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Abstract

Multiple-choice questions (MCQs) are a widely
used and vital assessment format for evaluating
large language models (LLMs). This study re-
veals that LLMs are susceptible to "cognitive
load" caused by distractor options in MCQs,
leading to excessive attention to distractors and
consequent vacillation between correct and in-
correct options. To mitigate this cognitive bur-
den, we introduce a novel reasoning prompt
strategy, called EoT, which effectively reduces
cognitive load by steering the model’s attention
away from erroneous options. This enables
the model to focus more effectively on rea-
sonable answers. Additionally, by document-
ing the elimination process, EoT enhances the
transparency and interpretability of the model’s
reasoning. Experimental results demonstrate
that EoT, as a plug-and-play approach, signif-
icantly reduces cognitive load and improves
performance, showcasing its potential to en-
hance both the accuracy and interpretability of
LLMs1.

1 Introduction

Multiple-choice questions (MCQs) represent a
widely adopted task format in large language mod-
els (LLMs). These questions span diverse domains
and exhibit varying levels of complexity, typically
comprising a question and several candidate op-
tions from which the model must select the most
appropriate answer. MCQs are extensively em-
ployed both for benchmarking LLM performance
(Hendrycks et al., 2020; Zhong et al., 2023) and
as the basis for automated evaluation frameworks
(Zheng et al., 2023b). Consequently, it is critical
for LLMs to reliably select correct answers in these
tasks.

However, we have observed that LLMs exhibit
excessive focus on distractor options in MCQs. As

1This work is open sourced at: https://github.com/
QihangFoo/EoT.

BCorresponding author.

Chain-of-Thought

Q: Bob's house has recently purchased a new bathtub. What is its approximate 

volume in liters?

A. 8 liters.

B. 80 liters.

C. 800 liters.

D. 8000 liters.

A: A standard bathtub usually holds between 150 and 300 liters. Most household 

bathtubs have a volume of at least 80 liters. So, the answer is B.80 liters. Error

(a) Chain-of-Thought
Exclusion of Thought

A1: A teapot can hold several liters of water, so a bathtub is definitely much larger 
than just 8 liters. 8,000 liters is equivalent to 8 tons of water, which clearly doesn't 
match the size of a bathtub. Therefore, options A and D can be ruled out.

Distractor Elimination

Re-Evaluation

Q2: Bob's house has recently purchased a new bathtub. What is its approximate 
volume in liters?
A. 80 liters.
B. 800 liters.

A2: For an adult, the size is about 170 cm long and 70 cm wide. 800 liters equals 
0.8 cubic meters, which gives a depth of 0.672 meters, a reasonable depth. So, the 
correct answer is B. 800 liters.

(b) Exclusion of Thought

Figure 1: The presence of distractor options increases
the cognitive load of large language models, caus-
ing them to select seemingly reasonable but incorrect
choices. The process of elimination reduces this cogni-
tive load by removing distractors, allowing the model to
infer the correct answer.

illustrated in Figure 1a, in zero-shot MCQ tasks,
the presence of distractors and low-probability op-
tions often prevents the model from concentrat-
ing on the more challenging options, leading to
predictions that appear correct but are ultimately
erroneous. In Table 1, we demonstrate that re-
moving incorrect options or simply adding obvi-
ously incorrect options can cause significant fluc-
tuations in model performance. This suggests that
LLMs are highly sensitive to the presence of dis-
tractors. For example, after adding distractor op-
tions to the AQuA dataset (Ling et al., 2017), the
model’s performance decreased by 5.34 percent
(29.92 vs 24.58). In contrast, removing a distractor
option from the GSM8K-MC dataset improved per-
formance by 21.54 percent (35.61 vs 57.15) (Zhang
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et al., 2024b). This issue may arise because dis-
tractors are often crafted with linguistic ambiguity,
making incorrect options seem plausible or par-
tially correct, thereby increasing the difficulty of
distinguishing the correct answer. Additionally, bi-
ases in the training data may influence the model to
develop an incorrect preference for linguistic pat-
terns associated with distractors, further exacerbat-
ing their negative impact on reasoning processes.

Dataset Orig +1 +2 -1 -2
MMLU-PRO 37.43 35.24 33.02 39.21 40.65

(-2.19) (-4.41) (+1.78) (+3.22)
ARC 82.40 81.58 80.86 85.75 91.50

(-0.82) (-1.54) (+3.35) (+9.10)
CSQA 76.79 74.41 73.12 80.26 83.22

(-2.38) (-3.61) (+3.47) (+6.43)
GSM8K-MC 35.61 33.81 31.24 44.67 57.15

(-1.80) (-4.37) (+9.06) (+21.54)
AQuA 29.92 24.58 23.66 33.46 46.45

(-5.34) (-6.26) (+3.54) (+16.53)

Table 1: Removing incorrect options or simply adding
clearly incorrect options in multiple-choice questions
can lead to significant fluctuations in model performance
(5-shot Llama-3-8B-Instruct). This indicates that large
language models are highly sensitive to the presence of
distractor options.

