
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 21602–21623
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Enhancing Mathematical Reasoning in LLMs by Stepwise Correction

Zhenyu Wu1,2*, Qingkai Zeng2*, Zhihan Zhang2, Zhaoxuan Tan2, Chao Shen1†, Meng Jiang2

1Xi’an Jiaotong University, 2University of Notre Dame
zhenyuwu@stu.xjtu.edu.cn, {qzeng, zzhang23, ztan3, mjiang2}@nd.edu, chaoshen@xjtu.edu.cn

Abstract

Best-of-N decoding methods instruct large lan-
guage models (LLMs) to generate multiple so-
lutions, score each using a scoring function,
and select the highest scored as the final answer
to mathematical reasoning problems. However,
this repeated independent process often leads to
the same mistakes, making the selected solution
still incorrect. We propose a novel prompting
method named Stepwise Correction (STEPCO)
that helps LLMs identify and revise incorrect
steps in their generated reasoning paths. It it-
erates verification and revision phases that em-
ploy a process-supervised verifier. The verify-
then-revise process not only improves answer
correctness but also reduces token consump-
tion with fewer paths needed to generate. With
STEPCO, a series of LLMs demonstrate excep-
tional performance. Notably, using GPT-4o
as the backend LLM, STEPCO achieves an av-
erage accuracy of 94.1 across eight datasets,
significantly outperforming the state-of-the-art
Best-of-N method by +2.4, while reducing to-
ken consumption by 77.8%. Our implemen-
tation is made publicly available at https:
//wzy6642.github.io/stepco.github.io.

1 Introduction

Large language models (LLMs) demonstrate strong
reasoning abilities by generating intermediate steps
that lead to the final answer (Kojima et al., 2022;
Wei et al., 2022; Wang et al., 2023a). Prior works
indicate that generating high-quality reasoning
paths significantly improves the accuracy of reason-
ing tasks, particularly in mathematical reasoning
tasks. Therefore, to further enhance the mathemati-
cal reasoning performance of LLMs, Cobbe et al.
(2021) proposed the Best-of-N decoding method
to score and select the most high-quality reasoning
path as the final answer from the multiple samples

*Equal contributions.
†Corresponding author.

Question Answer

0 10.5

score
Path 1

0.3
highest

score
Path 2

0.4

Path 3
0.1

LLM

(a) Best-of-N scores multiple reasoning paths generated by
the LLM and selects the best path as the final answer.

Question LLM

reasoning path

Step 1 Step 2

0.9 0.3

LLM Answer

revise

steps 2, 3

Step 3

0.1

Step 1 Step 2

0.9 0.9

Step 3

1.0

(b) STEPCO instructs the LLM to generate a multi-step rea-
soning path, employs a verifier to identify and revise incorrect
steps, and selects the error-free path as the final answer.

Figure 1: STEPCO mitigates the repetition of mistakes.

generated by LLMs, as shown in Figure 1a. How-
ever, the Best-of-N decoding method fails when
the correct answer is not included in the sample set,
and LLMs may still repeat errors like calculation
mistakes or misinterpreting instructions.

To identify the primary factors affecting reason-
ing path quality, we observe that error propagation
occurs during the reasoning process. Specifically,
errors are not randomly distributed across steps; an
error at one step cascades, leading subsequent steps
further from the correct solution. For example:

Question:
On Day 1, Mary had 100 clients. On Day
2, she had 50 more clients. If the total
number of clients by Day 3 was 500, how
many clients on Day 3?
Reasoning path:
S1: Clients on Day 1 = 100
S2: Clients on Day 2 = 150
S3: Clients on Day 3 = 500
S4: 100 + 150 + 500 = 500
S5: There are 500 clients on Day 3

21602

https://wzy6642.github.io/stepco.github.io
https://wzy6642.github.io/stepco.github.io

Here, the LLM misinterprets the total number
of clients over the three days as the number of
clients on Day 3, causing an error in step S3. This
error then cascades through the subsequent steps,
ultimately leading to an incorrect answer. These
observations align with (Huang et al., 2024), who
notes that LLMs cannot self-correct without exter-
nal feedback, underscoring the limitations of Best-
of-N decoding methods that suffer from repeated
errors without such feedback.

In this paper, we propose Stepwise Correction
(STEPCO), an iterative verify-then-revise frame-
work for LLMs on reasoning tasks. Unlike Best-
of-N methods that sample multiple reasoning paths
without feedback, STEPCO fine-tunes the Llama-
3-8B (Meta, 2024) model as a process-supervised
verifier (PSV) to help LLMs identify and correct
errors in their reasoning steps. Compared to Best-
of-N, STEPCO presents two primary distinctions:
(1) Stepwise Correction Pipeline: As shown in
Figure 1b, given a question, STEPCO first prompts
the LLM to generate an initial multi-step reasoning
path. It then feeds the question and this reasoning
path into an iterative verify-then-revise process. In
the verification phase, STEPCO employs a PSV to
estimate the probability that each reasoning step
leads to the correct answer, identifying the first step
falling below a predefined threshold as potentially
incorrect. During revision, it retains the steps prior
to this point, provides the potential error step and
its probability as feedback, and instructs the LLM
to revise this error step along with subsequent ones
to improve the likelihood of a correct answer.
(2) Error Step Identification. We construct a pro-
cess supervision dataset to train a PSV to identify
incorrect steps in LLM-generated reasoning paths.
To construct this dataset, we propose an automatic
process annotation method that assigns a score to
each step by estimating its potential to deduce the
correct answer. Specifically, for each question and
its gold answer, we use two demonstrations: one
instructs the LLM to generate correct steps, while
the other encourages the exploration of incorrect or
alternative steps, to maintain a comprehensive and
balanced dataset. We determine each step’s proba-
bility of leading to the correct answer by calculat-
ing the proportion of reasoning paths that include
the step and match the gold answer.

We evaluated STEPCO using various LLMs, in-
cluding GPT-3.5-Turbo, GPT-4o, and the open-
source Llama-3-8B. Experimental results indicate
that STEPCO consistently outperforms baselines.

2 4 6 8 10
Number of Iteration (Samples)

88

90

92

94

Ac
cu

ra
cy

 (%
)

90.5
91.7

87.5

92.3

94.1

600 1200 1800 2400
Tokens consumed per question

88

90

92

94

Ac
cu

ra
cy

 (%
)

(611.7, 94.1)

(2759.5, 91.7)

Best-of-N StepCo

Figure 2: Efficiency and effectiveness comparison of
different prompting methods using GPT-4o as backend
LLM. Left: Average accuracy across eight mathemati-
cal reasoning datasets over iterations (samples). Right:
Average accuracy across eight mathematical reasoning
datasets for different token consumption.

As shown in Figure 2, STEPCO achieves an av-
erage accuracy of 92.3 across eight mathematical
reasoning benchmarks after a single iteration, out-
performing the Best-of-10 by +0.6. This indicates
that most questions are correctly answered after one
revision, leading to lower average token consump-
tion compared to the Best-of-N strategy. Notably,
after five iterations, STEPCO achieves an average
accuracy of 94.1%, surpassing the Best-of-10 by
+2.4, while reducing token consumption by 77.8%.

In summary, our main contributions include:
• We propose STEPCO, a novel framework that

uses an iterative verify-then-revise process.
By progressively identifying and revising in-
correct steps in LLM-generated reasoning
paths, STEPCO consistently improves the ac-
curacy of mathematical reasoning tasks.

• We propose an automatic process annotation
method to construct a process supervision
dataset, which is used to train a PSV capa-
ble of accurately identifying incorrect steps in
LLM-generated reasoning paths.

• We evaluated STEPCO on eight mathemati-
cal reasoning benchmarks and extended it to
open-domain question answering and com-
monsense reasoning tasks. Experimental re-
sults demonstrate significant improvements in
both black-box and open-source LLMs.

2 Problem Definition

Given a question q, we prompt the LLM to gener-
ate a reasoning path r composed of textual steps
{si}|r|i=1, such that r = ⊕isi, where ⊕ denotes the
concatenation. We define p(si) as the probability
that step si leads to the correct answer. The first
potential error step sk is identified when p(sk) falls
below a threshold θ, with k being its index in r.

21603

Use 𝐷+ to instruct LLM to generate the next step

Use 𝐷− to instruct LLM to generate the next step

𝑠0: 𝑞Question

𝑠1 𝑠2

𝑠3 𝑠4 𝑠5 𝑠6

Answer

Steps

(b) Process supervision dataset(a) Overview of StepCo

Revise incorrect

steps and correct

path 𝒓(𝒕−𝟏) to 𝒓(𝒕)
𝑟(𝑡−1) = 𝑠𝑖

(𝑡−1)

𝑖=1

|𝑟(𝑡−1)|

𝑝 𝑠𝑖
(𝑡−1)

∃ 𝑝 𝑠𝑖
(𝑡−1)

< 𝜃?

