VisuoThink: Empowering LVLM Reasoning with Multimodal Tree Search
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Abstract

Recent advancements in Large Vision-
Language Models have showcased remarkable
capabilities. However, they often falter when
confronted with complex reasoning tasks that
humans typically address through visual aids
and deliberate, step-by-step thinking. While
existing methods have explored text-based slow
thinking or rudimentary visual assistance, they
fall short of capturing the intricate, interleaved
nature of human visual-verbal reasoning
processes. To overcome these limitations and
inspired by the mechanisms of slow thinking
in human cognition, we introduce VisuoThink,
a novel framework that seamlessly integrates
visuospatial and linguistic domains. Visuo-
Think facilitates multimodal slow thinking by
enabling progressive visual-textual reasoning
and incorporates test-time scaling through
look-ahead tree search. Extensive experiments
demonstrate that VisuoThink significantly
enhances reasoning capabilities via inference-
time scaling, even without fine-tuning,
achieving state-of-the-art performance in tasks
involving geometry and spatial reasoning.
Our code has been open-sourced at https:
//github.com/ekonwang/VisuoThink.

1 Introduction

Recent advances in Large Vision-Language Mod-
els (LVLMs) (OpenAl, 2024a; Team, 2024) have
shown remarkable progress across a variety of
tasks. However, these models often struggle with
complex reasoning challenges, such as geometric
problem-solving (Qiao et al., 2024; Cherian et al.,
2024) or spatial reasoning (Ramakrishnan et al.,
2024; Wu et al., 2024), where human problem-
solving approaches typically rely on visual aids.
For example, when solving geometry problems,
humans often iteratively sketch auxiliary lines or
miyin contributed equally.
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Figure 1: Illustration of Input-Output Prompting, CoT,
Vision-aided Thought and our VisuoThink. Vision-
aided Thought often relies on reasoning with one-
step or unreliable multi-step visual cues (generated by
LVLMs). While VisuoThink addresses this gap through
tool-augmented visual hints, coupled with a predictive-
rollout search mechanism to systematically optimize
reasoning capability.

visualize intermediate steps, while exploring dif-
ferent reasoning paths - a form of "slow thinking"
(Kahneman, 2011) that combines visual and verbal
cognitive processes.

With the success of ol series models (OpenAl,
2024b), researchers have explored language as
a medium for implementing slow thinking, cou-
pled with test-time scaling techniques (Zeng et al.,
2024). Given the inherently multimodal nature of
reality, early efforts (Xu et al., 2024; Thawakar
et al., 2025; Yao et al., 2024; Du et al., 2025) have
attempted to extend such deliberative thinking to
multimodal reasoning. However, even augmented
with search strategy, these methods treat visual
information merely as static input, relying solely
on textual reasoning chains during the reasoning
process - creating a "visual blind spot", where the
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potential for visual information throughout the rea-
soning process is largely ignored (Fig. 1a). On the
other hand, while approaches like VisualSketch-
pad (Hu et al., 2024) and VoT (Wu et al., 2024)
have recognized the importance of visual informa-
tion by incorporating visual aids in reasoning (Fig.
1b), they mainly focus on single-step assistance or
simplified visual hints (e.g., emojis). These meth-
ods lack the multi-step visual-textual interleaved
reasoning process that characterizes human slow
thinking, while failing to explore potential search
strategies.

To address these limitations, we propose Visuo-
Think, a multimodal tree search framework that
systematically explores multiple reasoning paths
with vision-text interleaved thinking at each step.
Unlike previous approaches, Visuothink (Fig. 1c)
enables multimodal slow thinking through two key
innovations: (1) a step-by-step vision-text inter-
leaved reasoning framework that dynamically uti-
lizes multi-step visual aids from tool uses, and (2) a
look-ahead tree search algorithm that explores mul-
tiple reasoning paths, enabling test-time scaling
of the reasoning process. Specifically, our look-
ahead tree search incorporates a predictive rollout
mechanism that simulates the likely outcomes of
different reasoning states. This allows the model to
prioritize more promising paths and avoid less ones,
guiding the reasoning process toward the optimal
solution. Through this test-time scaling capabil-
ity, the model can thoroughly explore and optimize
reasoning paths dynamically during inference.