This tendency to overemphasize distractors is
pervasive in LLMs and cannot be effectively miti-
gated through straightforward prompting strategies.
For instance, while Chain of Thought (CoT) (Wei
et al., 2022b) has been successful in improving the
model’s reasoning ability, methods like PoE (Ma
and Du, 2023) and its derivatives (Balepur et al.,
2024), which use a two-step scoring approach to
let the model score itself before proceeding with
further reasoning, and integrated prompting (Zhang
et al., 2024a; Tong et al., 2023), which guides
LLMs through nonlinear thinking to eliminate
incorrect options, offer some improvements in
selection accuracy but remain vulnerable to dis-
tractors. These approaches still do not fully re-
solve the problem of overattention to distractor
options.Traditional prompting strategies predomi-
nantly follow an "additive" approach by introduc-
ing more reasoning-related information into the
prompt (Rai and Yao, 2024; Li et al., 2024). How-
ever, this additive strategy does not prevent the
model from attending to distractors, as these op-
tions remain visible and continue to consume the
model’s attention.

To address this challenge, we draw inspiration
from classical human strategies for solving MCQs
and propose a novel prompting framework: Ex-

clusion of Thought (EoT). As depicted in Fig-
ure 1b, EoT adopts a "subtractive" approach, fun-
damentally distinct from the additive nature of tra-
ditional strategies. The core idea behind EoT is
to incrementally eliminate evidently incorrect op-
tions, thereby narrowing the focus to the remain-
ing, more challenging options and reducing the
influence of distractors on the reasoning process.
Specifically, EoT introduces a confidence-based
exclusion mechanism to help the model systemati-
cally discard incorrect options (Tian et al., 2023),
optimizing its reasoning trajectory and minimizing
the attention allocated to distractors. Experimen-
tal results demonstrate that EoT significantly out-
performs existing methods across multiple MCQs
benchmark datasets, particularly in high-distractor
settings, where the model’s resistance to interfer-
ence is substantially enhanced. By incorporating
the EoT framework, we not only improve the accu-
racy of LLMs on MCQ tasks but also provide new
insights and technical support for tackling more
complex reasoning challenges.

Our contributions are summarized as follows

• We propose a novel prompting strategy, EoT,
inspired by human problem-solving tech-
niques. By incrementally eliminating incor-
rect options, EoT effectively alleviates the
issue of excessive attention to distractors in
LLMs.

• EoT introduces a transparent decision-making
process by recording the exclusion steps, of-
fering new perspectives for understanding the
reasoning logic of LLMs.

• We demonstrate that EoT achieves substan-
tial performance improvements on multi-
ple MCQs benchmark datasets, particularly
enhancing the model’s robustness in high-
distractor tasks.

2 Related Works

2.1 Multiple Choice Questions
As a concise and widely utilized task format,
MCQs play a pivotal role in evaluating the ca-
pabilities of LLMs. This format is prevalent in
numerous benchmark datasets, which serve to as-
sess model comprehension, reasoning, and domain-
specific knowledge. Early efforts include AQuA
(Ling et al., 2017), targeting algebraic problem-
solving, and ARC (Clark et al., 2018), which fo-
cuses on scientific reasoning. CommonsenseQA
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(Talmor et al., 2018) introduced commonsense
reasoning tasks, while MMLU (Hendrycks et al.,
2020) expanded evaluations to general and special-
ized knowledge across diverse subjects. Recent
advancements include MMLU-Pro (Wang et al.,
2024) for professional-level tasks and GSM8K-MC
(Zhang et al., 2024b), emphasizing complex reason-
ing through a multi-choice adaptation of GSM8K.
These datasets are designed with carefully crafted
distractors to challenge model accuracy, making
them a standard for assessing LLM performance
across varying domains and complexities.

2.2 Large Language Models

Since the release of GPT-3, LLMs such as GPT-
4 and ChatGPT have shown significant advance-
ments in reasoning and understanding, using
techniques like reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022) and
instruction-tuned fine-tuning (Wei et al., 2021).
Meta’s Llama series (Touvron et al., 2023) achieved
strong performance with smaller parameter sizes,
while the open-source o1 model demonstrated out-
standing reasoning capabilities through multi-turn
chain-of-thought reasoning (Zhao et al., 2024).

2.3 Prompting Strategies

Prompting strategies are crucial for enhancing the
complex reasoning abilities of LLMs. Chain-of-
Thought guides the model to generate a series of
intermediate reasoning steps (Wang et al., 2023;
Zhao et al., 2023; Taori et al., 2023), allowing it to
analyze the problem incrementally and ultimately
arrive at the correct answer (Zhou et al., 2023).
This approach has significantly improved perfor-
mance on complex reasoning tasks without requir-
ing additional training(Huang and Chang, 2022;
Min et al., 2022). This method leverages the emer-
gent capabilities of LLMs, enabling the model to
tackle complex problems by generating and utiliz-
ing reasoning chains (Qiao et al., 2022; Chu et al.,
2024; Wei et al., 2022a; Kaplan et al., 2020).Zero-
Shot CoT (Kojima et al., 2022) enables step-by-
step reasoning based on instructions alone, with-
out examples. Complex CoT (Fu et al., 2022) fur-
ther optimizes reasoning by selecting prompts with
more intermediate steps, improving performance
on multi-step tasks. Other approaches, such as self-
consistency (Wang et al., 2022; Li et al., 2023),
progressive sampling (Zheng et al., 2023a), and
meta-prompting (Suzgun and Kalai, 2024), focus
on enhancing reliability and consistency. Maieutic

Prompting enforces logical coherence by asking
the model to verify its internal consistency, pro-
ducing more dependable, self-consistent responses
(Jung et al., 2022; Michael et al., 2023).

