity slots £ = {e1,e2,...,en},
where m is the number of identified entities. This
mapping is defined by a function c as follows:

e = {(to Uy}

i=1

(1

where k; is the entity type extracted from the prefix
of the "B-’ tag, and I; is the index set of tokens that
belong to the ¢-th entity. Each entity starts with a to-
ken labeled "B-XXX’ and includes all consecutive
tokens labeled *I-XXX’ of the same type. New enti-
ties are initiated by a new ’B-’ tag or interrupted by
an ’O’. This function systematically extracts and
groups contiguous tokens belonging to each entity,
ensuring they are correctly concatenated to form
complete slot values.

3.1.2 Entity Slots Recovery

During the inference stage, we implement an En-
tity Slots Recovery process to convert the gener-
ated structured entity slots back into a BIO-tagged
sequence. This recovery process, defined by a func-
tion r, can be expressed as:

r(T,E) = {s;}j—, )

where s; is determined for each token ¢; based on
its presence in the entity slots E. The recovery
follows these rules: (1) If ¢; is the first token of
an entity in F, s; is assigned a ’B-’ tag with the
corresponding entity type. (2) If ¢; is a non-initial
token of an entity in F, s; is assigned an ’I-’ tag

with the corresponding entity type. (3) If ¢; does
not belong to any entity in F, s; is assigned an "O’
tag.

3.2 Chain of Intent

To effectively manage the complexity of multi-
intent SLU, we propose a novel framework termed
the "Chain of Intent," inspired by the "Chain of
Thought" reasoning process (Wei et al., 2022). This
framework enhances the model’s ability to discern
and process multiple intents within a single utter-
ance by segmenting it into distinct sub-intent utter-
ances, enabling more granular understanding and
response generation.

Consider an utterance U consisting of n intents.
Each intent I; (where ¢ = 1,2, ..., n) corresponds
to a specific segment of the utterance U;. The pro-
cess of decomposing the utterance U can be for-
mally expressed as a mapping:

U~ {(Il : Ul), (IQ : UQ), Ceey (In : Un)}, 3)

where the structured pairs (I; : U;) represent each
intent I; paired with its associated sub-utterance Uj.
During training, the model is presented with this
mapping to learn the relationship between each in-
tent and its corresponding segment of the utterance,
thereby improving its ability to generate contextu-
ally accurate and intent-specific responses.
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Figure 3: Comparison of prompt structures used in ECLM versus Vanilla SFT.

3.3 Supervised Fine-tuning

We employ supervised fine-tuning to enhance the
generative capabilities of LLMs, ensuring they
meet the structured requirements of multi-intent
spoken language understanding (SLU). This pro-
cess involves adjusting the model parameters 6 to
minimize a loss function £ across a set of train-
ing examples. Given a training set {(U;, T}) jj\/il,
where Uj represents the j-th input utterance and 7’;
denotes the corresponding target output, including
segmented sub-intents and entity slots, the fine-

tuning objective is defined as:

M
0" = arg mgnZIE(LLM(Uj; 0),T;), @)
J:

where, LLM(Uj; 6) represents the output generated
by the LLM given the input U; with parameters 6.
The supervised fine-tuning process iteratively up-
dates 6 to more accurately map input utterances U
to their corresponding intent and entity slot outputs
T, thereby improving the model’s effectiveness in
multi-intent SLU tasks.

4 Experiments

4.1 Datasets

We conducted experiments on two widely used
multi-intent SLU datasets: MixATIS (Hemphill
et al., 1990; Qin et al., 2020a) and MixSNIPS
(Coucke et al., 2018; Qin et al., 2020a). The Mix-
ATIS dataset contains 13,162 training instances and

828 test instances, primarily focusing on airline-
related queries. In contrast, the MixSNIPS dataset
spans a broader range of domains, including restau-
rants, hotels, and movies, with 39,776 training in-
stances and 2,199 test instances. These datasets are
designed to mimic real-world scenarios, featuring
utterances with 1 to 3 intents, distributed in ratios
of 30%, 50%, and 20%, respectively and detail
information can be found in Table 1.