Question

Path

Answer

𝑞

ො𝑎

PSV

False

𝑠𝑖
(𝑡−1)

𝑖=𝑘(𝑡)

|𝑟(𝑡−1)|
Probability

𝑝 𝑠𝜏
(𝑡−1)

=

PSV 𝑞⨁ ⨁𝑖=1
𝜏 𝑠𝑖

(𝑡−1)

Verify
True

𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12 𝑠13 𝑠14

Incorrect

Steps

𝐷+ 𝐷−

Frequency of steps leading to the

correct answer

3

4

0 10.5

1

4

1
1

2

1

2
0

label

Figure 3: (a) First, we prompt the LLM to generate a multi-step reasoning path for the given question. Next, we
employ an iterative verify-then-revise process to progressively revise steps that are identified as incorrect by PSV,
ultimately generating an error-free reasoning path. (b) We construct a process supervision dataset to fine-tune
Llama-3-8B to obtain PSV. At each step, we use two different demonstrations to instruct the LLM in generating two
subsequent steps, respectively. We define the quality of a step as its frequency in achieving the correct answer.

We aim to progressively revise the incorrect steps
{si}|r|i=k to produce the correct final answer â.

3 Proposed Method

3.1 Overview

The core idea of Stepwise Correction (STEPCO) is
to identify and correct errors in the LLM-generated
reasoning steps progressively. As shown in Fig-
ure 3a, starting with an initial reasoning path r(0)

for a given question q, STEPCO applies an itera-
tive verify-then-revise process up to T times. At
each iteration t, STEPCO estimates the probabil-
ity p(s

(t−1)
i) that each step s

(t−1)
i in r(t−1) leads

to the correct answer. If all probabilities exceed a
threshold θ, r(t−1) is accepted as the final answer â.
Otherwise, steps from the first one below θ onward
are revised to produce a new reasoning path r(t). If
the threshold is not met after T iterations, the last
reasoning path r(T) is adopted as the final answer.

3.2 Generate Initial Answer and Path

To generate an initial reasoning path r(0) for ques-
tion q, we prompt the LLM with “Mark the begin-
ning and end of each reasoning step with <Step>
and </Step> tags. Q: q. A: Let’s think step by
step”. After the LLM generates r(0), we extract
the individual steps {s(0)i }|r

(0)|
i=1 using the regular

expression <Step>.*?</Step>.

3.3 Stepwise Correction Process
To iteratively identify and correct error steps in the
LLM-generated reasoning path, we use a verify-
then-revise method. Each iteration consists of veri-
fication and revision phases and terminates when
all steps are verified as correct. We illustrate this
process using the t-th iteration as an example.

Verification Phase This phase identifies the first
potentially incorrect step in the previously gener-
ated reasoning path r(t−1). For each step s

(t−1)
τ

in r(t−1) we concatenate the question q with all
preceding steps up to s

(t−1)
τ to create the input for

the PSV. The PSV then predicts the probability that
step s

(t−1)
τ leads to the correct answer:

p
(
s(t−1)
τ

)
= PSV

(
q ⊕

(
⊕τ

i=1s
(t−1)
i

))

The first step with a probability below the threshold
θ, along with all subsequent steps, are identified as
incorrect, formalized as:

k(t)=min
{
i |p

(
s
(t−1)
i

)
<θ, k(t−1)≤ i≤|r(t−1)|

}

where k(t) is the index of the first incorrect step in
the previously generated reasoning path r(t−1).

Revision Phase During the revision phase, we
use incorrect steps identified by the PSV module
and their associated probabilities as feedback to
instruct the LLM in revising the steps following

21604

s
(t−1)

k(t)
in the reasoning path r(t−1). The input to

the LLM is as follows:
“Q: q. A: r(t−1). The probability that step s

(t−1)

k(t)

leads to the correct answer is p(s(t−1)

k(t)
). Please re-

vise steps {s(t−1)
i }|r

(t−1)|
i=k(t)

while keeping the steps

{s(t−1)
i }k(t)−1

i=1 unchanged to increase the probabil-
ity that the revised steps lead to the correct answer”.

By instructing the LLM to revise only specific
steps to increase the probability of reaching the
correct answer while preserving the correct steps,
the LLM generates a more accurate solution r(t):

r(t) =
(
⊕k(t)−1

i=1 s
(t−1)
i

)
⊕
(
⊕|r(t)|

i=k(t)
s
(t)
i

)

3.4 Process Supervised Verification Model
To train the PSV model to identify incorrect steps
in reasoning paths, we first employ an automatic
process annotation method to construct a process
supervision dataset consisting of complete and par-
tial reasoning paths, each annotated with its likeli-
hood of deducing the correct answer. We then use
this dataset to fine-tune Llama-3-8B, resulting in a
process-supervised verifier that assesses the prob-
ability that each step within the LLM-generated
reasoning path leads to the correct answer.

Process Supervision Dataset Given a question q
and its corresponding gold answer a, we aim to cre-
ate a comprehensive and balanced set of reasoning
paths, including both correct and incorrect reason-
ing paths. To achieve this, at each step, we prompt
the LLM to expand the current reasoning path (in-
cluding question q and previous reasoning steps) us-
ing two different demonstrations, D+ and D−. The
demonstration D+ instructs the LLM to generate
correct steps, whereas D− encourages the explo-
ration of incorrect or alternative steps. As shown in
Figure 3b, we start at the question q and construct
the set of reasoning paths hierarchically in a top-
down manner until all reasoning paths reach their
final answers. The reasoning paths for each q form
a binary tree T q

0 = (Sq
0 , Eq

0), where the root node
s0 represent question q, each node sm ∈ Sq

0 (for
m ̸= 0) represents an intermediate step, and each
directed edge (sm, sn) ∈ Eq

0 connects consecutive
steps. As T q

0 is a complete binary tree, each step
sm with index m has an associated sub-tree T q

m

that includes all sub-paths starting from sm.
We estimate the quality of the step sm by estimat-

ing the probability that reasoning paths including
sm lead to the correct answer. From the view of the

constructed binary tree, each leaf node represents
the final answer derived from its corresponding
root-to-leaf reasoning path. Therefore, the proba-
bility of step sm leading to the correct answer is
calculated by determining the proportion of leaf
nodes of T q

m that match the correct answer.
Therefore, we define the leaf node set of the

binary tree T q
m as Lq

m = {sℓ ∈ Sq
m|(sℓ, s) /∈

Eq
m, ∀s ∈ Sq

m}. We calculate the proportion of
step sm that reach the correct answer as follows:

π(sm) =

∑
sℓ∈Lq

m
I(sℓ = a)

|Lq
m|

where π(sm) is the probability with which step sm
reaches the correct answer a. Once we gather the
quality of reasoning step sm, the corresponding
pair (sm, π(sm)) is added to the process supervi-
sion dataset D. For simplicity, we denote the j-th
element of D as (xj , yj).

Process Supervised Verifier We utilize LoRA
(Hu et al., 2022) to fine-tune the Llama-3-8B
model on the process supervision dataset D =

{(xj , yj)}|D|
j=1. The model is optimized using the

mean squared error (MSE) loss function to develop
the process-supervised verifier (PSV).

J =
1

|D|

|D|∑

j=1

(PSV(xj)− yj)
2

Implementation details are provided in App. A.4.

4 Experiments

4.1 Experimental Setup

Datasets. Eight mathematical reasoning datasets
MATH500 (Hendrycks et al., 2021), SVAMP (Pa-
tel et al., 2021), AddSub (Hosseini et al., 2014),
ASDiv (Miao et al., 2020), GSM8K (Cobbe et al.,
2021), AQuA (Ling et al., 2017), GSM-IC2 (Shi
et al., 2023), and GSM-ICM (Shi et al., 2023)
and two non-mathematical reasoning datasets Hot-
potQA (Yang et al., 2018) and CSQA (Talmor et al.,
2019) are used as testbed. See App. A.1 for details.

Baselines. We evaluate STEPCO against three
categories of baselines in mathematical reasoning:
(1) Direct Generation Baselines: Direct (Kojima
et al., 2022), Zero-Shot-CoT (Kojima et al., 2022),
Manual-CoT (Wei et al., 2022), Complex-CoT (Fu
et al., 2023), Auto-CoT (Zhang et al., 2023),
PAL (Gao et al., 2023), and Least-to-Most (Zhou