Our empirical evaluation demonstrates that Vi-
suothink significantly outperforms existing meth-
ods across various reasoning tasks, particularly in
geometry and spatial reasoning domains. On Ge-
omeverse, Our methods achieves an accuracy @1
as high as 48.5%, with an improvement of as high
as 21.8% over the state-of-the-art baseline, which
particularly shows strong performance of Visuo-
Think on problems requiring multi-step visual rea-
soning. Through extensive ablation studies, we
show that each component of our framework con-
tributes meaningfully to its overall performance.

In summary, our contributions include:

* We propose a novel reasoning paradigm, mul-
timodal tree search, for multimodal slow
thinking that enables dynamic integration of
visual and verbal reasoning paths throughout
the problem-solving search process.

* We extend test-time scaling methods to the vi-

sual domain by proposing a predictive rollout
mechanism that explores and optimizes visual
reasoning paths by predicting future states.

* We demonstrate substantial empirical im-
provements across multiple reasoning tasks,
particularly in geometry and spatial reasoning,
with detailed analyses revealing key insights
about our approach.

2 Related Work

2.1 Text-centric Reasoning in LVLMs

With the emergence of o1 models (OpenAl, 2024b),
the importance of slow thinking has become in-
creasingly evident (Zeng et al., 2024). Several
works have attempted to extend this to LVLMs
through methods like stage-wise reasoning (Xu
et al., 2024), curriculum learning (Thawakar et al.,
2025), tree search-based data generation (Yao et al.,
2024), and LLM distillation (Du et al., 2025). How-
ever, these methods treat visual information as
static input, relying only on textual data during
reasoning, which limits their ability to fully lever-
age multimodal information for complex tasks.

2.2 Vision-aided Reasoning

Recent advancements in multimodal reasoning
have demonstrated that incorporating visual infor-
mation provides richer context and hints compared
to text-only approaches. Early studies adopted a
two-stage approach, where visual information is
first transformed and grounded into text (Zhang
et al., 2023), graph structures (e.g., scene graphs
(Mitra et al., 2023) or knowledge graphs (Mondal
et al., 2024)), or bounding boxes (Lei et al., 2024),
followed by reasoning. Other works leverage exist-
ing vision models (e.g., segmentation, detection) to
process input images into valuable cues for percep-
tion, enabling more precise image-understanding
with fine-grained visual information (Yang et al.,
2023; Zhou et al., 2024; Gao et al., 2024).
Another sequence of research focuses on inter-
mediate visual representations to enhance reason-
ing. For instance, Visual Sketchpad (Hu et al.,
2024) employs Python-based drawing tools to gen-
erate sketches as intermediate visual aids for ge-
ometric problems, while VoT (Wu et al., 2024)
formalizes visual thinking by generating emoji-like
textual representations. MVOT (Li et al., 2025)
fine-tunes multimodal models to generate images
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Figure 2: The illustration of our VisuoThink framework with three stages: (1) vision-text interleaved expansion:
generates candidate paths through vision-text interleaved thinking; (2) rollout simulation: sample candidate
reasoning nodes and then perform look-ahead search to better evaluate the value of current states; (3) selection:
selects the most promising path via self-voting with results or states from rollout.

during reasoning, allowing the model to create vi-
sual aids dynamically. Despite these advancements,
most existing methods rely on single-step or unreli-
able visual representations, lacking search mecha-
nisms to test-time scaling through exploring mul-
tiple reasoning paths. In contrast, we develop a
multimodal tree search framework that both lever-
ages multi-step visual cues during reasoning and
systematically explores reasoning paths through
tree search.

2.3 Test-time Scaling with Tree Search

Scaling compute at test time has emerged as a
powerful strategy to enhance LLMs’ reasoning
capabilities without increasing model parameters
(Snell et al., 2024; Bi et al., 2025a,b). Various ap-
proaches including BoN (Gui et al., 2024; Sun et al.,
2024; Amini et al., 2024), guided beam search (Xie
et al., 2023; Yu et al., 2023), and Monte Carlo
Tree Search (MCTS) (Feng et al., 2023; Liu et al.,
2023; Chen et al., 2024) have been explored for
text models, demonstrating improved performance
through different search strategies. However, the
exploration of test-time scaling in LVLMs remains
limited. Prior work like AtomThink (Xiang et al.,
2024) has only investigated basic methods such as
beam search, with text-only reasoning chains. In
contrast, our method introduces vision-text inter-
leaved thinking with look-ahead search, extending
test-time scaling to multimodal reasoning.