4.2 Experimental Settings

We use LLaMA 3.1-8B-Instruct as the base model
and conduct our experiments with a carefully tuned
set of hyperparameters. Additionally, we evaluate
the performance of different backbone models, as
shown in Table 5. To determine the optimal set-
tings, we performed a grid search over the learning
rate [1 x 107°,2 x 107%,5 x 107°,1 x 10~4] and
the number of epochs [1,2,3]. Based on the re-
sults, we settled on a learning rate of 2 x 10~° and
a batch size of 32, tuning the model for 1 epoch
on both datasets. During inference, a generation
temperature of 0.0 was used to ensure deterministic
and consistent outputs.

4.3 Baselines

In our study, we benchmark LLMs performance
against a range of established baselines in the multi-
intent SLU domain. These include vanilla mod-
els like Stack-Propagation (Qin et al., 2019): a
stack-propagation framework to explicitly incorpo-
rate intent detection for guiding slot filling. AGIF
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Dataset MixATIS MixSNIPS
Vocabulary Size 722 11241
Intent categories 17 6
Slot categories 116 71
Training set size 13162 39776
Test set size 828 2199

Table 1: Dataset statistics

(Qin et al., 2020b): an adaptive interaction network
to achieve fine-grained multi-intent information
integration, GL-GIN (Qin et al., 2021b): a local
slot-aware and global intent-slot interaction graph
framework to model the interaction between multi-
ple intents and all slots within an utterance, SDJN
(Chen et al., 2022): a multiple instance learning
and self-distillation framework for weakly super-
vised multiple intent information capturing, CLID
(Huang et al., 2022): a chunk-level intent detection
framework for recognizing intent within a frag-
ment of an utterance and SSRAN (Cheng et al.,
2023): a transformative network built on the Trans-
former model, designed to reduce the complexity of
multi-intent detection in SLU through scope recog-
nition and bidirectional interaction between results
of slot filling and intent detection. We also in-
cluded PLM-based models such as Uni-MIS (Yin
et al., 2024): a unified multi-intent slu framework
via multi-view intent-slot interaction. Additionally,
SDIN(Bert) and CLID(Roberta) extend their re-
spective base models by incorporating pre-trained
language model backbones.

4.4 Main Result Analysis

The evaluation metrics included slot F1 score, in-
tent accuracy and semantic accuracy to compre-
hensively assess the sentence-level semantic frame
parsing capabilities. These metrics, adhering to
the methodologies delineated by Qin et al. (2021b);
Huang et al. (2022); Yin et al. (2024) facilitate a nu-
anced evaluation of SLU systems. The paramount
metric, semantic overall accuracy, quantifies the
system’s proficiency in simultaneously and cor-
rectly predicting both intents and slots within a
single sentence.

Our main experiments yield several important
observations: (1) As shown in Table 2, ECLM
outperforms the strong baseline in slot filling F1
scores in both datasets. This improvement indi-
cates that the ECLM interaction effectively utilises
entity slots to improve it’s slot filling ability. (2)

For the single-domain MixATIS dataset, ECLM
outperforms Uni-MIS with a 1.9 % point improve-
ment in slot filling F1 scores (90.2%), a 2.2 %
point improvement in intent prediction accuracy
(80.7%), and a 3.7 % point improvement in over-
all sentence-level semantic frame parsing accuracy
(56.2%). For the multi-domain MixATIS dataset,
ECLM outperforms Uni-MIS by 0.6 % points in
slot-filling F1 score (97.0%) and 3.1 % points in
overall sentence-level semantic frame parsing accu-
racy (86.5%). These results highlight the competi-
tive advantage of robust language models in multi-
intent SLU tasks. (3) Importantly, our framework
achieves state-of-the-art performance for most eval-
uation metrics, highlighting a promising research
direction for multi-intent SLU using LLM-based
methodologies.

4.5 Ablation Study

To understand the impact of key components in
ECLM, we conducted ablation experiments on the
MixATIS and MixSNIPS datasets. As shown in Ta-
ble 3, the results illustrate the contribution of entity
slots and the chain of intent to overall performance.

4.5.1 Without Entity Slot

Removing the entity slot significantly reduces per-
formance, with a drop of 16.7 % in slot F1 score
and 1.3 % points in overall accuracy on MixATIS.
Similarly, on MixSNIPS, we observe a drop of 4.3
% in slot F1 score, and the overall accuracy de-
creases by 16.8 %. This highlights the crucial role
of entity slots in maintaining high performance. Es-
pecially in the multi-domain dataset MixSNIPS,
the absence of entity slots may cause significant
misalignment, as the majority of slot labels are "O".
This could lead to the model incorrectly labeling
words as "O" rather than their corresponding slot
tags.