21605

Method SVAMP AddSub GSM8K AQuA MATH500 ASDiv GSM-IC2 GSM-ICM Average
*Direct Generation Baselines
Direct 78.2 / 86.4 86.1 / 92.4 77.8 / 90.9 63.4 / 71.3 39.7 / 64.9 86.2 / 90.5 88.9 / 90.5 83.4 / 86.2 75.5 / 84.1
Zero-Shot-CoT 76.7 / 90.4 85.2 / 89.6 78.6 / 94.6 51.3 / 72.8 37.9 / 74.0 84.3 / 92.4 87.0 / 91.3 82.0 / 88.8 72.9 / 86.7
Manual-CoT 77.1 / 92.9 85.3 / 92.7 76.4 / 93.4 54.3 / 69.7 42.3 / 71.9 87.3 / 93.1 86.8 / 92.1 81.4 / 90.4 73.9 / 87.0
Auto-CoT 80.9 / 91.7 88.0 / 92.2 78.8 / 92.0 57.8 / 71.2 39.1 / 70.7 86.9 / 92.7 84.3 / 91.5 81.8 / 91.3 74.7 / 86.7
Complex-CoT 80.4 / 92.4 87.9 / 91.9 78.9 / 94.9 59.1 / 72.4 40.1 / 71.5 87.2 / 93.5 84.3 / 93.7 83.0 / 92.1 75.1 / 87.8
Least-to-Most 79.6 / 90.3 90.4 / 92.1 77.5 / 92.1 57.4 / 71.6 39.5 / 70.9 89.1 / 94.3 86.9 / 94.2 80.2 / 92.7 75.1 / 87.3
PAL 77.8 / 94.8 89.1 / 92.5 79.5 / 94.2 63.4 / 77.4 41.4 / 70.2 81.0 / 92.6 85.2 / 93.6 84.7 / 93.1 75.3 / 88.6
*Correction-Based Baselines
Self-Refine 82.5 / 92.3 87.6 / 91.7 75.1 / 94.5 58.6 / 74.7 40.2 / 73.0 88.3 / 95.2 86.1 / 92.3 81.3 / 91.1 75.0 / 88.1
Self-Correct 81.5 / 89.5 82.3 / 86.8 73.6 / 88.4 48.7 / 68.5 35.3 / 65.7 81.7 / 89.6 83.5 / 89.6 79.6 / 86.5 70.8 / 83.1
Self-Check 80.7 / 90.8 86.9 / 90.4 74.3 / 86.9 64.6 / 80.9 42.1 / 71.8 86.4 / 94.1 84.7 / 90.7 82.7 / 90.4 75.3 / 87.0
PHP-CoT 83.1 / 91.9 85.3 / 89.6 81.3 / 95.5 60.6 / 79.9 48.9 / 72.4 90.2 / 95.5 87.5 / 95.3 84.1 / 95.0 77.6 / 89.4
CRITIC 83.3 / 93.5 89.5 / 93.5 79.2 / 95.4 63.8 / 80.2 44.9 / 74.9 90.7 / 96.7 89.2 / 94.9 86.4 / 93.8 78.4 / 90.4
*Sampling-Selection Baselines
SC (10) 85.8 / 94.3 92.2 / 96.5 84.6 / 94.5 65.0 / 78.4 39.5 / 76.8 92.5 / 97.5 89.7 / 97.3 88.9 / 95.5 79.8 / 91.4
Best-of-10 85.5 / 93.9 91.3 / 95.4 85.3 / 94.5 66.1 / 81.1 42.1 / 77.0 93.3 / 98.4 88.9 / 97.1 88.5 / 96.1 80.1 / 91.7
STEPCO (Ours) 89.7 / 96.0 93.4 / 97.7 87.0 / 96.4 72.4 / 84.7 56.9 / 80.4 98.4 / 98.4 90.7 / 99.6 89.0 / 99.3 84.7 / 94.1

Table 1: Accuracy (%) comparison on eight mathematical reasoning datasets. Each cell shows GPT-3.5-Turbo-1106
/ GPT-4o performance. The best and second-best results are highlighted in bold and underlined, respectively.

et al., 2023); (2) Correction-Based Baselines: Self-
Correct (Kim et al., 2024), Self-Refine (Madaan
et al., 2024), PHP-CoT (Zheng et al., 2023), Self-
Check (Miao et al., 2024), and CRITIC (Gou et al.,
2024); and (3) Sampling-Selection Baselines: Self-
Consistency (SC) (Wang et al., 2023b) and Best-
of-N (Wang et al., 2024a). Further details of all
baselines are provided in App. A.2.

Evaluation Metrics. We evaluate open-domain
QA tasks, such as the HotpotQA, using exact match
(EM) and F1-score, and use accuracy for other
tasks. See App. A.3 for details.

Implementation. We evaluate STEPCO across
three LLMs: GPT-3.5-Turbo-1106, GPT-4o, and
the open-source Llama-3-8B. For correction-based
baselines that involve iterative refinement of LLM-
generated responses, we set the maximum number
of iterations T to 5. For sampling-selection base-
lines, which require generating multiple candidate
solutions for each problem, we set the number of
candidate solutions N to 10. The temperature pa-
rameter is set to 0.7 in all experiments.

4.2 Experimental Results

Can STEPCO generate better reasoning path
than direct generation? We compare STEPCO

to several direct generation baselines across
eight mathematical reasoning datasets in Table 1.
STEPCO consistently outperforms these baselines,
demonstrating its effectiveness in mathematical
reasoning. Specifically, using GPT-3.5-Turbo,
STEPCO achieves an average accuracy improve-

Self-Correct CRITIC StepCo

20

40

60

80

100

Pr
op

or
tio

n
(%

)

64.14 68.16 73.31

9.48 11.07 13.6514.48 10.46 5.3111.90 10.31 7.73
GSM8K

Self-Correct CRITIC StepCo
13.03

27.05 29.86
22.24

17.84
27.0524.85 10.82
8.02

39.88 44.29 35.07

MATH500

Correct Correct
Incorrect Correct

Correct Incorrect
Incorrect Incorrect

Figure 4: Analysis of answer changes after five correc-
tion rounds. Correct → Correct: The answer remains
correct; Incorrect → Correct: An incorrect answer is
revised to a correct one; Correct → Incorrect: A cor-
rect answer is changed to an incorrect one; Incorrect →
Incorrect: An incorrect answer is altered but remains
incorrect. Use GPT-3.5-Turbo as the backend LLM.

ment of +9.4 over the best direct generation base-
line (PAL) and +5.5 with GPT-4o. These results
highlight that, unlike direct generation baselines
that solve problems in a single pass, STEPCO pro-
gressively revises incorrect steps, leading to more
accurate final answers.

Can the error steps identified by STEPCO help
LLMs rectify incorrect answers? We compare
STEPCO with correction-based baselines that guide
LLMs in identifying and revising incorrect an-
swers. As shown in Table 1, STEPCO and CRITIC,
both incorporate external feedback, and outperform
baselines without external feedback, such as Self-
Refine, Self-Correct, and PHP-CoT. Specifically,
STEPCO achieves an average accuracy improve-
ment of +7.1 and +4.7 over PHP-CoT when using

21606

Method
HotpotQA CSQA

EM F1 ACC
Zero-Shot-CoT 28.0 / 49.0 31.2 / 55.1 69.3 / 82.0
Self-Correct 29.0 / 43.0 32.4 / 49.5 65.9 / 80.0
Best-of-10 32.9 / 52.0 44.1 / 57.1 73.0 / 83.4
STEPCO (Ours) 35.0 / 53.0 47.4 / 58.7 74.3 / 84.9

Table 2: Performance on non-mathematical reasoning
tasks. Each cell shows GPT-3.5-Turbo-1106 / GPT-4o
performance. The best results are highlighted in bold.

MATH500 GSM8K0
25
50
75

Ac
cu

ra
cy

 (%
)

21.0

79.5

21.8

65.9

34.8

88.8

36.2

89.3

(a) Accuracy of different methods

MATH500 GSM8K0

2000

4000

To
ke

ns

387 187

3207

1150

3947

18871736

504

(b) Tokens consumed per question

Zero-Shot-CoT Self-Correct Best-of-10 StepCo

Figure 5: Performance comparison of STEPCO and
baselines using Llama-3-8B as the backend LLM. Com-
pared to Best-of-10, STEPCO achieves higher accuracy
while consuming fewer tokens.

GPT-3.5-Turbo and GPT-4o, respectively.
We further analyze how answers change across

different methods after five correction rounds. As
shown in Figure 4, STEPCO more effectively cor-
rects errors without introducing new ones, enhanc-
ing LLM performance in mathematical reasoning
tasks. For GSM8K, STEPCO incorrectly alters cor-
rect answers in 5.3% of the cases and corrects incor-
rect answers in 13.7%, whereas Self-Correct turns
correct answers incorrect in 14.5% of the cases and
fixes incorrect answers in 9.5% of the cases.

Can sampling-selection baselines reduce errors
in final reasoning paths? We compare STEPCO

with the Best-of-10 method, which samples ten
multi-step reasoning paths for a question and se-
lects the best one as the final output. As shown
in Figure 2, after one iteration, STEPCO improves
average accuracy by +0.6 over Best-of-10. After
five iterations, STEPCO outperforms Best-of-10 by
+2.4 while reducing token consumption by 77.8%.
Furthermore, we manually explore the error cases
of STEPCO and Best-of-10, surprisingly finding
21.2% error cases in Best-of-10 caused by the cor-
rect reasoning path is not covered in the sampling
reasoning path set. In these cases, Best-of-10 prefer
generate the incorrect reasoning paths with same
error. Therefore, feedback from an external source
like STEPCO helps avoid repeatedly generating the
same erroneous steps, reducing token consumption.

Level 1 Level 2 Level 3 Level 4 Level 5
Difficulty level

0
20
40
60
80

Ac
cu

ra
cy

 (%
)

86.1
75.6

68.6
53.1

29.1

Zero-Shot-CoT
Manual-CoT

Self-Correct
PAL

CRITIC
SC (10)

Best-of-10
StepCo

Figure 6: Accuracy on the MATH500 dataset catego-
rized by question difficulty levels. As the difficulty
increases, accuracy decreases across all methods; how-
ever, STEPCO consistently outperforms all baselines.
All methods use GPT-3.5-Turbo as the backend LLM.