3 VisuoThink

We propose VisuoThink, a novel framework for
multimodal reasoning that dynamically integrates

visual and textual information during the inference
process. At its core, our framework implements
multimodal slow thinking through a key mecha-
nism: predictive rollout search that allows models
to think ahead.

3.1 Vision-Text Interleaved Thinking

Our framework facilitates vision-text interleaved
reasoning through an iterative cycle of Thought,
Action, and Observation like existing work (Yao
et al., 2023), which enables natural and dynamic
interactions with external tools. (1) Thought phase:
the model leverages visual information for textual
reasoning (such as analyzing patterns based on pre-
viously added auxiliary lines) and determines the
next step by planning what visual hints should be
added to enhance understanding. (2) Action phase:
the model executes the planned operations by call-
ing external tools (like using Python code to draw
auxiliary lines or highlight key features) to gener-
ate or modify visual information. (3) Observation
phase: the model processes the visual feedback
from the Action phase, incorporating these new
visual hints into the next reasoning step.

The importance of visual information for LVLM
reasoning is highlighted in VisuoThink, which uti-
lize tool invocations to construct reliable visual
hints step by step in a visual construction process.
This tool-based design allows VisuoThink to flexi-
bly adapt to various visual reasoning tasks. More-
over, unlike approaches (e.g. VisualSketchpad) that
generate all visual aids at once, our step-by-step
visual guidance naturally integrates with search
techniques, enabling effective test-time scaling.
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3.2 Predictive Rollout Search

Based on tree search methods and inspired by
MCTS, we propose a predictive rollout search
mechanism that interleaves visual-text thinking. By
anticipating the outcomes of intermediate states,
the model can make timely corrections, enabling
more accurate and powerful reasoning. As shown
in Figure 2, at each reasoning step, our framework
first generates multiple candidate paths through
vision-text interleaved thinking, then simulates
these paths to predict their outcomes, and finally se-
lects the most promising path through a self-voting
mechanism.

Vision-Text Interleaved Expansion In the
whole reasoning chain A = {aj,as,...,a;}, given
the current node a,_;, the model samples %k can-
didate nodes S; = {s},s?, ...,s}'}. Each candidate
follows the vision-text interleaved thinking process
described above, generating a sequence of Thought,
Action, and Observation steps. This expansion cre-
ates a tree of possible reasoning paths, each repre-
senting a different problem-solving strategy.

Rollout Simulation Visual reasoning often re-
quires multiple steps to reach a conclusion, making
it crucial to evaluate the full potential of each path.
For each candidate node s}, the model simulates
the complete reasoning process to predict final out-
comes 1, rather than relying solely on immediate
state evaluation. Different from expansion, the sim-
ulation extends each candidate node with a single
path of vision-text interleaved thinking until reach-
ing a final result.

Selection The selection of the optimal path is
performed through a self-voting mechanism. The
model considers the task description, historical
nodes, and the simulated path with predicted results
for each candidate node. The selection process can
be formalized as:
Select(S;) = arg rlnéasx Vote(A:—1,s;,1}) (1)
S ESt
where A;_ represents the historical context, sf‘:
for the candidate node, and r is the predicted result
or final state. The Select is a heuristic function
served by the LVLM model to guide the process.
This selection ensures the model pursues the most
promising reasoning strategy.

4 Solving Geometry with VisuoThink

The core of our methodology is rooted in multi-step
visual information processing and search-based rea-

soning, enabling LVLMs to address strongly con-
strained mathematical problems (e.g., geometry
challenges) and open-domain scenarios (such as
visual navigation and visual tiling in section 5).

We formalize geometry problem-solving as a
two-phase process integrating visual construction
and algebraic computation. In Phase I, the model
generates auxiliary lines defined by geometric con-
straints, such as connecting points (x;,y;) and
(x,y;), construct a perpendicular or parallel line
to form line segments L = {/;}. This phase ter-
minates with a AUX-END token, triggering Phase
II, where geometric relationships are translated
into solvable equations (e.g., ax + b = 0) through
Python code execution.

Task Formulation LVLM should produce the
reasoning trajectory consisting of reasoning steps
A = {a;} that leads to the final result r, given
the original problem Q while taking into account
the auxiliary lines L. The framework operates un-
der a constraint Z,l;ill lla¢|] < 7, where a; denotes
visual-textual reasoning steps and 7 is the maxi-
mum step limit:

A

A~P({ar,..., a4, [ QL)st Y fafl <7 ()
t=1

This formulation mirrors human problem-
solving by decomposing proofs into executable
visual-textual steps, validated via coordinate-based
tools like matplotlib and equation solver.