4.5.2 Without Chain of Intent

Eliminating the chain of intent structure leads to
a 0.8 % point drop in slot F1 score and a 3.3 %
decline in overall accuracy on MixATIS. On MixS-
NIPS, the overall accuracy decreases by 1.4 %, em-
phasizing the importance of intent chaining in en-
hancing the model’s semantic understanding. How-
ever, we observe that the improvement in intent
detection accuracy is less pronounced, suggesting
that the chain of intent mainly contributes to the
joint effect and compromises some intent accuracy.
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Model MixATIS MixSNIPS
Slot(F1) Intent(Acc) Overall(Acc) | Slot(F1) Intent(Acc) Overall(Acc)

Stack-Propagation (Qin et al., 2019) 87.8 72.1 40.1 94.2 96.0 72.9
AGIF (Qin et al., 2020b) 86.9 72.2 39.2 93.8 95.1 72.7
GL-GIN (Qin et al., 2021b) 87.2 75.6 41.6 93.7 95.2 72.4
SDJN (Chen et al., 2022) 88.2 77.1 44.6 94.4 96.5 75.7
CLID (Huang et al., 2022) 88.2 71.5 49.0 94.3 96.6 75.0
SSRAN (Cheng et al., 2023) 89.4 77.9 48.9 95.8 98.4 77.5
SDIN + Bert 87.5 78.0 46.3 95.4 96.7 79.3
RoBERTa+Linear 86.0 80.3 48.4 96.0 97.4 82.1
CLID + Roberta 85.9 80.5 494 96.0 97.0 82.2
Uni-MIS (Yin et al., 2024) 88.3 78.5 52.5 96.4 97.2 83.4
ECLM (Ours) 90.2 80.7 56.2* 97.0 97.0 86.5*

Table 2: Multi-Intent SLU performance on MixATIS and MixSNIPS datasets. Values with * indicate that the
improvement from our model is statistically significant over all baselines (p < 0.05 under t-test).

Model MixATIS Dataset MixSNIPS Dataset

Slot(F1) Intent(Acc) Overall(Acc) | Slot(F1) Intent(Acc) Overall(Acc)
ECLM (Ours) 90.2 80.7 56.2 97.0 97.0 86.5
-w/o Entity Slot 73.5 78.7 54.9 92.7 97.6 69.7
-w/0 Chain of Intent 89.4 82.6 52.9 96.8 98.0 85.1
-w/o Both (Vanilla SFT) 68.2 74.0 47.7 88.9 97.4 65.3

Table 3: Ablation experiments on the MixATIS and MixSNIPS datasets. Interestingly, we observe that entity slots
play a more significant role in the MixSNIPS dataset compared to MixATIS, while the chain of intent does not
explicitly improve intent accuracy but instead enhances overall performance.

4.5.3 Without Both (Vanilla SFT)

When both components are removed, the perfor-
mance suffers dramatically. The slot F1 score drops
by 22.0 % and the overall accuracy by 8.5 % on
MixATIS. The MixSNIPS dataset also shows a sig-
nificant decrease, with the overall accuracy drop-
ping by 21.2 %. This indicates that the Vanilla
SFT method cannot effectively adapt LLMs to this
domain.

5 Further Exploration

5.1 Influence of Different Intent Numbers

The analysis of MixATIS dataset results, catego-
rized by the number of intents as shown in Ta-
ble 4, reveals significant insights into the perfor-
mance of our ECLM model compared to baseline
approaches. For single-intent utterances, ECLM
achieves superior performance with a slot F1 score
of 92.1% and overall accuracy of 79.7%, outper-
forming the strong Uni-MIS over Uni-MIS (89.2%
and 78.6% respectively). As the complexity in-
creases with multi-intent scenarios, ECLM’s ad-
vantages become more pronounced. In two-intent
cases, ECLM maintains its lead with a slot F1 of
90.3% and overall accuracy of 54.8%, showing a

substantial improvement over Uni-MIS (87.6% and
50.5% respectively). The performance gap widens
further for three-intent utterances, where ECLM
achieves a slot F1 of 90.3%, intent accuracy of
70.0%, and overall accuracy of 39.5%, significantly
surpassing Uni-MIS (86.7%, 66.7%, and 31.7% re-
spectively). This consistent outperformance, partic-
ularly in challenging multi-intent scenarios, under-
scores ECLM’s robustness and efficacy in handling
complex spoken language understanding tasks. The
results demonstrate ECLM’s capacity to maintain
high performance across varying levels of intent
complexity, indicating its potential as a versatile
solution for advanced SLU systems.