Does STEPCO work for non-mathematical rea-
soning tasks? Although trained on mathematical
reasoning tasks, STEPCO’s PSV generalizes well
to non-mathematical reasoning tasks, consistently
outperforming baselines such as Self-Correct, Zero-
Shot-CoT, and Best-of-10 across various bench-
marks and LLMs, as shown in Table 2. Notably,
on the HotpotQA dataset using GPT-4o, STEPCO

achieves average improvements of +1.0 points in
EM score and +1.6 points in F1-score over Best-of-
10. These results indicate that the iterative verify-
then-revise process employed by STEPCO remains
beneficial for complex reasoning tasks.

Can STEPCO work with open-source LLMs?
To evaluate the consistency of STEPCO’s improve-
ment across different backend LLMs, we compare
it with different baselines using Llama-3-8B as the
backend LLM. As shown in Figure 5, STEPCO con-
sistently outperforms these baselines in MATH500
and GSM8K. Specifically, compared to the Best-
of-10 method, STEPCO achieves absolute improve-
ments of +1.4 on the MATH500 dataset and +0.5
on GSM8K. Furthermore, STEPCO demonstrates
significant efficiency gains by consuming fewer to-
kens per question. On GSM8K, it uses less than
30% of the tokens required by Best-of-10, high-
lighting its superior accuracy and efficiency. De-
tailed experimental results using Llama-3-8B as
the backend LLM are provided in Table 5.

How does STEPCO perform on questions of
varying difficulty? STEPCO’s ability to iden-
tify and correct errors depends on the difficulty
of the questions. It may fail when questions are
too complex for it to detect errors in reasoning
steps. Specifically, if a question’s difficulty sur-
passes the PSV module’s capacity to generate cor-

21607

Method SVAMP AddSub GSM8K AQuA MATH500 ASDiv GSM-IC2 GSM-ICM Average
STEPCO (DiVeRSe) 86.3 90.9 84.1 69.3 55.4 95.9 90.1 88.5 82.6
STEPCO (Math-Shepherd) 88.6 91.4 85.2 71.7 55.8 98.4 90.2 88.8 83.8
STEPCO (Ours) 89.7 93.4 87.0 72.4 56.9 98.4 90.7 89.0 84.7

Table 3: Accuracy (%) comparison using different models as process-supervised verifier (PSV) in STEPCO.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Thresholds

50
52
54
56
58
60

Ac
cu

ra
cy

 (%
)

54.5 54.7 55.3 55.5
56.9

54.9
55.9 55.5 55.3

0
2
4
6
8
10

Av
er

ag
e

Ite
ra

tio
ns

2.1 2.2 2.6 2.9 3.2 3.5 3.9 4.2 4.4

Accuracy and Average Iterations vs Thresholds

Figure 7: Accuracy (%) and the average number of itera-
tions were measured at different thresholds in STEPCO,
using GPT-3.5-Turbo as the backend LLM. Experiments
are conducted on the MATH500 dataset.

rect feedback for the backbone model, STEPCO

fails regardless of additional token consumption.
To assess how question difficulty affects STEPCO’s
performance, we evaluate it and baseline methods
across varying difficulty levels on the MATH500
dataset using GPT-3.5-Turbo as the backend LLM.
As shown in Figure 6, STEPCO consistently out-
performs all baselines. While accuracy declines
for all methods as difficulty increases, STEPCO

maintains superior performance, achieving 29.1%
accuracy at the highest difficulty level (level 5), sig-
nificantly surpassing others. These results demon-
strate STEPCO’s effectiveness in solving difficult
questions. More details are provided in App. A.5.

4.3 Ablation Studies

How different PSV affect STEPCO? STEPCO

uses PSV model to identify incorrect steps in
LLM-generated reasoning paths. We integrate var-
ious PSV models, including DiVeRSe (Li et al.,
2023) and Math-Shepherd (Wang et al., 2024a),
into the STEPCO framework, denoted as STEPCO

(DiVeRSe) and STEPCO (Math-Shepherd), respec-
tively. As shown in Table 3, integrating the PSV
model proposed in this paper into the STEPCO

framework (i.e., STEPCO (Ours)) consistently out-
performs other PSV models. Specifically, STEPCO

(Ours) achieves an average accuracy improvement
of +2.1 and +0.9 over STEPCO (DiVeRSe) and
STEPCO (Math-Shepherd), respectively.

How hyperparameters affect STEPCO? We
first investigate how the threshold hyperparame-
ter θ affects the arithmetic reasoning performance
of STEPCO. Varying θ across nine values (see Fig-
ure 7), we observe that increasing θ from 0.1 to
0.5 improves accuracy, peaking at 56.9% when

θ = 0.5. Beyond this point, further increases
slightly decrease accuracy. We also find that the
average number of iterations rises with increasing
θ. Considering the trade-off between accuracy and
efficiency, we note that when θ = 0.9, the average
number of iterations reaches a maximum of 4.4.
Therefore, we set the maximum iteration number
T = 5 to ensure each reasoning step is adequately
verified without excessive token consumption.

4.4 Case Study
Figure 8 shows that all three top responses from
Best-of-N contain the same mistake in the second
step, where the expression is incorrectly simpli-
fied. This error directly affects the subsequent
steps, leading to an incorrect conclusion. STEPCO

accurately identifies the erroneous steps in the
LLM-generated response and instructs the LLM
to revise them, correcting the simplification error.
This shows that Best-of-N tends to repeat mistakes,
making the selected solution still incorrect, while
STEPCO enhances LLM performance in mathe-
matical reasoning by mitigating the repetition of
mistakes. See App. A.7 for more case studies.

5 Related Work

5.1 Mathematical Reasoning
Automatically solving math questions based on
textual descriptions has been studied from var-
ious perspectives. Recent studies employed
encoder-decoder frameworks, including sequence-
to-sequence (Huang et al., 2018; Chiang and Chen,
2019; Hong et al., 2021b), sequence-to-tree (Liu
et al., 2019; Hong et al., 2021a), and graph-to-
tree (Li et al., 2020; Wu et al., 2021; Liang et al.,
2023), to translate textual descriptions of math
questions into equations. However, the generated
equations can be unsolvable. To address this issue,
recent research has explored fine-tuning (Yu et al.,
2024; Li et al., 2024; Yue et al., 2024) or prompt-
ing (Wei et al., 2022; Zhang et al., 2023; Zhou
et al., 2023; Fu et al., 2023) LLMs for mathemati-
cal reasoning, enabling them to generate reasoning
paths based on the textual descriptions. However,
LLMs are sensitive to mistakes in reasoning paths,
and any mistake can result in an incorrect answer.

21608

Find the minimum value of
𝑥+5 𝑥+2

𝑥+1
 for 𝑥 > 0Question 9

Gold

Answer

Top1

Response

(Best-of-N)

Step 1: Expand the numerator:
𝑥+5 𝑥+2

𝑥+1
=

𝑥2+7𝑥+10

𝑥+1

Step 2: The expression simplifies to: 𝑥 + 6 −
4

𝑥+1

Step 3: Let 𝑓 𝑥 = 𝑥 + 6 −
4

𝑥+1
. First, calculate the

derivative: 𝑓′ 𝑥 = 1 +
4

𝑥+1 2
. Set the derivative equal

to zero: 1 +
4

𝑥+1 2 = 0. There are no real solutions for

this equation.

Revised

Response

(STEPCO)

Step 1: Expand the numerator:
𝑥+5 𝑥+2

𝑥+1
=

𝑥2+7𝑥+10

𝑥+1

Step 2: The expression simplifies to: 𝑥 + 6 +
4

𝑥+1

Step 3: Let 𝑓 𝑥 = 𝑥 + 6 +
4

𝑥+1
. First, calculate the

derivative: 𝑓′ 𝑥 = 1 −
4

𝑥+1 2. Set the derivative equal to

zero: 𝑥 + 1 = 2 or 𝑥 + 1 = −2. Since 𝑥 > 0, 𝑥 = 1.

Step 4: Evaluating 𝑓 𝑥 at 𝑥 = 1: 𝑓 1 = 1 + 6 +
4

1+1
= 9

Top2

Response

(Best-of-N)

Step 1: Simplify the expression: 𝑥 + 5 𝑥 + 2 = 𝑥2 + 7𝑥 + 10. So, the function becomes:
𝑥2+7𝑥+10

𝑥+1

Step 2: Factor the numerator: 𝑥2 + 7𝑥 + 10 = (𝑥 + 1)(𝑥 + 10). So, the function becomes:
(𝑥+1)(𝑥+10)

𝑥+1

Step 3: Cancel out the common factor (𝑥 + 1): 𝑥 + 10. The function is an increasing function for 𝑥 > 0. The minimum value is 10

Top3

Response

(Best-of-N)

Step 1: Simplify the expression: 𝑥 + 5 𝑥 + 2 = 𝑥2 + 7𝑥 + 10. So, the function becomes:
𝑥2+7𝑥+10

𝑥+1

Step 2: Simplify the expression by canceling out the common factor of (𝑥 + 1): 𝑥 + 5 +
4

𝑥+1

Step 3: Let 𝑓 𝑥 = 𝑥 + 5 +
4

𝑥+1
. First, calculate the derivative: 𝑓′ 𝑥 = 1 +

4 𝑥+1 −(𝑥+5)

𝑥+1 2 . Set the derivative equal to zero: 𝑥 = 0. But

this is impossible, since 𝑥 > 0. There are no real solutions for this equation.