Visual Construction We emphasize the critical-
ity of incremental visual information for accurate
solutions, where multi-step graphical representa-
tions originate from the progressive construction
of auxiliary lines. This multi-stage approach fa-
cilitates search algorithm-enhanced refinement of
auxiliary line generation, significantly improving
LVLM capabilities in geometric reasoning. Consis-
tent with Sketchpad methodology, we exclusively
utilize common Python libraries (e.g., matplotlib)
for diagram rendering.

Algebraic Computation Unlike general tasks,
solving geometry problems cannot rely solely on
visual construction or the model’s inherent capa-
bilities; instead, it necessitates the use of computa-
tional tools to achieve precise and accurate results.
This requirement stems from the need for exact
numerical solutions and the mitigation of potential
errors in geometric reasoning. Through systematic
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Model GPT-40 Qwen2-VL-72B-Instruct Claude-3.5-sonnet
CoT 11.1 5.6 14.4
VisualSketchpad 8.9 6.7 16.7
Geomverse-109  VisualSketchpad + Equation Solver 133 11.1 17.8
VisuoThink w/o rollout search (ours) 24.4 19.0 26.7
VisuoThink (ours) 28.9 25.6 27.8
CoT 20.8 18.8 37.5
Geometry3K VisualSketchPad ‘ 229 17.0 39.6
(Lu et al., 2021) VisualSketchpad + Equation Solver 25.0 14.9 41.7
’ VisuoThink w/o rollout search (ours) 27.1 20.8 37.5
VisuoThink (ours) 333 25.0 43.8

Table 1: The 1-shot benchmark results (Accuracy@ I) on Geometry including Geomverse-109 and Geometry3k
of SOTA large visual language models. For GPT-40 and Claude-3.5-sonnet, we employ newest cutoffs (gpt-4o-

2024-11-20 and claude-3-5-sonnet-20241022) separately. The

results represent the best performance.

part indicates results from VisuoThink and bold

Model Dataset Visual Navigation Visual Tiling
Subset (Num. Samples) level-3 (16) level-4 (31) level-5(62) level-2(119)
CoT 18.8 32 0.0 0.8
VoT 25.0 0.0 0.0 1.7
GPT-40 VoT + Executer 62.5 9.7 4.8 12.6
VisuoThink w/o rollout search (ours) 81.2 32.3 11.3 19.3
VisuoThink (ours) 93.8 61.3 19.4 51.2
CoT 6.7 32 - 0.0
VoT 0.0 0.0 - 0.8
Qwen2-VL-72B-Instruct VoT + Executer 25.0 32 - 6.7
VisuoThink w/o rollout search (ours) 50.0 6.5 - 9.2
VisuoThink (ours) 81.3 12.9 - 20.2
CoT 37.5 32 0.0 0.8
VoT 56.3 0.0 0.0 2.5
Claude-3.5-sonnet VoT + Executer 68.8 22.6 16.1 10.1
VisuoThink w/o rollout search (ours) 81.2 38.7 41.9 80.7
VisuoThink (ours) 93.8 61.3 53.2 84.0

Table 2: The Pass@ ] performance comparison on spatial reasoning benchmarks including Visual Navigation and

Visual Tiling across SOTA LVLMs. The

part indicates results from VisuoThink and bold results represent

the best performance. The results of Qwen2-VL-72B-Instruct on Visual Navigation (k = 5) are masked out due to
its restrained performance on the subset. The results from VoT with Executor are also reported, where the models
utilize the unreliable visual hints generated by themself rather than executor, consistent with the VoT framework.

integration, like VPD (Zhao et al., 2023), and Vi-
sualStechpad (Hu et al., 2024), phase II employs
Python code execution for precise computation to
mitigate LVLM hallucination risks. Furthermore,
the model constructs single-variable algebraic equa-
tions based on identified geometric relationships,
subsequently invoking equation solvers for numeri-
cal resolution.

4.1 Empirical Results

Setup We conduct comprehensive evaluations
on the challenging Geometry3K and Geomverse-
109 datasets to demonstrate the methodological
superiority. Especially we detail the trajectory
of Geomverse-109 dataset synthesis in appendix
E. SOTA closed-source models including gpt-4o-
2024-11-20 and claude-3-5-sonnet-20241022 are

leveraged for inference. To ensure architectural di-
versity, open-source model (e.g., Qwen2-VL-72B)
were incorporated; however, smaller-parameter
open-source variants were excluded due to their
capability constraints. And we detail the model
and algorithm hyperparameters in appendix D.