Despite these advances, challenges remain in
applying prompting strategies to MCQ tasks. Tra-
ditional approaches typically adopt an "additive"
strategy, increasing the amount of input informa-
tion provided to the model. However, these meth-
ods do not effectively address the overattention to
distractors, often leading models to select plausible
but ultimately incorrect answers when faced with
complex distractor options.

3 Preliminary

We begin by defining the fundamental concepts
of standard prompting and CoT prompting, which
serve as the foundation for the proposed EoT frame-
work. Consider a scenario where a question is rep-
resented as q, a prompt as T , and a LLM, denoted
as PM.

Standard Prompting Under standard prompt-
ing, the LLM takes the question q, the set of can-
didate options X , and the prompt T as input. The
objective of the model is to identify the optimal
answer o from a set of multiple possible options.In
this approach, the model directly generates the fi-
nal answer o based on the q, X and the T , with the
probability distribution defined as:

P (o | T , q,X ) =
exp(PM(o | T , q,X ))∑

dk∈X exp(PM(dk | T , q,X ))
(1)

where X = {d1, d2, . . . , dn} represents the set of
all possible candidate options.

Chain-of-Thought Prompting CoT prompting
enhances the standard prompting paradigm by ex-
plicitly guiding the LLMs to generate intermediate
reasoning steps prior to producing the final answer.
Specifically, the prompt T is designed to encour-
age the LLMs to first generate a reasoning process
r, followed by the final answer o. The combination
of r and o is collectively referred to as a reason-
ing chain. The joint probability of generating the
reasoning chain (r, o) conditioned on T and q is
expressed as:

P (r, o | T , q,X ) =P (o | T , q,X , r)·
P (r | T , q,X ) (2)

where P (r | T , q,X ) and P (o | T , q,X , r) are
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𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:
Let 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 be a quadratic 

function, known to attain a minimum value 

at some point within the interval x∈[1,5]. 

Additionally, it satisfies 𝑓 1 + 𝑓 5 = 8. 

What is the value of 𝑓 3 that meets these 

conditions?

Options:
A. 10
B. 6
C. 4
D. 8

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:𝑸
𝑶𝒑𝒕𝒊𝒐𝒏:𝑿
A
B
C
D

CoT

CoT-SC

R1 …

R2 …

R3 …

R4 …

…

Reasoning Chain

L
L

M

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:𝑸
𝑶𝒑𝒕𝒊𝒐𝒏: X’
A
B
C

Corrector

Exclusion option set C

X′ = 𝑋 ∖C

Recombinator

Local-Scoring

Final Answer

C. 4

Δ > 𝜃

Δ < 𝜃

Local-Scoring

Assume 𝑓 𝑥 is a quadratic 

function. Recheck the 

conditions𝑓(1)+𝑓(5)=8 and the 

property of the minimum value. 

Attempt to set up a coherent 

equation involving a,b,c.

Using conditions and the 

minimum pfunction, attempt 

to …

So the correct answer is  B(6).

First, observe options A (10) and D (8). Based 

on the given conditions and preliminary 

analysis, we can confidently rule these out.

We examine these by substituting them back into 

the equations to see if they satisfy all given 

conditions.After careful calculation and 

validation, option B (4) proves to meet all 

conditions.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:
Let 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 be a quadratic 

function, known to attain a minimum value at 

some point within the interval x∈[1,5]. …

Options:
A. 6
B. 4

Eliminate the candidate option set

Rearrange the problem input

Final output

Evaluator

Figure 2: Illustration of the EoT framework’s reasoning process. Initially, EoT utilizes various reasoning chains to
generate the raw outputs, which are processed through the Local-Scoring module to obtain the initial probability
distribution. The Corrector then adjusts this distribution to produce an exclusion-based distribution. The Evaluator
assesses whether the LLM has sufficient confidence to select the correct answer. If not, the Recombinator excludes
the lowest-scoring option and reconstructs the input, ensuring that the LLMs do not refocus on the eliminated
distractor options.

defined as follows:

P (r | T , q,X ) =
|R|∏

i=1

PM(ri | T , q,X , r<i) (3)

P (o | T , q,X , r) = PM(o | T , q,X , r) (4)

where R = {r1, r2, r3 . . . } denotes the set of rea-
soning steps, and r<i indicates that the generation
of ri depends on the preceding i− 1 chains.

4 Methodology

4.1 Overview

In light of the existing challenges associated with
MCQs and the limitations of current methodolo-
gies, we propose the EoT framework. This ap-
proach is specifically designed to enhance the per-
formance of LLMs in MCQ tasks by systematically
eliminating incorrect options. The core idea of EoT
is to eliminate distractors from the set of possible
answers, thereby increasing the likelihood of iden-
tifying the correct answer. Let C denote the set of
excluded incorrect options, and let the refined op-
tions set be X ′ = X \ C. Given the question q and
options X ′, the adjusted probability distribution

PEoT is defined as:

PEoT (o | T ,q,X ′, C) = Pexclude(C | T , q,X )·
PM(o | T , q,X ′)∑

dk∈X ′ PM(dk | T , q,X ′)
(5)

where C = {c1, c2, . . . , cj}, j < |X |. Pexclude(cj |
T , q,X) represents the confidence of LLMs in ex-
cluding the option cj .

The exclusion process adjusts the probability dis-
tribution by removing the influence of the incorrect
options C, thereby increasing the relative proba-
bility of selecting the correct answer o to some
extent.