Figure 8: Example output obtained by STEPCO and Best-of-N on the MATH500 dataset, using GPT-3.5-Turbo as
the backend LLM. The first incorrect step in the LLM-generated response is highlighted in red, and its revised result
is highlighted in green. For the given expression, the top three responses from Best-of-N incorrectly simplified the
expression at the second step. STEPCO identifies and revises incorrect steps, ultimately reaching the correct answer.

Our method iterates a verify-then-revise process to
progressively identify and revise incorrect steps.

5.2 Automatically Correcting LLMs

Self-correction is a method that prompts or guides
LLMs to rectify errors in their output (Pan et al.,
2023). This method can be categorised into intrin-
sic and extrinsic self-correction settings, depending
on the source of feedback. Intrinsic self-correction
prompts LLMs to generate feedback on their own
responses (Madaan et al., 2024; Dhuliawala et al.,
2023; Kim et al., 2024). However, recent stud-
ies (Huang et al., 2024; Gou et al., 2024) indicated
that without external feedback, LLMs struggle to
properly judge the correctness of their prior re-
sponses. To address this issue, Gou et al. (2024)
proposed extrinsic self-correction, which incorpo-
rates feedback from other models or external tools
to help LLMs verify the correctness of their pre-
vious responses. All of these methods only verify
the correctness of LLM outputs without specifying
the exact locations of errors. In contrast, our study
employs a process-supervised verifier to identify
incorrect steps in LLM-generated reasoning paths,
which is valuable for automatic correction.

5.3 Outcome and Process Supervised Verifier

To enhance mathematical reasoning performance
of LLMs, existing methods solve a problem mul-
tiple times and use a verifier to select the best so-
lution. Two types of verifiers have been proposed:
the outcome-supervised verifier (OSV) (Cobbe
et al., 2021) and the process-supervised verifier

(PSV) (Lightman et al., 2023). The OSV evalu-
ates and selects the best solution based on mul-
tiple attempts. However, Lightman et al. (2023)
demonstrated that process supervision significantly
outperforms outcome supervision, as the PSV
exhibits similarity to human behavior when as-
sessing reasoning paths. If any step contains an
error, the final answer is more likely to be in-
correct. OmegaPRM (Luo et al., 2024), Math-
Shepherd (Wang et al., 2024a), MiPS (Wang et al.,
2024b), and ReST-MCTS (Zhang et al., 2024)
used Monte Carlo estimation (Świechowski et al.,
2022) to automatically construct process supervi-
sion datasets, which are then used to fine-tune mod-
els for identifying incorrect reasoning steps. Unlike
these sample-then-select methods, our approach
progressively identifies and revises incorrect steps
within LLM-generated reasoning paths, effectively
mitigating the repetition of mistakes.

6 Conclusion

In this study, we introduce Stepwise Correction
(STEPCO), a novel framework for mathematical
reasoning tasks. STEPCO generates an initial multi-
step reasoning path using an LLM and iteratively
applies a verify-then-revise process to correct er-
rors. Extensive experiments on eight mathematical
reasoning benchmarks demonstrate the method’s
effectiveness and efficiency. We also evaluate
STEPCO on two non-mathematical reasoning tasks
and STEPCO generalizes well to non-mathematical
reasoning tasks and outperform the baselines.

21609

Limitations

While our work provides a novel framework for
progressively identifying and correcting incorrect
steps in LLM-generated reasoning paths, leading
to consistent improvements in mathematical rea-
soning tasks, certain limitations remain.

Expanding to other languages This study fo-
cused on addressing mathematical reasoning tasks
in English, with non-English tasks excluded from
our training and test data. Consequently, the
method may not perform well for non-English
tasks. Future research will explore solutions for
multilingual mathematical reasoning tasks.

Expanding to other tasks The problems solved
in this paper typically have answers that are numer-
ical values or entities. Accurately solving problems
where the answers are neither numerical nor entity-
based is left for future research.

Ethical Considerations

In this research, we adhere to strict ethical guide-
lines and principles. The study has been designed
and implemented with respect for rights, privacy,
and well-being of all individuals involved. All of
our data is synthesized using our proposed data
synthesis algorithm, ensuring compliance with rel-
evant regulations and standards. Our findings and
conclusions are reported accurately and objectively,
avoiding any misrepresentation or manipulation of
data. The entire process and outcomes are free from
intellectual property and ethical legal disputes.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful feedback and constructive comments. This
work was partially supported by the National Key
Research and Development Program of China
(2023YFB3107400), the National Natural Science
Foundation of China (U24B20185, T2442014,
62161160337, 62132011, U21B2018), the Shaanxi
Province Key Industry Innovation Program (2023-
ZDLGY-38, 2021ZDLGY01-02). Thanks to the
New Cornerstone Science Foundation and the
Xplorer Prize. Chao Shen is the corresponding
author. Co-author Meng Jiang consulted on this
project with leisure time (unpaid weekends) for his
personal interests. He appreciated his collaborators
and family for their support.

References
Ting-Rui Chiang and Yun-Nung Chen. 2019.

Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2656–
2668, Minneapolis, Minnesota. Association for
Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2023. Chain-of-verification reduces
hallucination in large language models. Preprint,
arXiv:2309.11495.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. 2023. Pal: program-aided lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Proceed-
ings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, volume 1.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang,
and Song-Chun Zhu. 2021a. Learning by fixing:
Solving math word problems with weak supervision.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35(6):4959–4967.

Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan
Huang, and Song-Chun Zhu. 2021b. Smart: A situa-
tion model for algebra story problems via attributed
grammar. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(14):13009–13017.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical

21610

https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://doi.org/10.1609/aaai.v35i6.16629
https://doi.org/10.1609/aaai.v35i6.16629
https://doi.org/10.1609/aaai.v35i14.17538
https://doi.org/10.1609/aaai.v35i14.17538
https://doi.org/10.1609/aaai.v35i14.17538
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058

Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar. Association for Com-
putational Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018. Using intermediate repre-
sentations to solve math word problems. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 419–428, Melbourne, Australia. Association
for Computational Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2024. Language models can solve computer tasks. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2841–2852, Online. Association for Computa-
tional Linguistics.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333, Toronto,
Canada. Association for Computational Linguistics.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Bin Sun, Xinglin Wang, Heda Wang, and Kan Li.
2024. Turning dust into gold: Distilling complex
reasoning capabilities from llms by leveraging neg-
ative data. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(17):18591–18599.

Zhenwen Liang, Jipeng Zhang, Kehan Guo, Xiaodong
Wu, Jie Shao, and Xiangliang Zhang. 2023. Compo-
sitional mathematical encoding for math word prob-
lems. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 10008–10017,
Toronto, Canada. Association for Computational Lin-
guistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. Preprint,
arXiv:2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong,
China. Association for Computational Linguistics.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.
2024. Improve mathematical reasoning in language
models by automated process supervision. Preprint,
arXiv:2406.06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2024. Self-refine: iterative
refinement with self-feedback. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA.
Curran Associates Inc.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2024.
Selfcheck: Using LLMs to zero-shot check their own
step-by-step reasoning. In The Twelfth International
Conference on Learning Representations.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. Preprint, arXiv:2308.03188.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the

21611

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P18-1039
https://doi.org/10.18653/v1/P18-1039
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.1609/aaai.v38i17.29821
https://doi.org/10.1609/aaai.v38i17.29821
https://doi.org/10.1609/aaai.v38i17.29821
https://doi.org/10.18653/v1/2023.findings-acl.635
https://doi.org/10.18653/v1/2023.findings-acl.635
https://doi.org/10.18653/v1/2023.findings-acl.635
https://arxiv.org/abs/2305.20050
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=pTHfApDakA
https://openreview.net/forum?id=pTHfApDakA
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. In Proceed-
ings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609–2634, Toronto,
Canada. Association for Computational Linguistics.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2024a. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. Preprint,
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo,
Le Hou, Hongkun Yu, and Jingbo Shang. 2024b.
Multi-step problem solving through a verifier: An
empirical analysis on model-induced process super-
vision. Preprint, arXiv:2402.02658.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Qinzhuo Wu, Qi Zhang, and Zhongyu Wei. 2021. An
edge-enhanced hierarchical graph-to-tree network for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 1473–1482, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. MAmmoTH: Building math generalist models
through hybrid instruction tuning. In The Twelfth In-
ternational Conference on Learning Representations.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: Llm
self-training via process reward guided tree search.
Preprint, arXiv:2406.03816.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting im-
proves reasoning in large language models. Preprint,
arXiv:2304.09797.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

Maciej Świechowski, Konrad Godlewski, Bartosz Saw-
icki, and Jacek Mańdziuk. 2022. Monte carlo tree
search: a review of recent modifications and applica-
tions. Artif. Intell. Rev., 56(3):2497–2562.