Analysis Our empirical results reveal that, even
without rollout search augmentation, our strategy
substantially enhances LVLM reasoning capabil-
ities compared to Chain-of-Thought (CoT) (Mi-
tra et al., 2023) and Visual Sketchpad (Hu et al.,
2024) baselines. Notably, on the Geomverse-109
(Kazemi et al., 2023) benchmark, VisuoThink out-
performs CoT and Visual Sketchpad by an av-
erage of 17.1% and 16.7 % across all evaluated
models, and predictive rollout search further
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Figure 3: The illustration of spatial reasoning tasks derived from VoT (Wu et al., 2024), including Visual Navigation
and Visual Tiling. LVLM is required to execute a sequence of actions to complete certain goals. Our experimental
setting makes them much more challenging and closer to real-environment deployment.

enhances models’ performance by an average of
4.1%. Also, the employment of equation solver on
Visual Sketchpad also increases an average perfor-
mance of 3.3%. This performance gap likely stems
from Geomverse’s emphasis on geometric rela-
tionship construction, where our equation-solving
framework help to accurately get intermediate an-
swers and enables efficient resolution of struc-
turally complex problems. The systematic integra-
tion of geometric analysis tools further mitigates
error propagation inherent in conventional LVL.M
reasoning baselines.

5 Spatial Reasoning with VisuoThink

Spatial reasoning, defined as the cognitive ca-
pability to interpret spatial object relationships,
motion dynamics, and environmental interac-
tions, constitutes a foundational requirement for
mission-critical applications such as robotic sys-
tems, autonomous navigation, and augmented re-
ality. These domains demand robust integration
of visual perception and precise manipulation of
spatial-temporal constraints for optimal action plan-
ning.

Task Formulation Building upon the Visualiza-
tion of Thought (VoT) (Wu et al., 2024) bench-
marks, we design two challenging spatial reasoning
benchmarks with enhanced complexity as shown
in figure 3: Visual Navigation and Visual Tiling.
We provide detailed materials of the differences
between the original VoT benchmark setup and
our experimental configuration in Appendix B and
additionally provide the mathematical task formu-

lation in appendix C.

Visual Construction via Executor During task
execution, robots deployed in true environments
typically receive environmental feedback following
each action, which facilitates perception and subse-
quent decision-making processes. In our methodol-
ogy, we leverage environmental interaction tools to
enhance the model’s spatial reasoning capabilities.
In each action, we employ an executor to imple-
ment the corresponding action, and return textual
execution feedback and visuospatial hint (optional)
representing the map state. In the context of (1) Vi-
sual Navigation, the visual feedback corresponds to
the map including agent’s current position; while in
(2) Visual Tiling scenarios, it represents the current
state of rectangle occupation patterns.

5.1 Empirical Results

Setup We evaluate our framework on two spatial
reasoning benchmarks: Visual Navigation and Vi-
sual Tiling. For Visual Navigation, we create three
difficulty levels with increasing map complexity,
where the level indicates the k for Visual Naviga-
tion as shown in table 2. For Visual Tiling, we
focus on level-2 (i.e. k£ = 2) problems with 119
samples. We compare our method against Chain-
of-Thought (CoT), Visualization of Thought (VoT)
(Wu et al., 2024). As table 2 indicates, the results
from VoT with tool interactions (i.e. Executor)
are also reported, where textual feedbacks are em-
ployed but the visual hints are still generated by
the model rather from executor, consistent with the
VoT framework. The source of visual hints distin-
guishes it from our method. We employ the same
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Figure 4: (LEFT) The trend of Pass@ [ rate on Visual Navigation as the number of reasoning steps increases.
(RIGHT) The relationship between the Accuracy@ 1 on geometry problems (Geomverse) and tree width for rollout
search. We observe that LVLMs significantly benefit from longer reasoning chains, although the effect
plateaus rapidly beyond a certain threshold of reasoning steps. The relationship between performance and
tree width exhibits a more complex pattern, demonstrating an inverted U-shaped trend with both GPT-40

and Claude-3.5-Sonnet.

temperature and VisuoThink hyperparameters as
section 4.1.