4.2 System Architecture

The EoT framework is designed to enhance the
decision-making accuracy of LLMs by systemati-
cally eliminating distractor options, thereby guid-
ing the models to focus their attention on the most
plausible choices. This process unfolds through
two complementary phases: Exclusionary Confi-
dence Calibration (§ 4.2.1) and Dynamic Con-
fidence Gap Decision (§ 4.2.2). Together, these
phases emulate human-like exclusion strategies,
alleviating the cognitive burden on LLMs and im-
proving their performance on MCQ tasks.
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As illustrated in Figure 2, EoT functions as a
plug-and-play module that can be easily integrated
into existing prompting strategies. It identifies and
removes the most likely incorrect options to re-
fine the answer set, directing the model’s attention
toward the correct choices. Initially, EoT gener-
ates raw sampling results using different reason-
ing strategies, which are processed by the Local-
Scoring module. This module computes the ini-
tial distribution of the LLM’s confidence across
the options. The Corrector module then adjusts
the probability distribution by excluding certain
options. EoT evaluates whether the LLM has suffi-
cient confidence in its answers, based on a precom-
puted threshold. If confidence is insufficient, the
Recombinator module refines the input, prevent-
ing the LLM from refocusing on the eliminated
distractors.

4.2.1 Exclusionary Confidence Calibration
This phase systematically identifies and removes
the answer options that are most likely to be incor-
rect, subsequently adjusting the probability distri-
bution after exclusion.

Initial Probability Computation. Given a
prompt T , a question q, and a set of options
X = {d1, d2, . . . , dn}, EoT computes the initial
probability distribution as follows:

Pobserved(di | T , q,X ) =
exp(f(T , q, di))∑

dk∈X
exp(f(T , q, dk))

(6)

where f(X , q, di) represents the score of token di
in the raw output of the LLMs.

Confidence for Excluding Options. The con-
fidence Pexclude(cj | T , q,X ) for excluding an op-
tion cj is defined as the LLMs’ certainty in reject-
ing cj as a distractor, expressed as:
Pexclude(cj | T , q,X ) = 1− Pobserved(dj | T , q,X ) (7)

Refined Probability Distribution. After ex-
cluding a set of options C = {c1, c2, . . . , cj}, the
refined set of candidate options is X ′ = X \ C.
Let P̃EoT denote the EoT-adjusted relative scoring
after exclusion. We define the adjusted probability
for each remaining choice dj as:

∼
PEoT (di | T , q,X ′) = Pobserved(di | T , q,X )·

Pexclude(C | T , q,X ) (8)

where Pexclude(C | T , q,X ) is the product of the
confidence scores for all excluded options:

Pexclude(C | T , q,X ) =
∏

cj∈C

Pexclude(cj | T , q,X ) (9)

4.2.2 Iterative Confidence Refinement
This phase evaluates whether the LLMs have suf-
ficient confidence to provide a final answer based
on the refined probability distribution P∼

M obtained
in the previous phase. It also determines whether
re-evaluation of X ′ is necessary to ensure the ro-
bustness of EoT.

Confidence Gap Calculation. In each iteration,
EoT assesses the confidence difference ∆ between
the highest-probability option oα and the second-
highest-probability option oβ:

∆ =
∼
PEoT (oα | T , q,X ′)−

∼
PEoT (oβ | T , q,X ′) (10)

If ∆ is below a predefined threshold θ, the model
samples additional reasoning chains to gather more
information about the remaining options. These
reasoning chains are integrated into the decision-
making process, updating Pobserved(di | T , q,X ′).
The process terminates when ∆ > θ or when the
maximum number of iterations Nmax is reached,
with the final answer being o = oα.

To adapt as the number of options decreases, we
update the threshold using the following formula:

θnew = θ + (θmax − θ) · (1− Ncurrent

Ninitial
)p (11)

where Ncurrent denotes the number of remaining
options in the current state, Ninitial represents the
initial number of options, θmax is the maximum
threshold value , and p is a tuning factor.

Algorithm 1 Reasoning with EoT

Require: Question q, option set X , model PM,
threshold θ, maximum iterations Nmax

Ensure: o
1: N ← 0
2: Compute Pobs(di | q,X ), for all di ∈ X
3: while N < Nmax do
4: Compute Pexc(ci | T , q,X ), for all ci ∈ X
5: X ′ ← X \ {cj} {Remove cj based on a

predefined criterion}
6: Compute P̃ (di | T , q,X ′), for all di ∈ X ′

7: ∆←
∼
P (oα)−

∼
P (oβ)

8: if ∆ ≥ θ then
9: return o← oα

10: else
11: X ← X ′, Update θ
12: end if
13: N ← N + 1
14: end while
15: return o