5.2 Influence of Training Data Ratio

Figure 4 illustrates the impact of varying training
data volumes on ECLM’s performance, focusing
on overall semantic accuracy across the MixATIS
and MixSNIPS datasets. We systematically ad-
justed the training data ratios at 0.2, 0.4, 0.6, 0.8,
and 1.0 to assess model proficiency under different
data availability scenarios. The results demonstrate
a consistent positive correlation between the data
ratio and performance improvements across both
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Model intent num = 1 intent num = 2 intent num =3

Slot(F1) Intent(Acc) Overall(Acc) | Slot(F1) Intent(Acc) Overall(Acc) | Slot(F1) Intent(Acc) Overall(Acc)
GL-GIN 88.0 91.3 72.6 87.3 76.2 39.1 86.8 63.1 23.0
CLID 88.6 94.7 76.4 88.1 71.5 48.4 87.6 64.3 28.5
CLID + Roberta 88.6 95.8 77.6 85.4 80.3 48.8 84.7 66.8 29.0
Uni-MIS 89.2 95.1 78.6 87.6 78.3 50.5 86.7 66.7 31.7
ECLM(Ours) 92.1 93.7 79.7 90.3 79.4 54.8 90.3 70.0 39.5

Table 4: The result comes from the dataset MixATIS. The intent num denotes the number of intents in an utterance.
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Figure 4: Performance of ECLM on the MixATIS and MixSNIPS datasets at different training data proportions

datasets. For MixATIS, ECLM’s semantic accu-
racy rises from 46.7% at 0.2 data ratio to 56.2%
at full data utilization, surpassing the Uni-MIS
baseline (52.5%) with just 60% of the training
data. Similarly, on MixSNIPS, ECLM’s perfor-
mance increases from 77.6% to 86.5%, exceeding
the Uni-MIS benchmark (83.4%) also at approxi-
mately 60% data ratio. Notably, ECLM exhibits
robust performance even with limited data, achiev-
ing competitive results at lower data ratios. The
performance gains are more pronounced in the
MixSNIPS dataset, suggesting ECLM’s particu-
lar effectiveness in multi-domain scenarios. As
the data ratio approaches 1.0, the performance im-
provement rate gradually stabilizes, indicating a
potential plateau effect at higher data volumes.

5.3 Influence of Different Backbone LLMs in
the ECLM Framework

Table 5 presents a comparative analysis of over-
all accuracy across various LLMs when integrated
into our ECLM framework, evaluated on both the
MixATIS and MixSNIPS datasets. The results
demonstrate a clear progression in performance
as we move towards more advanced LLM architec-
tures. Llama2-7B-Chat, while competent, shows
the lowest performance with overall accuracies of
48.2% and 81.5% on MixATIS and MixSNIPS re-
spectively. Mistral-7B-Instruct-v0.1 exhibits a no-

Model MixATIS MixSNIPS
Llama2-7B-Chat 48.2 81.5
Mistral-7B-Instruct-v0.1 50.1 83.9
Llama3.1-8B 55.6 85.9
Llama3.1-8B-Instruct 56.2 86.5

Table 5: The impact of different backbone LLMs Inte-
grated into the ECLM Framework.

table improvement, achieving 50.1% and 83.9% on
the same datasets, highlighting the rapid advance-
ments in LLM capabilities. The Llama3.1 series
showcases significant performance gains. The base
Llama3.1-8B model achieves impressive results
of 55.6% and 85.9% on MixATIS and MixSNIPS,
respectively. However, the instruction-tuned vari-
ant, Llama3.1-8B-Instruct, emerges as the top per-
former, reaching 56.2% accuracy on MixATIS and
86.5% on MixSNIPS. The superior performance of
Llama3.1-8B-Instruct underscores the importance
of instruction tuning in enhancing model capabili-
ties for specific tasks like multi-intent SLU. This
model’s consistent outperformance across both
datasets justifies its selection as the default back-
bone for our ECLM framework.

5.4 Case Analysis

As illustrated in Figure 5, we present a compar-
ative analysis of ECLM and vanilla LLM-based
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Figure 5: Comparative analysis of ECLM and vanilla SFT performance on a complex multi-intent utterance,
highlighting ECLM’s superior slot filling capabilities and the limitations of LLMs in token-level tagging tasks.