Analysis In spatial reasoning experiments, Vi-
suoThink demonstrates significant performance im-
provements over baseline methods, particularly
when augmented with predictive rollout search. As
shown in Table 2, VisuoThink achieves the high-
est accuracy across all tasks, outperforming both
CoT and VoT baselines. For instance, on the Visual
Navigation task, VisuoThink on GPT-40 achieves
a 93.8% accuracy at level-3, compared to 62.5%
for VoT with an executor and /8.8% for CoT. This
trend is consistent across different model architec-
tures, including GPT-4o, Qwen2-VL-72B-Instruct,
and Claude-3.5-sonnet, highlighting the robustness
of our approach.

Similar to the geometry experiments in Section
4, the integration of tool interactions and multi-
step visual reasoning plays a critical role in en-
hancing performance. The executor’s feedback
mechanism, which provides visual updates after
each action, mirrors the incremental visual refine-
ment seen in geometry tasks, where auxiliary lines
are progressively constructed. For instance, Visuo-
Think without rollout search demonstrates an aver-
age improvement of 34.7% on Visual Tiling across
diverse models. We observe that while VoT aug-
mented with textual feedback achieves an average
increase of 8.1%, its performance gain is notably
less pronounced compared to VisuoThink without
rollout search. This underscores the critical role of
reliable visual cues in enhancing reasoning capa-

bilities. The dynamic interaction allows the model
to iteratively refine its reasoning path, leading to
more accurate solutions.

6 Discussion

In this section, we analyze key aspects of Visuo-
Think’s performance. We examine how the length
of reasoning chain affects spatial reasoning, the
impact of child node expansion in rollout search,
and the influence of supervision levels in predic-
tive rollouts across tasks. These insights highlight
VisuoThink’s effectiveness and suggest future direc-
tions for multimodal reasoning frameworks.

6.1 Could Longer Reasoning Chains Assist
LVLMs in Reasoning?

In practical applications of LVLMs for spatial rea-
soning tasks, each tool invocation can be seen as an
agent attempting an action in the environment and
receiving feedback. Although many attempts may
be inaccurate, allowing the model more trial-and-
error opportunities before achieving the final goal
could potentially enhance its reasoning capabilities.
By setting different upper limits on the number of
reasoning steps in visual navigation tasks, we ob-
serve a positive correlation between the number
of reasoning steps and the model’s task comple-
tion rate. This suggests that the model indeed
benefits from more tool invocations and longer
reasoning.

However, as the number of reasoning steps in-
creases, the completion rate gradually converges,

21713



making further significant improvements challeng-
ing. As shown in figure 4 (left), for instance,
increasing reasoning steps from 10 to 20 re-
sulted in substantial performance gains (+54.1%
and +48.4%) across different LVLM architectures
(GPT-40 and Claude-3.5-sonnet). However, when
reasoning steps were increased from 20 to 40, the
performance growth slowed dramatically, drop-
ping to +6.5% and +2.1%, respectively. This phe-
nomenon aligns with expectations, as merely in-
creasing the number of tool invocations does not
enable the model to better solve the most challeng-
ing samples. This underscores the necessity of
techniques like rollout search within the broader
context of test scaling.

6.2 Could Larger Tree Span Enhances
VisuoThink’s Performance?

Predictive rollouts enhance the model’s reasoning
capabilities, which can be viewed as a tangible
outcome of successfully expanding the model’s
reasoning search space. A natural question arises:
Can we further improve the model’s reasoning per-
formance on benchmarks simply by increasing the
number of candidate child nodes at each selection
step, i.e., expanding the tree width, thereby enhanc-
ing model’s reasoning capability? To investigate
this, we conducted comparative experiments on ge-
ometry tasks using GPT-40 and Claude-3.5-sonnet,
keeping the depth of the reasoning tree constant
while varying the number of candidate child nodes.

As presented in figure 4 (right), we observed an
inverted U-shaped trend in overall performance as
the number of candidate tree nodes increased across
different model architectures. Notably, when the
number of candidate child nodes equals 1, the
model follows a single reasoning path, effectively
bypassing predictive rollout search. Contrary to ex-
pectations, the performance trend initially rises and
then declines. This counterintuitive result can be
attributed to the inherent errors in the model’s eval-
uation of child nodes. Simply and aggressively
increasing the tree width leads to confusion in
selecting child nodes, which in turn reduces over-
all reasoning efficiency. Thus, an interesting con-
clusion emerges: we cannot expect to continuously
improve model performance by merely increasing
the number of child nodes in rollout search.
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Figure 5: The performance gain (+%) on tasks through
predictive rollout search. The performance gain is cal-
culated via the performance gap between VisuoThink
(w/o rollout search) and VisuoThink.