21612

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2402.02658
https://arxiv.org/abs/2402.02658
https://arxiv.org/abs/2402.02658
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2304.09797
https://arxiv.org/abs/2304.09797
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y

A Appendix

A.1 Datasets

We use eight mathematical reasoning datasets
(ASDiv, SVAMP, AddSub, GSM8K, GSM-IC2,
GSM-ICM, MATH500, and AQuA) and two non-
mathematical reasoning datasets (HotpotQA and
CSQA) as our testbed. Details of datasets are
shown in Table 4.

• ASDiv (Miao et al., 2020) contains English
math questions of different problem types.
Each question provides the corresponding
equation and answer.

• SVAMP (Patel et al., 2021) includes math
questions of up to fourth grade difficulty.
These questions can be solved by expressions
requiring no more than two operators.

• AddSub (Hosseini et al., 2014) contains 395
math questions that involve addition and sub-
traction operations.

• GSM8K (Cobbe et al., 2021) consists of 8.5K
high quality grade school math problems cre-
ated by human problem writers.

• GSM-IC2 and GSM-ICM (Shi et al., 2023)
are mathematical reasoning datasets contain-
ing irrelevant conditions within the problem
descriptions. Problems in GSM-IC2 require
two steps to solve, while problems in GSM-
ICM require more than two steps to solve.

• MATH (Hendrycks et al., 2021) contains high
school-level competition problems covering a
range of math subjects. Due to computational
costs, we use a subset, MATH500, which is
identical to the test set used by Lightman et al.

• AQuA (Ling et al., 2017) consist of multiple
option math questions covering a broad range
of topics and difficulty levels.

• HotpotQA (Yang et al., 2018) contains 113K
multi-hop questions in natural language. The
questions are collected by crowdsourcing
based on Wikipedia articles with human anno-
tated supporting evidence and answers.

• CSQA (Talmor et al., 2019) is a multiple-
choice dataset that requires commonsense
knowledge to obtain the final answer.

A.2 Baselines

We compare our method with three types of base-
lines for mathematical reasoning:

Direct Generation Baselines. The direct genera-
tion baselines instruct the large language model to

Dataset # Samples Avg.# Words Answer License
ASDiv 122 33.46 Number No License
SVAMP 1000 39.04 Number MIT
AddSub 395 39.91 Number Unspecified
GSM8K 1319 58.97 Number MIT
GSM-IC2 1000 54.23 Number No License
GSM-ICM 1000 78.90 Number No License
MATH500 500 68.61 String MIT
AQuA 254 83.29 Option Apache-2.0
HotpotQA 100 20.59 String Apache-2.0
CSQA 1221 46.47 Option No License

Table 4: Details of datasets. # Samples indicates the
number of problems in each dataset. Avg.# Words de-
notes the average words of problems in each dataset.

solve the problem in a single pass.
• Direct (Kojima et al., 2022) adds the phrase

“The answer is” after the given problem, in-
structing the large language model to generate
the corresponding answer.

• Zero-Shot-CoT (Kojima et al., 2022) adds
the phrase “Let’s think step by step” after the
given problem, instructing the LLM to gener-
ate the reasoning path and final answer.

• Manual-CoT (Wei et al., 2022) uses manu-
ally designed demonstrations — problems and
their corresponding multi-step reasoning pro-
cesses — to elicit multi-step reasoning abili-
ties of large language models.

• Auto-CoT (Zhang et al., 2023) samples
diverse problems and uses Zero-Shot-CoT
prompting method to generate reasoning paths
to automatically construct demonstrations.

• Complex-CoT (Fu et al., 2023) defines com-
plex problems as those with more reasoning
steps and selects the most complex problems
and their reasoning paths as demonstrations.

• Least-to-Most (Zhou et al., 2023) breaks down
a complex problem into a series of simpler
subproblems and solves them in sequence.

• PAL (Gao et al., 2023) instructs an LLM to
generate programming language statements
and uses a program interpreter to execute the
generated program to get the final answer.

Correction-Based Baselines. The correction-
based baselines instruct large language models to
correct errors in their outputs by incorporating in-
ternal or external feedback.

• Self-Correct (Kim et al., 2024) first instructs
the large language model to criticize its gener-
ated answer using the hint: “Review previous
answer and find mistakes”. Then, Self-Correct
instructs the large language model to refine
initial answers based on the critique.

21613

Method SVAMP AddSub GSM8K AQuA MATH500 ASDiv GSM-IC2 GSM-ICM Average
*Direct Generation Baselines
Direct 64.5 83.0 12.1 28.7 12.0 80.3 25.9 6.0 39.1
Zero-Shot-CoT 84.6 83.3 79.5 49.6 21.0 95.9 88.8 85.1 73.5
Manual-CoT 86.0 84.6 80.1 51.6 25.0 95.9 86.4 85.8 74.4
Auto-CoT 84.2 88.6 80.4 48.8 26.6 95.9 86.8 88.2 74.9
Complex-CoT 71.2 87.3 64.1 44.9 13.6 83.6 70.3 74.8 63.7
Least-to-Most 83.6 88.9 78.3 46.9 26.8 95.9 87.9 88.9 74.7
PAL 74.4 91.4 63.3 51.3 13.8 85.3 62.6 57.8 62.5
*Correction-Based Baselines
Self-Refine 82.4 84.3 77.5 48.8 23.4 94.3 89.8 87.7 73.5
Self-Correct 78.9 78.7 65.9 47.2 21.8 88.5 78.4 76.6 67.0
Self-Check 73.7 90.1 65.0 44.5 18.8 84.4 71.8 71.3 65.0
PHP-CoT 77.9 90.4 65.9 51.6 18.8 91.8 71.5 75.7 68.0
CRITIC 83.5 83.8 81.0 48.0 24.6 92.6 88.8 88.8 73.9
*Sampling-Selection Baselines
SC (10) 90.4 87.1 86.9 58.1 36.0 96.7 95.3 95.5 80.8
Best-of-10 88.4 85.7 88.8 68.4 34.8 95.9 95.1 95.3 81.6
STEPCO (Ours) 91.2 87.1 89.3 73.2 36.2 98.4 95.4 96.4 83.4

Table 5: Accuracy (%) comparison on eight mathematical reasoning datasets using Llama-3-8B as the backend
LLM. The best and second-best results are highlighted in bold and underlined, respectively.

• Self-Refine (Madaan et al., 2024) uses a single
LLM as the generator, refiner, and feedback
provider, enhancing its initial output through
iterative feedback and refinement.

• Self-Check (Miao et al., 2024) uses the large
language model to individually check the con-
ditional correctness of each step based on di-
rectly related information from the question
and the preceding steps.

• PHP-CoT (Zheng et al., 2023) uses previously
generated answers as hints to progressively
guide LLMs toward the correct answers.

• CRITIC (Gou et al., 2024) interacts with exter-
nal tools like calculators and code interpreters
to verify the desired aspects of an initial out-
put and then amends the output based on the
critiques from the verification.

Sampling-Selection Baselines. The sampling-
selection baselines instruct LLMs to generate mul-
tiple candidate solutions and then selects the most
plausible one based on predefined rules.

• Self-Consistency (SC) (Wang et al., 2023b)
repeatedly solves a problem multiple times
and uses a majority vote strategy to determine
the most consistent answer as the final answer.

• Best-of-N (Wang et al., 2024a) instructs
LLMs to generate multiple candidate solu-
tions. These candidates are then scored us-
ing a reward model, and the highest-scoring
solution is selected as the final answer.

A.3 Evaluation Metrics

In open-domain question answering, such as the
HotpotQA dataset, we use exact match (EM) and
F1-score to evaluate model performance. For EM
score, an answer is considered correct if and only if
its normalized form has a match in the acceptable
answer list. The F1-score treats the prediction and
ground truth as bags of tokens, and computes the
average overlap between them. For other datasets,
we use accuracy as the evaluation metric.

A.4 Implementation

We use questions from the training splits of the
GSM8K and MATH datasets, and use GPT-3.5-
Turbo to generate reasoning steps, thereby creating
a process supervised dataset comprising 34K per-
step annotations. We fine-tune Llama-3-8B on this
dataset with LoRA (Hu et al., 2022) to develop PSV.
We set the low-rank dimension as 16, the learning
rate as 1×10−4, training epochs as 1, batch size as
32. All experiments are implemented on a server
with three NVIDIA A6000 GPUs.