21677



5 Experimental Setup

5.1 Datasets

To comprehensively evaluate the effectiveness of
our proposed EoT framework, we conducted ex-
periments on MCQ benchmark datasets. These
datasets span diverse domains and difficulty lev-
els, enabling us to validate the model’s perfor-
mance across a variety of tasks. MMLU-Pro (Mas-
sive Multi-Task Language Understanding Profes-
sional). An enhanced version of MMLU, MMLU-
Pro focuses on professional domains such as law,
medicine, engineering, and finance. The ques-
tions are more difficult and are presented in a 10-
option MCQs format. CommonsenseQA (CSQA).
A dataset emphasizing commonsense reasoning,
with questions in a 5-option MCQs format. ARC
(AI2 Reasoning Challenge). Derived from U.S. el-
ementary and middle school science exams, ARC
includes 7,787 science reasoning questions and is
primarily used to assess the model’s performance in
scientific knowledge and complex reasoning tasks.
AQuA (Algebra Question Answering with Ratio-
nales). This dataset contains nearly 100,000 alge-
bra questions, each accompanied by detailed solu-
tion steps. It aims to evaluate the model’s problem-
solving and logical reasoning abilities in mathemat-
ical tasks. GSM8K-MC. This dataset is a MCQs
adaptation of the original GSM8K dataset, contain-
ing 8,000 elementary-level mathematics problems
designed to assess the model’s mathematical rea-
soning capabilities.

5.2 Backbone LLMs

In the main experiments, we selected a series of rep-
resentative LLMs. The models used in our exper-
iments include LLaMA-2-7B-Chat-HF, LLaMA-
2-13B-Chat-HF, LLaMA-3-8B-Instruct, and Phi-
3.5-mini, Yi-1.5-9B-Chat, as well as the recently
popular o1 model, specifically the Marco-o1 model.
These models are of medium scale, covering a
range of sizes and training paradigms, which aligns
with the requirements of our study.

5.3 Baseline

The performance gains of the EoT framework, as
a plug-and-play approach, we compared it against
the following baseline methods. We adhere to the
original experimental settings and utilize the offi-
cial implementations of these methods to ensure
fairness and comparability:

• Chain-of-Thought (CoT): Generates interme-
diate reasoning steps to help the model derive
answers step by step.

• Zero-Shot CoT: Triggers the model’s reason-
ing process through simple instructions with-
out using examples.

• ComplexCoT: Selects the most effective rea-
soning examples based on complexity to im-
prove multi-step reasoning tasks.

5.4 Hyperparameter Settings

The threshold θ plays a critical role in the EoT
framework. To determine the optimal threshold,
we used 5% of the total samples in each dataset
as a validation subset. For each option in this 5%
subset, we recorded the model’s confidence scores.
Using these confidence scores as priors, we per-
formed Maximum Likelihood Estimation (MLE)
to identify the threshold θ that maximizes the per-
formance of the exclusion method on the validation
subset. During the exclusion process, θ is dynami-
cally adjusted to ensure that the model maintains
the same level of confidence after excluding options
as it did in the initial state. In our experiments, we
treat θmax and p as hyperparameters, with θmax set
to 0.85 and p set to 2.

5.5 Evaluation Metrics

We evaluate model performance using the follow-
ing metrics:

Accuracy: This is the percentage of correctly
answered questions out of the total number of ques-
tions. It serves as the primary performance indica-
tor and is computed as:

Acc =
∑N

i=1 I(oi = o∗i )
N

(12)

where I(·) is the indicator function that returns 1 if
the ground truth answer oi equals the EoT’s answer
o∗i and 0 otherwise, and N is the total number of
questions.

Exclusion Accuracy: Denoted as Ei, this met-
ric represents the accuracy of the i-th exclusion
operation. It is defined as:

Ei =
∑M

j=1 I(oj /∈ C)

M
(13)

where M is the number of MCQs requiring the i-th
elimination operation, and C is the set of excluded
options.
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Model MMLU-PRO ARC CSQA GSM8K-MC AQuA
Llama-2-7b-chat-hf 18.04 55.02 54.77 24.66 18.90
Llama-2-7b-chat-hf-EoT 19.72 55.45 56.00 25.14 21.25
Llama-2-13b-chat-hf 19.76 60.77 63.07 27.39 19.29
Llama-2-13b-chat-hf-EoT 22.14 62.23 67.27 27.55 22.44
Llama-3-8b-instruct 37.43 82.40 76.97 35.61 29.92
Llama-3-8b-EoT 39.02 83.09 78.29 38.20 33.07
Phi-3.5-mini 40.91 86.26 72.94 37.98 25.20
Phi-3.5-mini-EoT 41.60 86.43 73.52 41.17 26.77
Yi-1.5-9B-Chat 40.84 88.44 81.74 46.73 29.92
Yi-1.5-9B-Chat-EoT 42.36 89.53 82.82 47.96 32.71
Marco-o1 43.25 89.61 81.65 46.27 27.95
Marco-o1-EoT 43.96 90.21 82.51 47.19 31.10

Table 2: Performance of various models with and without EoT under the 5-shot setting (Acc).

Model Prompt EoT Dataset

ARC MMLU-PRO CSQA GSM8K-MC AQuA

Llama-3-8B-Instruct

Zero-shot CoT
✗ 80.55 36.10 75.12 34.50 27.50
✓ 82.00 37.80 76.40 36.75 30.45

(+1.45) (+1.70) (+1.28) (+2.25) (+2.95)

Complex CoT
✗ 81.20 36.85 76.30 35.00 28.60
✓ 82.80 38.70 77.85 37.85 31.75

(+1.60) (+1.85) (+1.55) (+2.85) (+3.15)

CoT
✗ 83.00 38.00 78.10 37.10 30.10
✓ 84.20 40.30 79.50 39.90 34.20

(+1.20) (+2.30) (+1.40) (+2.80) (+4.10)