More case can refer to the Section A.2 in Appendix.

SFT approaches on a complex multi-intent utter-
ance. The example, "what movie theatre is showing
if the huns came to melbourne", demonstrates the
superior performance of ECLM in handling intri-
cate spoken language understanding tasks. Both
ECLM and vanilla SFT correctly identify the pri-
mary intent as "SearchScreeningEvent". How-
ever, the critical distinction emerges in the slot
filling task. ECLM accurately labels each token,
precisely identifying "movie theatre" as the "ob-
ject_location_type" and "if the huns came to mel-
bourne" as the "movie_name". In contrast, the
vanilla SFT model, despite its correct intent clas-
sification, exhibits significant errors in slot filling.
The vanilla SFT incorrectly labels "what" as part of
the "object_location_type" and mistakenly extends
the "movie_name" to include "showing". This mis-
alignment highlights a fundamental limitation of
autoregressive LLMs in token-level tagging tasks.
The sequential nature of their predictions can lead
to error propagation and misalignment with the
original utterance tokens.

6 Related Work

6.1 Intent Detection and Slot Filling

The inherent interconnected of intent detection and
slot filling has spurred the development of unified
models that foster mutual interaction between the
two elements. Joint learning techniques, acknowl-
edging the potent correlation between intents and
slots, have proven particularly efficacious in re-
cent years. Certain methodologies facilitating si-
multaneous slot filling and intent detection employ

shared parameters (Liu and Lane, 2016; Zhang and
Wang, 2016; Wang et al., 2018), while others model
the relationship between the two via either unidirec-
tional interaction or bidirectional-flow interaction
(Qin et al., 2021c). Models adopting unidirectional
interaction, such as those by (Goo et al., 2018; Li
et al., 2018; Qin et al., 2019), primarily empha-
size the flow from intent to slot. Gating mecha-
nisms, functioning as specialized guiding forces
for slot filling, have seen extensive use (Goo et al.,
2018; Li et al., 2018). Qin et al. (2019) put forth a
token-level intent detection model to curtail error
propagation. Bidirectional-flow interaction mod-
els (E et al., 2019; Zhang et al., 2019; Liu et al.,
2019; Qin et al., 2021a), on the other hand, ex-
amine the reciprocal influence of intent detection
and slot filling. E et al. (2019) utilized iterative
mechanisms to enhance intent detection and slot
filling in both directions. Fine-grained intent de-
tection and intent-slot interaction models have also
seen remarkable advancements. Chen et al. (2022)
developed a Self-distillation Joint SLU model ex-
ploitating multi-task learning, and treated multiple
intent detection as a weakly-supervised problem
solved through Multiple Instance Learning (MIL).
Similarly, Huang et al. (2022) introduced a chunk-
level intent detection framework that employs an
auxiliary task to pinpoint intent transition points
within utterances, thereby augmenting the recogni-
tion of multiple intents. Furthermore, Cheng et al.
(2023) proposed a transformative network rooted
in the Transformer model, designed to diminish the
complexity of multi-intent detection in SLU. Re-
cently, Yin et al. (2024) further develop an united
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multi-view intent-slot interaction framework(Uni-
MIS), archiving promising performance.

6.2 Open Source LLMs

The advent of open-source LLMs such as Llama
(Touvron et al., 2023), Vicuna (Peng et al., 2023),
and Mistral (Jiang et al., 2023) has dramatically re-
shaped the landscape of NLP. These models, char-
acterized by their vast parameter spaces and di-
verse training corpora, have significantly expanded
the capabilities and applications of NLP technolo-
gies. The rapid evolution of LLMs has accelerated
progress across a broad spectrum of NLP tasks, in-
cluding natural language inference, summarization,
and dialogue systems (Geogle., 2023; Kavumba
et al., 2023). Complementing these advancements,
the "Chain of Thought" method (Wei et al., 2022)
has emerged as a pivotal technique in enhancing
the reasoning capabilities of LLMs. This approach
enables models to break down complex problems
into interpretable steps, significantly improving per-
formance on tasks requiring multi-step reasoning
or complex problem-solving.