A.5 Additional Experimental Results

Can STEPCO work with open-source LLMs?
We compare STEPCO with baseline methods us-
ing the Llama-3-8B model to test its effective-
ness. As shown in Table 5, STEPCO consistently
outperforms the baseline methods, demonstrat-
ing superior performance in mathematical reason-
ing tasks, even with open-source LLMs. Specifi-

21614

Method
MATH500 Dataset

Level 1 Level 2 Level 3 Level 4 Level 5 Overall
*Direct Generation Baselines
Direct 69.8 / 81.4 61.1 / 77.8 45.7 / 74.3 35.9 / 61.7 14.3 / 46.6 39.7 / 64.9
Zero-Shot-CoT 72.1 / 93.0 55.6 / 87.8 38.1 / 84.8 32.0 / 71.9 20.3 / 51.9 37.9 / 74.0
Manual-CoT 79.1 / 90.7 51.1 / 84.4 50.5 / 83.8 39.1 / 71.9 21.1 / 48.1 42.3 / 71.9
Auto-CoT 61.1 / 88.4 58.1 / 85.6 44.8 / 83.8 37.5 / 67.2 15.0 / 48.1 39.1 / 70.7
Complex-CoT 76.7 / 90.7 50.0 / 86.7 52.4 / 85.7 35.2 / 69.5 16.5 / 45.9 40.1 / 71.5
Least-to-Most 67.4 / 86.1 64.4 / 84.4 44.8 / 85.7 30.5 / 64.8 18.1 / 51.1 39.5 / 70.9
PAL 72.1 / 83.7 58.9 / 86.7 50.5 / 85.7 35.2 / 67.2 18.7 / 45.5 41.4 / 70.2
*Correction-Based Baselines
Self-Refine 68.4 / 93.0 61.9 / 87.8 45.7 / 83.8 35.3 / 70.3 16.2 / 50.4 40.2 / 73.0
Self-Correct 67.4 / 81.4 53.3 / 78.9 34.3 / 76.2 30.5 / 61.7 18.1 / 47.4 35.3 / 65.7
Self-Check 79.1 / 86.1 52.2 / 85.6 54.3 / 85.7 38.3 / 68.0 17.3 / 50.8 42.1 / 71.8
PHP-CoT 74.4 / 88.4 68.9 / 86.7 53.3 / 82.9 39.8 / 71.9 32.3 / 50.0 48.9 / 72.4
CRITIC 76.7 / 93.0 56.7 / 88.9 52.4 / 86.7 41.4 / 72.7 23.9 / 52.6 44.9 / 74.9
*Sampling-Selection Baselines
SC (10) 58.1 / 93.0 63.3 / 85.6 43.8 / 89.5 38.3 / 78.1 15.0 / 54.5 39.5 / 76.8
Best-of-10 69.8 / 90.7 63.3 / 87.8 49.5 / 91.4 32.8 / 77.3 21.8 / 53.7 42.1 / 77.0
StepCo (Ours) 86.1 / 90.7 75.6 / 92.2 68.6 / 90.5 53.1 / 80.5 29.1 / 61.2 56.9 / 80.4

Table 6: Accuracy (%) on the MATH500 dataset, categorized by question difficulty levels. Each cell shows
GPT-3.5-Turbo-1106 / GPT-4o performance. The best performance for each dataset is highlighted in bold.

cally, STEPCO achieves an average accuracy im-
provement of +8.5 over the best direct genera-
tion baseline (Auto-CoT) and +1.8 over the best
sampling-selection baseline (Best-of-10). More-
over, STEPCO achieves the highest accuracy on
the challenging MATH500 dataset, with a score of
36.2, significantly outperforming all baselines.

Can STEPCO work in difficult questions? To
evaluate accuracy across different question diffi-
culty levels, we compare STEPCO with all baseline
methods on the MATH500 dataset. The questions
were divided into five difficulty levels following
AoPS1. As shown in Table 6, when applied to
GPT-4o, STEPCO exhibits superior performance,
especially on more challenging questions. For
the most difficult questions at Level 5, STEPCO

achieves the highest accuracy of 61.2%, outper-
forming direct generation baselines such as Zero-
Shot-CoT (51.9%), correction-based baselines like
CRITIC (52.6%), and sampling-selection baselines
like Best-of-10 (53.7%). These results indicate that
STEPCO can effectively solve difficult questions.

Benefits from stepwise correction for mathemat-
ical reasoning across subjects. As shown in Ta-
ble 7, when applied to GPT-4o, STEPCO demon-
strates superior performance compared to baseline

1https://artofproblemsolving.com/

2 4 6 8 10
Number of Iteration (Samples)

76

78

80

82

Ac
cu

ra
cy

 (%
)

80.3
81.6

74.8

82.4
83.4

400 800 1200 1600 2000
Tokens consumed per question

76

78

80

82
Ac

cu
ra

cy
 (%

)

(672, 83.4)
(2010, 81.6)

Best-of-N StepCo

Figure 9: Efficiency and effectiveness comparison of dif-
ferent prompting methods using Llama-3-8B as backend
LLM. Left: Average accuracy across eight mathemati-
cal reasoning datasets over iterations (samples). Right:
Average accuracy across eight mathematical reasoning
datasets for different token consumption.

methods, particularly in subjects such as Precalcu-
lus, Probability, PreAlgebra, and Algebra. Specifi-
cally, compared to Complex-CoT, Self-Refine, and
SC (10), STEPCO achieves gains of +13.4, +14.6,
and +6.1 in PreAlgebra, respectively.

Stepwise correction vs. selecting the best We
compare STEPCO with the Best-of-N method,
which samples N = 10 multi-step reasoning paths
(Best-of-10) for a given question and uses a PSV to
predict the probability of each step arriving at the
correct answer. The path with the highest average
probability across all steps is selected as the final
answer. For a fair comparison, both STEPCO and
Best-of-10 use the same PSV. As shown in Fig-

21615

https://artofproblemsolving.com/

Method
MATH500 Dataset

InterAlgebra Precalculus Geometry NumTheory Probability PreAlgebra Algebra Overall
*Direct Generation Baselines
Direct 29.9 / 45.4 14.3 / 35.7 27.5 / 50.0 41.9 / 82.3 39.5 / 65.8 51.2 / 74.4 54.0 / 83.1 39.7 / 64.9
Zero-Shot-CoT 21.7 / 52.6 19.6 / 53.6 32.5 / 65.0 35.5 / 91.9 21.1 / 71.1 54.9 / 79.3 55.7 / 91.1 37.9 / 74.0
Manual-CoT 26.8 / 48.5 7.1 / 50.0 35.0 / 57.5 54.8 / 88.7 44.7 / 73.7 51.2 / 80.5 59.7 / 90.3 42.3 / 71.9
Auto-CoT 22.7 / 48.5 16.1 / 46.4 30.0 / 55.0 41.9 / 88.7 39.5 / 76.3 52.4 / 78.1 54.8 / 88.7 39.1 / 70.7
Complex-CoT 32.7 / 47.4 8.9 / 53.6 30.0 / 60.0 50.0 / 91.9 36.8 / 63.2 51.2 / 80.5 58.9 / 88.7 40.1 / 71.5
Least-to-Most 21.7 / 49.5 19.6 / 51.8 30.0 / 55.0 40.3 / 87.1 26.3 / 68.4 58.5 / 79.3 56.5 / 88.7 39.5 / 70.9
PAL 20.6 / 47.4 8.9 / 48.2 34.2 / 53.7 54.8 / 93.6 52.6 / 65.8 53.7 / 78.1 56.5 / 87.9 41.4 / 70.2
*Correction-Based Baselines
Self-Refine 29.8 / 52.6 13.5 / 50.0 29.7 / 65.0 41.8 / 88.7 41.7 / 71.1 54.1 / 79.3 53.0 / 90.3 40.2 / 73.0
Self-Correct 20.6 / 43.3 19.4 / 42.9 30.0 / 47.5 33.9 / 88.7 21.1 / 65.8 43.9 / 73.2 54.8 / 83.1 35.3 / 65.7
Self-Check 25.8 / 48.5 7.1 / 53.6 37.5 / 58.5 40.3 / 90.3 47.4 / 65.8 59.8 / 76.8 59.7 / 91.9 42.1 / 71.8
PHP-CoT 32.0 / 55.7 26.8 / 53.6 27.5 / 51.2 58.1 / 88.7 42.1 / 63.2 69.5 / 75.6 62.9 / 93.6 48.9 / 72.4
CRITIC 23.7 / 52.6 10.7 / 60.7 39.0 / 65.0 51.6 / 95.2 42.1 / 71.1 57.3 / 78.1 67.7 / 91.1 44.9 / 74.9
*Sampling-Selection Baselines
SC (10) 22.7 / 54.6 16.1 / 60.7 30.0 / 58.5 40.3 / 90.3 42.1 / 76.3 54.9 / 87.8 54.8 / 93.6 39.5 / 76.8
Best-of-10 26.8 / 62.9 17.9 / 58.9 27.5 / 58.5 53.2 / 93.6 34.2 / 76.3 59.8 / 80.5 54.8 / 91.9 42.1 / 77.0
StepCo (Ours) 34.0 / 61.9 35.7 / 66.1 43.9 / 58.5 75.8 / 93.6 50.0 / 76.3 65.9 / 93.9 75.0 / 94.4 56.8 / 80.4

Table 7: Accuracy (%) on the MATH500 dataset, categorized by subject. Each cell shows GPT-3.5-Turbo-1106
/ GPT-4o performance. The best performance for each dataset is highlighted in bold. “InterAlgebra” indicates
Intermediate Algebra.