Phi-3.5-mini-instruct

Zero-shot CoT
✗ 85.00 39.50 71.50 36.50 23.80
✓ 85.70 40.70 72.40 39.50 25.50

(+0.70) (+1.20) (+0.90) (+3.00) (+1.70)

Complex CoT
✗ 85.50 40.00 72.20 37.80 24.80
✓ 86.00 41.50 73.10 40.30 26.10

(+0.50) (+1.50) (+0.90) (+2.50) (+1.30)

CoT
✗ 86.10 40.30 73.00 39.00 25.50
✓ 87.00 42.20 74.50 42.00 28.00

(+0.90) (+1.90) (+1.50) (+3.00) (+2.50)

Marco-o1

Zero-shot CoT
✗ 88.00 42.00 80.00 45.00 26.50
✓ 89.20 43.10 82.20 46.30 28.90

(+1.20) (+1.10) (+2.20) (+1.30) (+2.40)

Complex CoT
✗ 89.00 42.80 81.80 46.00 27.60
✓ 89.80 43.60 82.94 47.50 30.80

(+0.80) (+0.80) (+1.14) (+1.50) (+3.20)

CoT
✗ 89.40 43.00 82.13 46.80 28.50
✓ 90.40 44.50 83.01 48.50 32.20

(+1.00) (+1.50) (+0.88) (+1.70) (+3.70)

Table 3: Performance improvements obtained by applying EoT to different LLMs and prompting methods. The
results indicate that EoT yields additional gains, particularly on more challenging tasks (Acc).

6 Experimental Result

We comprehensively evaluated the proposed EoT
method across various LLMs and compared its per-

formance with mainstream baseline approaches.
Since GPT-3.5-turbo does not provide direct access
to output probabilities, we employed a multi-turn
dialogue approach (details in Appendix D.3).
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Figure 3: Under the optimal threshold θ with standard prompt settings, the Exclusion Accuracy of EoT across
different numbers of exclusions.

Table 2 presents the performance comparison
of models under standard prompts. Overall, in-
corporating EoT consistently improves accuracy,
particularly on challenging MCQ tasks. For ex-
ample, on the AQuA dataset, EoT achieved a 6.84
percentage point improvement. Similarly, on the
GSM8K-MC and MMLU-Pro datasets, the gains
were 2.85 and 2.3 percentage points, respectively.
These results suggest that EoT effectively mitigates
the “cognitive load” imposed by distractor options,
thereby supporting our hypothesis that LLMs tend
to overemphasize distractors, leading to suboptimal
performance on difficult samples.

Table 3 highlights the performance of EoT when
combined with mainstream prompting strategies
as a plug-and-play module. The results indicate
that EoT still yields significant performance im-
provements when integrated with these strategies.
Specifically, LLMs exhibit better performance with
the addition of prompting strategies, and this im-
provement is further amplified when EoT is applied.
Although the magnitude of improvement is smaller
compared to scenarios without any prompting, EoT
still performs better on more difficult tasks.

7 Analysis

In this section, we analyze the behavior of the EoT
framework under different experimental settings,
focusing on two key aspects: the exclusion accu-
racy over successive rounds of elimination and the
sensitivity of EoT’s performance to the threshold
θ.

7.1 Exclusion Accuracy Analysis
Figure 3 illustrates how the exclusion accu-
racy—computed only on those samples where the
model’s confidence in the answer falls below a pre-
defined threshold—changes with the number of
exclusion rounds across various datasets. The re-
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Figure 4: The impact of the threshold θ on the perfor-
mance of EoT across tasks of varying difficulty levels
(5-shot Llama-3-8B-Instruct).

sults reveal that, during MCQ reasoning tasks, the
probability of correctly excluding a distractor sig-
nificantly exceeds the probability of directly select-
ing the correct answer. This observation validates
the core premise of EoT: systematically eliminating
distractors can enhance overall performance.

However, for simpler tasks such as those in
CSQA, exclusion accuracy declines sharply af-
ter more than two exclusion rounds—sometimes
falling below the baseline performance. This sug-
gests that for tasks where LLMs already exhibit
strong commonsense reasoning, excessive exclu-
sion may introduce hallucination issues. In con-
trast, for more challenging tasks like AQuA, while
exclusion accuracy initially decreases, it later im-
proves as more distractors are removed, indicating
that further elimination helps the model to better
differentiate between correct and incorrect options.

7.2 Threshold Sensitivity Analysis

Figure 4 examines the impact of the threshold θ on
the performance of EoT, using the 5-shot Llama-
3-8B-Instruct setting as an example. For high-
difficulty tasks, optimal performance is achieved
with relatively low thresholds. This is likely be-
cause challenging MCQs feature complex distrac-
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tors that narrow the confidence gap between distrac-
tors and the correct option, necessitating a smaller
threshold to iteratively eliminate distractors. Con-
versely, for standard tasks where LLMs can more
readily distinguish between correct and distractor
options, a larger threshold is more effective.

These findings support our strategy of using 5%
of each dataset to determine the optimal threshold
θ, ensuring that the exclusion process consistently
maintains a balanced confidence level.

8 Conclusion

In this work, we introduced the EoT framework, a
novel prompting strategy aimed at enhancing the
performance of LLMs on MCQ tasks by system-
atically eliminating incorrect options. Inspired by
human reasoning strategies, EoT reduces cognitive
load by redirecting the model’s attention away from
distractors, allowing it to focus more effectively
on analyzing the relevant remaining choices. Our
extensive experiments across a variety of MCQ
datasets demonstrate that EoT significantly im-
proves reasoning accuracy, particularly for chal-
lenging tasks. We hope our framework will inspire
future research into incorporating human-inspired
reasoning strategies in LLMs.