7 Conclusion

In this paper, we introduced the Entity-level Large
Language Model framework ECLM for multi-
intent spoken language understanding. By trans-
forming token-level slot-filling into an entity recog-
nition problem and introducing the "Chain of In-
tent" concept, we effectively addressed the chal-
lenges of applying LLMs to SLU tasks. Our
approach significantly outperformed state-of-the-
art models, including Uni-MIS and conventional
LLM fine-tuning, on the MixATIS and MixSNIPS
datasets. ECLM demonstrated robust performance
across various intent counts, particularly excelling
in complex multi-intent scenarios.
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Limitations

(1) Scaling up Model Size of ECLM: Due to com-
putational resource constraints, we were unable to
experiment with ECLM models larger than 8 bil-
lion parameters. However, we believe that scaling
to larger model sizes could potentially yield further

improvements in performance. Recent trends in
language model research suggest that larger mod-
els often demonstrate enhanced capabilities across
various NLP tasks. Future work with access to
more substantial computational resources could
explore the impact of increased model size on
ECLM'’s performance in multi-intent SLU tasks.
(2) Prospects for Improvement through Data Cu-
ration and Prompt Optimization: Our current re-
search framework does not extend to the advanced
strategies of selective data curation or intricate
prompt engineering. Recognizing this as a limi-
tation, we propose that future investigations will
embrace these crucial techniques.
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A Appendix
A.1 Experiments on the TOPv2 Dataset

To further assess generalization to semantic pars-
ing benchmarks, we conducted experiments on the
TOPV2 dataset (Chen et al., 2020), focusing on the
Alarm and Weather domains. We used 20k train-
ing samples and 2k evaluation samples per domain,
following the same model configuration as in our
main experiments.

Domain Model Slot F1 Intent Acc Overall Acc

Alarm ECLM 0.87 0.95 0.87
Vanilla SFT  0.84 0.93 0.83

Weather ECLM 0.97 0.96 0.92
Vanilla SFT  0.55 0.95 0.60

Table 6: Performance comparison on the TOPv2 dataset.

As shown in Table 6, our method significantly
outperforms the Vanilla SFT baseline in terms of
overall accuracy. The improvement in the Weather
domain is particularly notable, likely due to the
increased complexity and diversity of slot annota-
tions in weather-related utterances.

A.2 Additional Case Illustrations
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Utterance: show me the cost of a first class ticket from detroit to las vegas and back and also what
airline is aa

ECLM .. .
#
ort: [atis_airfare#atis_airline] @
Vanila SFT P PO
atis_airfare#atis_airline
Intent: [atis_ - ! @
ECLM [0, 'O, "0, 'O, 'O, 'O, 'B-class_type', 'I-class_type', 'O, 'O, 'B- @
Slot: fromloc.city_name', 'O’, 'B-toloc.city_name', 'I-toloc.city_name', 'O,
'‘B-round_trip’, 'O’, 'O, 'O’, 'O, 'O’, 'B-airline_code']
VanilaSFT [O', 'O, 'O, 'O, 'O, 'O, 'B-class_type', ‘I-class_type', 'O, 'O', 'B-
Slot: fromloc.city_name', 'O’, 'B-toloc.city_name', '|-toloc.city_name’, 'O’,
'‘0,'0','0','0, 'O, 'O, 'B-airline_code']
Figure 6: Case 1.
Utterance: list airports and what are the departure times from detroit to westchester county
T
ECLM S q . .
# fligh
o [atis_airport#atis_flight_time] @
Vanila SFT [atis_airport#atis_flight_time] @
Intent:
ECLM [0, 'O, 0, 'O, 0", 'O, 'B-flight_time', 'I-flight_time', 'O', 'B- @
Slot: fromloc.city_name', 'O', 'B-toloc.city_name', 'I-toloc.city_name']
VanilaSFT [0, 'O, 'O, 'O, 'O, 'O, 0,0, 0, 'O, 0, 'O, 01
Slot:
\\

Figure 7: Case 2.

Utterance: What does UA mean and are snacks served on Tower Air

~ ~
ECLM . .. .
#
inten: _Latis_abbreviation#atis_meal] @
w/o Chain )
of Intent [atis_meal]
Intent:
ECLM [O', 'O, '‘B-airline_code', 'O, 'O', 'O', 'B-meal_description’, 'O, 'O', 'B- @
Slot: airline_name', 'l-airline_name']
WO CHAINES o 8 oM G om0 BEmeal description’s [0k 103 Beaiflineiname:
of Intent o ,
Slot: |-airline_name']

Figure 8: Case 3.
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