6.3 Strong v.s. Weak Supervision in Predictive
Rollout Search

An intriguing observation is that the strength of
guidance provided by predictive rollout results
varies between geometry and spatial reasoning
tasks. In geometry tasks, the model only receives
the final numerical results of the problem, whereas
in spatial reasoning tasks, the model has access
to visual states of stronger supervision (e.g., the
agent’s final position, the position of the destina-
tion, etc.). In other word, predictive rollouts in
geometry tasks offer weaker supervision, while
those in spatial reasoning tasks provide stronger
supervision.

This observation aligns with the findings of
the Deepseek R1 report, which highlights that
outcome-based supervision in RL can significantly
enhance Deepseek-R1-Zero’s reasoning capabil-
ities (DeepSeek-Al, 2025). The effectiveness
of such supervision stems from its strong su-
pervisory signal, and predictive rollouts with
strong supervision are more effective in improv-
ing model reasoning performance. This is further
supported by our experimental results, as illustrated
in figure 5, where predictive rollouts demonstrated
more substantial performance gains in spatial rea-
soning tasks compared to geometry tasks, across
both open-source and closed-source models. The
detailed performance gain results are presented in
appendix A.

7 Conclusion

We present VisuoThink, a multimodal tree search
framework enhancing LVLM reasoning through
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dynamic visual-textual interleaving and predictive
rollout search. Our approach demonstrates signifi-
cant improvements across geometry and spatial rea-
soning tasks without requiring model fine-tuning.
Empirical results show substantial performance
gains on geometry and spatial reasoning bench-
marks. Our analysis reveals key insights about
tool interaction benefits, search space optimization,
and supervision strength in multimodal reasoning.
These findings open new possibilities for advancing
LVLM capabilities in complex reasoning tasks.
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Limitations

Despite its strong performance, VisuoThink has sev-
eral limitations. First, the predictive rollout search
process introduces significant computational over-
head, making it potentially impractical for real-
time applications. Second, our approach particu-
larly relies on tool interactions for stronger capa-
bility, which may require more effort in some spe-
cific deployment environments. Third, the frame-
work’s effectiveness is constrained by the quality
of the base VLM’s reasoning capabilities - while it
enhances performance, it cannot overcome funda-
mental model limitations. Finally, our evaluation
focuses primarily on geometric and spatial reason-
ing tasks.
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A Performance Gain of VisuoThink
Through Predictive Rollout Search

This appendix quantifies the performance improve-
ments achieved by integrating predictive rollout
search into the VisuoThink framework across geom-
etry and spatial reasoning tasks. The performance
gain through predictive rollout search is derived
by subtracting the performance of VisuoThink (w/o
rollout search) from those of the VisuoThink on
models.

As shown in Table 3, tasks with strong su-
pervision (e.g., Visual Navigation and Visual
Tiling) exhibit significantly higher gains compared
to weak supervision tasks (e.g., Geometry3K and
Geomverse-109). For instance, under strong su-
pervision, Claude-3.5-Sonnet achieves a +25.1%
improvement in Visual Navigation, while GPT-40
attains +/6.6% in Visual Tiling. In contrast, weak
supervision tasks like Geomverse-109 only show
modest gains (e.g., +5.4% for GPT-40).

B Spatial Reasoning Task Setting

Our formulation extends beyond VoT’s basic re-
quirements by mandating LVLMs to generate com-
prehensive operational specifications - for instance,
requiring explicit output of both movement di-
rections and precise step counts at each decision
node. This advancement creates more realistic and
functionally grounded spatial reasoning evaluations
(e.g., robotic navigation emulation in real world).

This appendix details the task formulation differ-
ences between VisuoThink and baseline methods
(Table 4 and Table 5). For Visual Navigation, Vi-
suoThink requires fine-grained, executable and ex-
plicit specification of both direction and step count
in action sequences, whereas VoT focuses solely on
direction navigation. This formulation mirrors real-
world robotic navigation, where precise movement
planning is critical. Similarly, in Visual Tiling,
VisuoThink mandates detailed actions, including
polyomino variant types, block positions, and ac-
tion types (e.g., "fit" or "remove"), while VoT sim-
plifies the task by omitting variant specifications.