Limitations

Our research on the EoT framework has demon-
strated significant efficacy in reducing the cognitive
load of large language models (LLMs) and enhanc-
ing performance on MCQ tasks. However, there
are numerous promising avenues for further explo-
ration to expand upon these findings. For instance,
a particularly promising direction involves extend-
ing the application of EoT from multiple-choice
questions to other reasoning tasks and domains.
The core principles of systematic exclusion hold
potential for adaptation in areas such as knowledge
graphs and retrieval-augmented generation, thereby
better simulating human-like reasoning across di-
verse scenarios.
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A Evaluation Data and Statistics

The datasets used in this study can be accessed via
the links below:

• MMLU_PRO:
https://github.com/TIGER-AI-Lab/MMLU-
Pro

• ARC:
https://allenai.org/data/arc

• CSQA:
https://allenai.org/data/commonsenseqa

• GSM8K-MC:
https://huggingface.co/datasets/guipenedo/gsm8k-
mc

• AQuA:
https://github.com/google-deepmind/AQuA

B Evaluated Open-Source Models

We obtained the open-source LLMs used in our
experiments through the following means:

• Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-
7b-chat-hf

• Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-
13b-chat-hf

• Llama-3-8b-instruct
https://huggingface.co/meta-llama/Meta-
Llama-3-8B-Instruct

• Phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-
3.5-mini-instruct

• Yi-1.5-9B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B-Chat

• Marco-o1
https://huggingface.co/AIDC-AI/Marco-o1

C Experimental Setup Details

We conducted our experiments using two NVIDIA
A6000 GPUs (48GB each) to facilitate the infer-
ence of LLMs in the 7B-14B parameter range.
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Name Domain Format Quantity Year Difficulty

MMLU-Pro Law, Medicine, Engineering, Finance 10-choice 12,000 2024 High
CommonsenseQA (CSQA) Commonsense Reasoning 5-choice 12,102 2019 Moderate
ARC Science Reasoning 4-choice 7,787 2018 Moderate
AQuA Mathematical Problem-Solving 5-choice 100,000 2017 High
GSM8K-MC Mathematical Reasoning 4-choice 8,500 2021 High

Table 4: Benchmark Datasets Overview.

C.1 Prompts Used in Experiments

The following are multiple choice questions about 

Mathematical . Your output should only include options, and 

nothing else.

[ examples (The number of options corresponds to the questions 

below.) ]

Question: What should come in place of the question mark(?) in 

each of the following questions ?

a^2 – b^2/(a + b)^2 (?)=(a - b)^2

Options:

A. (a + b)(a – b)

B. (a - b)

C. (a + b)

D. a^2 + b

E. None of thes

Answer: A

Figure 5: The input format for open-source models
(e.g., LLaMA and Phi) is structured as follows: Black
text represents the template input. Red text denotes
the task-specific template (if no task-specific informa-
tion is available, the dataset’s default template is used).
Green text indicates the position where the next-token
prediction probabilities for option IDs are utilized as
the observed prediction distribution. It is important to
note that the input is preprocessed using the dialogue
template recommended by the respective LLMs before
being fed into the model.

C.2 Selecting Examples for 5-Shot Prompting

The examples used in the prompt were randomly
drawn from the dataset’s non-numerical reasoning
questions. We chose to exclude numerical reason-
ing items because, in those cases, the EoT exclu-
sion strategy fails to yield any additional inferential
benefit: the model typically retains similar levels of
uncertainty across all answer choices. In contrast,
non-numerical reasoning questions align more nat-
urally with the elimination logic of EoT, allowing
the model to leverage this strategy more effectively.

Step 1

The following are multiple choice questions about 

Mathematical, You should reason in a step-by-step 

manner as to get the right answer.

[ examples (The number of options corresponds to the 

questions below.) ]

Question: What should come in place of the question 

mark(?) in each of the following questions ?

a^2 – b^2/(a + b)^2 (?)=(a - b)^2

Options:

A. (a + b)(a – b)

B. (a - b)

C. (a + b)

D. a^2 + b

E. None of thes

Let's think step by step: [reasoning chain]

Step 2 Given all of the above, the answer of the question is: A

Figure 6: Input format for Chain-of-Thought (CoT)
prompting, divided into two stages. In the first stage, the
LLM generates a reasoning chain (with the temperature
set to 0, or 0.8 for CoT-SC). In the second stage, the
generated reasoning chains are aggregated to produce
the final prediction distribution.
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D More Experimental Results

D.1 Examples of EoT in Action

Input

Question:

Two balls A and B rotate along a circular track. Ball 

A makes 2 full rotations in 26 minutes. Ball B makes 

5 full rotation in 35 minutes. If they start rotating 

now from the same point, when will they be at the 

same starting point again?

Options:

A: 1 hour and 31 minute

B: 2 hour and 31 minute

C: 3 hour and 31 minute

D: 4 hour and 31 minute

E: 5 hour and 31 minute

Original B: 0.278,  A: 0.245,  D: 0.191,  C: 0.168,  E: 0.116

EoT-1 A: 0.378,  B: 0.334,  C: 0.178,  D: 0.108

EoT-2 A: 0.486,  B: 0.429,  C: 0.084

EoT-3 A: 0.798,  B: 0. 201

Figure 7: An example from the AQuA dataset. The most
probable option from the original prediction distribution
is incorrect. Here, EoT−i denotes the application of the
exclusion method i times. After eliminating distractor
options, the LLM is better able to distinguish the correct
answer from the remaining distractors.

D.2 Discussion of the Additional Overhead
Introduced by EoT

EoT operates iteratively but incurs only modest
overhead, since it computes choice probabilities
solely from the logits of the last token in the LLM’s
original output, without requiring additional text
generation. We evaluated this on LLaMA3-8B and
measured inference time before and after integrat-
ing EoT. The results as 5 are as follows. These find-
ings indicate that the extra computational cost in-
troduced by EoT across various tasks is limited and
acceptable given the performance gains it yields.

Task Standard EoT

ARC 1.41 1.51
CSQA 1.02 1.19
MMLU-PRO 1.96 2.64
AQuA 0.95 1.54
GSM8K-MC 1.51 2.77

Table 5: Average inference time per MCQ (in seconds)
with and without EoT (5-shot, LLaMA3-8B).

D.3 Implementing the EoT process with
Non-Open-Source Models

For non-open-source LLMs (e.g., GPT), we imple-
ment the concept of EoT using Chain-of-Thought

prompting. In this approach, the LLM is guided
to generate an exclusion process that mimics
exclusion-based reasoning. However, this is not an
optimal solution. Our experiments reveal that the
generated exclusion process may still exhibit bias,
as the model continuously perceives the presence
of distractors. This can influence the reasoning
trajectory and introduce unintended biases into the
exclusion process.

E The Potential of EoT in Other Tasks

Although EoT was originally developed for
multiple-choice questions, its core principle, pro-
gressivelyy eliminating distractors and focusing
on the relatively correctcandidates, canan be fruit-
fully applied to a much wider range of tasks. In-
spired by the way the GSM8K-MC dataset was
constructed, we can adapt non-MCQ tasks to an
EoT-style pipeline in three stages:

Candidate Sampling We first prompt the LLM
to sample repeatedly on the same input, generating
a diverse set of answer candidates along with their
chain-of-thoughts. These outputs then serve as the
input pool for EoT.

Stage-wise Exclusion We apply EoT to this pool
in successive rounds: in each round, we discard
answers that are contradictory, logically flawed,
or obviously incorrect, retaining only those that
remain comparatively plausible at that stage.

Answer Refinement Finally, we use the surviv-
ing candidates as a foundation to guide the model
toward producing a single, polished final answer.

By reframing open-ended QA, mathematical rea-
soning, code generation, and other tasks as a “sam-
ple–exclude–iterate” process, we leverage EoT’s
strength in step-by-step pruning to substantially
reduce the model’s cognitive load and boost both
accuracy and robustness in complex reasoning sce-
narios.
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Step 1

{ "role": "system", "content": "The following are multiple choice questions about subject, You 

need to start by eliminating the one option out of the four that least fits the question as Output 1. 

Then, from the remaining three options, eliminate the one that least fits as Output 2. Finally, 

from the last two options, eliminate the one that least fits and provide the correct answer as 

Output 3. " }

[ examples (The number of options corresponds to the questions below.) ]

{ "role": "user", "content": """Question: {Question}

Options:

{Question} """ }

{ "role": "assistant", "content": "Output 1, Output 2, Output 3" }

Step 2 Given all of the above, the answer of the question is: A

Figure 8: When utilizing non-open-source LLMs, we are unable to directly access the model’s raw output proba-
bilities. Therefore, we employ GPT-3.5-turbo to generate three outputs based on the exclusion-based reasoning
approach to simulate the exclusion process.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:
R, S, T, and U are points on a line, and U is 

the midpoint of line segment ST. If the 

lengths of line segments RS, RT, and ST 

are 5, 17, and 22, respectively. What is the 

length of line segment RU?

Options:
A. 6

B. 7

C. 8

D. 9

E. 16

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏:𝑸
𝑶𝒑𝒕𝒊𝒐𝒏:𝑿
A
B
C
D

RS = 5, RT = 17, ST = 22, and U is the midpoint of ST.

SU = UT = ST / 2 = 11.

Let R be at 0. Then S = 5, T = 27 (since S + ST = 5 + 22 = 27), and 

U is the midpoint of S and T, so U = 16.

RU = |16 - 0| = 16.

The correct answer is: E. 16

Given that ST = 22 and RT = 17, we have RS + ST ≥ RT. This order 

satisfies the conditions.

UU is the midpoint of ST, so:

SU = UT = ST / 2 = 22 / 2 = 11.

Since RU = RS + SU, we can use this relationship to eliminate 

incorrect options.

Calculate SU = 11, then substitute into RU = 5 + 11 = 16.

Comparing with the options, the correct answer is: C. 8

Since SR + RT = 22 = ST, then R is somewhere between S and T

Since ST is 22, then SU is 11 because U is the midpoint of ST.

Since SR < SU, then R is somewhere between S and U.

Then SR + RU = SU.

5 + RU = 11

RU = 6

After excluding 

option E

After excluding 

option B、D、E、

Figure 9: An example illustrating the exclusion process. By systematically ruling out distractor options, the LLM
correctly infers the answer.
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