C Task Formulation of Spatial Reasoning
Tasks

Building upon VoT (Wu et al., 2024) framework,
our challenging benchmarks comprise:

* Visual Navigation evaluates LVLMs in
a simulated 2D grid environment, where
agents must navigate from initial position
So to destination s through obstacle-laden
paths. The formal problem is defined by grid
map M containing k interconnected edges
E = {e(sp,s1),e(s1,82),...,€(Sxk_1,8k)}-
The LVLM should generate a sequence of
executable actions in json format A =
{(dg, lo), (di, 11)7 AR (d|A\—17l\A|—1)}’
where each tuple specifies movement direc-
tion d; and exact step count l;, governed by
the policy:

ag ~ P (dt; I; ’ At—hM) 3)

* Visual Tiling is a classic geometric reason-
ing challenge, this task assesses polyomino
composition capabilities within confined rect-
angular regions R masked by £ distinct poly-
ominoes MP = {mp;,...,mp,}. The
LVLM must output action sequences a; =
(P> {b1,...,byp|},at;), where p, and B =
{by,... ,b‘B|} respectively indicate the se-
lected polyomino type and the coordinates of
the placement blocks. at; € {fir, remove} in-
dicates the action type modifying rectangular
state R;, thus formalized as:

ar ~ P (pt’ B7 at; ‘ Rt—l’ MP, At—l})
“)
Though the required actions are polyomino
variant-aware as shown in table 5. As the
polyomino variant type is implicitly expressed
in the block positions, LVLM does not need
to explicitly output it in actions anymore.
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Supervision Type Performance Gain GPT-40 Qwen2-VL-72B  Claude-3.5-Sonnet
A Visual Navigation (%) +16.6 +18.9 +15.5
Strong Supervision A Visual Tiling (%) +31.9 +11.0 +3.3
A Average (%) +24.3 +15.0 +9.4
A Geometry3K (%) +4.5 +6.6 +1.1
Weak Supervision A Geomverse-109 (%) +6.2 +4.2 +6.3
A Average (%) +5.4 +5.4 +3.7

Table 3: Detailed performance gain of VisuoThink through predictive rollout search on benchmarks from Geometry

and Spatial Reasoning over variable LVLM models.

Method Direction  Steps Target
Visual Navigation T . v Navigate from the s.tart.mg position
VisuoThink v v to the destination.

Table 4: Visual Navigation task setting differences between VoT and VisuoThink.

Method Action Target
Polyomino Type Variant Type Block Positions Action Type g
) B VoT v v X X To identify tl.le cgrrect varl.ant
Visual Tiling for a polyomino in one action.
VisuoThink 4 4 4 4 To fill the rectangle with feasible

polyomino variants.

Table 5: Visual Tiling task setting differences between VoT and VisuoThink.

D Model and VisuoThink
Hyperparameters

We detail the model and VisuoThink Hyperparame-
ters:

Model Hyperparameters To ensure experimen-
tal fairness, we uniformly constrained the number
of reasoning steps (i.e., 7, the depth of the rea-
soning tree) to 10 across all experiments. During
predictive rollout search, we set the number of sam-
pled child nodes to 3, and we discuss its impact in
section 6.2.

VisuoThink Hyperparameters While Visuo-
Think employed a temperature of 0.8 when sam-
pling child nodes, all other model invocations, in-
cluding the baselines (e.g. CoT, VoT, VisualSketch-
pad, VisuoThink w/o rollout search), were con-
ducted with temperature set to 0 for frontier per-
formance. During the voting phase, we similarly
maintained a temperature of 0 and implemented
single-vote sampling, which not only reduced com-
putational overhead in terms of model calls but also
achieved comparable performance.

E Geomverse-109 Problem Generation
Trajectory

We establish a pipeline translating textual problems
into problems with matplotlib-executable code. Be-

yond the Geometry3K (Lu et al., 2021) dataset (48
problems) utilized in Sketchpad, we incorporate
the D2 subset of Geomverse (Kazemi et al., 2023)
to construct an slightly bigger dataset Geomverse-
109 (90 problems). The original Geomverse dataset
crucially includes annotated point coordinates es-
sential for systematic problem synthesis. During
the data synthesis phase, we first randomly choose
109 problems, then LVLMs generate correspond-
ing high-quality Python code through LLM self-
reflection (Shinn et al., 2023), then we filter out
problems with poor diagram quality.
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