Method SVAMP AddSub GSM8K AQuA MATH500
PATHCO 85.9 92.2 86.1 66.8 47.7
STEPCO (Ours) 89.7 93.4 87.0 72.4 56.9

Table 8: Performance comparison of different correction
methods using GPT-3.5-Turbo as the backend LLM.
PATHCO is a prompting method that assists LLMs to
identify and revise incorrect reasoning paths.

ure 9, when applied to Llama-3-8B, the accuracy
improves across all eight mathematical reasoning
datasets as the number of iterations increases. No-
tably, after three iterations, STEPCO demonstrates
an average accuracy improvement of +0.8 over
Best-of-10. After five iterations, STEPCO outper-
forms Best-of-10 by +1.8 while reducing token
consumption by 66.6%. These results highlight
that STEPCO not only exhibits higher accuracy but
also consumes fewer tokens.

Does stepwise correction outperform overall cor-
rection? To evaluate the effectiveness of the cor-
rection method in STEPCO, we compare it with
PATHCO. PATHCO instructs the LLM to generate a
multi-step reasoning path for a given question and
uses a PSV to predict the probability of each step
arriving at the correct answer. If the average proba-
bility across all steps below a predefined threshold,
the LLM is prompted to revise the reasoning path
to increase the probability of arriving at the correct
answer. For a fair comparison, both STEPCO and
PATHCO use the same PSV and hyperparameters.

As shown in Table 8, STEPCO consistently outper-
forms PATHCO across various benchmarks. Specif-
ically, STEPCO achieves absolute improvements
of +9.2 and +5.6 on the MATH500 and AQuA
datasets, respectively, compared to the PATHCO

method. These results indicate that stepwise cor-
rection significantly outperforms overall correction,
as it provides fine-grained feedback by pinpoint-
ing the locations of errors, which is essential for
effective automatic correction.

21616

A.6 Demonstrations used in the construction of the process supervision dataset

Demonstration D+

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: <Step 1> Calculate the total number of chocolates Leah and her sister had initially. Leah’s chocolates: 32 Sister’s
chocolates: 42 Total chocolates: 32 + 42 = 74 </Step 1>
<Step 2> Calculate the number of chocolates they ate. Chocolates eaten: 35 Calculate the number of chocolates they
have left in total. Total chocolates left = Total chocolates initially - Chocolates eaten. Total chocolates left = 74 - 35 =
39 </Step 2>
<Step 3> 39 </Step 3>

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
A: <Step 1> Determine the number of toys Shawn had initially. Shawn had 5 toys initially. Determine the number of
toys Shawn received from his mom and dad. Shawn received 2 toys from his mom and 2 toys from his dad. Total toys
received = 2 + 2 = 4 toys </Step 1>
<Step 2> Calculate the total number of toys Shawn has now. Total toys = Initial toys + Toys received Total toys = 5 + 4
= 9 toys </Step 2>
<Step 3> 9 </Step 3>

Q: There were nine computers in the server room. Five more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
A: <Step 1> Determine the initial number of computers in the server room. There were 9 computers in the server
room initially. Determine the number of computers added each day from Monday to Thursday. 5 more computers
were installed each day. Calculate the total number of computers added from Monday to Thursday. Number of days =
4 (Monday to Thursday) Computers added per day = 5 Total computers added = 4 days x 5 computers per day = 20
computers </Step 1>
<Step 2> Calculate the total number of computers in the server room now. Initial number of computers + Total computers
added = Total computers in the server room 9 + 20 = 29 computers </Step 2>
<Step 3> 29 </Step 3>

Q: What is the area of the region defined by the equation x2 + y2 − 7 = 4y − 14x+ 3?
A: <Step 1> Rewrite the given equation x2 + y2 − 7 = 4y − 14x+ 3 in standard form: x2 + y2 − 7 = 4y − 14x+ 3,
x2 + y2 − 4y + 14x− 7− 3 = 0, x2 + y2 − 4y + 14x− 10 = 0 </Step 1>
<Step 2> Complete the square for the x and y terms: x2 + 14x+ y2 − 4y = 10, For x: x2 + 14x = (x+ 7)2 − 49.
For y: y2 − 4y = (y − 2)2 − 4. Substitute these into the equation: (x + 7)2 − 49 + (y − 2)2 − 4 = 10,
(x+ 7)2 + (y − 2)2 − 53 = 10, (x+ 7)2 + (y − 2)2 = 63 </Step 2>
<Step 3> Recognize that the equation (x+7)2 +(y− 2)2 = 63 represents a circle with center (−7, 2) and radius

√
63:

Radius =
√
63 = 3

√
7 </Step 3>

<Step 4> Calculate the area of the circle using the formula πr2: Area = π(
√
63)2 = π · 63 </Step 4>

<Step 5> 63π </Step 5>

Q: The quadratic equation x2 +mx+ n = 0 has roots that are twice those of x2 + px+m = 0, and none of m, n,
and p is zero. What is the value of n/p?
A: <Step 1> Let’s denote the roots of the equation x2 + px+m = 0 by α and β. According to Vieta’s formulas, we
have: α+ β = −p, αβ = m. </Step 1>
<Step 2> The problem states that the roots of the equation x2 +mx + n = 0 are twice those of x2 + px +m = 0.
Therefore, the roots of x2 +mx+ n = 0 are 2α and 2β. Using Vieta’s formulas again for x2 +mx+ n = 0, we get:
2α+ 2β = −m =⇒ 2(α+ β) = −m =⇒ 2(−p) = −m =⇒ m = 2p. (2α)(2β) = n =⇒ 4αβ = n =⇒
4m = n </Step 2>
<Step 3> Since we have already established that m = 2p, we substitute m = 2p into the equation n = 4m:
n = 4m =⇒ n = 4(2p) =⇒ n = 8p </Step 3>
<Step 4> We are asked to find the ratio n

p
: n

p
= 8p

p
= 8 </Step 4>

<Step 5> 8 </Step 5>

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: <Step 1> Determine the amount of money Olivia had initially. Olivia had $23 initially. Calculate the total cost of the
5 bagels. Cost of 1 bagel = $3 Total cost of 5 bagels = 5 x $3 = $15 </Step 1>
<Step 2> Calculate the amount of money Olivia has left. Money left = Initial money - Total cost of bagels Money left =
$23 - $15 = $8 </Step 2>
<Step 3> 8 </Step 3>

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason
give to Denny?
A: <Step 1> Calculate the number of lollipops Jason gave to Denny. Number of lollipops given to Denny = Initial
number of lollipops - Current number of lollipops Number of lollipops given to Denny = 20 - 12 = 8 </Step 1>
<Step 2> 8 </Step 2>

21617

Demonstration D−

Q: A tank of water has a depth of 17 feet on Monday. On Tuesday, the tank had 7 feet more water. On Wednesday, the
depth of the water is two thirds of what it was on Tuesday. What is the tank’s water depth on Wednesday?
A: <Step 1> Identify the initial depth of water in the tank on Monday. Initial depth on Monday = 17 feet. Calculate the
depth of water in the tank on Tuesday. Depth on Tuesday = Initial depth on Monday + 7 feet Depth on Tuesday = 17
feet + 7 feet = 24 feet. </Step 1>
<Step 2> Assume that the depth on Wednesday is half of the depth on Tuesday. Depth on Wednesday = (1/2) * Depth on
Tuesday Depth on Wednesday = (1/2) * 24 feet = 12 feet. </Step 2>
<Step 3> 12 </Step 3>

Q: While at the dollar store, Sloane counts 100 customers entering the store. The next day, she counts 50 more customers
than the first day. If the total number of customers by the third day was 500, how many customers did she count on the
third day?
A: <Step 1> Let’s denote the number of customers Sloane counted on the first day as x. Since Sloane counted 100
customers on the first day and 50 more on the second day, the total number of customers she counted on the first two
days is 100 + 50 = 150. </Step 1>
<Step 2> Since the total number of customers by the third day was 500, Sloane must have counted 500 - 150 = 350
customers on the third day. </Step 2>
<Step 3> 350 </Step 3>

Q: Pam and Fred went to a carnival. Pam rode the roller coaster 2 times while Fred rode it 4 times. After that, each of
them decided to ride the luge 2 times. If each ride cost 6 tickets, how many tickets did they use that day?
A: <Step 1> Calculate the total number of roller coaster rides. Total roller coaster rides = Pam’s rides × Fred’s rides
Total roller coaster rides = 2 × 4 = 8 </Step 1>
<Step 2> Calculate the total number of luge rides. Total luge rides = Pam’s rides + Fred’s rides Total luge rides = 2 + 2
= 4 </Step 2>
<Step 3> Calculate the total number of rides. Total rides = Total roller coaster rides + Total luge rides Total rides = 8 + 4
= 12 </Step 3>
<Step 4> Calculate the total tickets used. Total tickets = Total rides × Cost per ride Total tickets = 12 × 6 = 72 </Step 4>
<Step 5> 72 </Step 5>

Q: The eighth-grade class held a bake-off. Kelsie made two times more cookies than Josh. Josh made one-fourth the
number of cookies that Suzanne made. If Suzanne made 36 cookies, how many did Kelsie make?
A: <Step 1> Assume that Kelsie made twice as many cookies as Josh, so Kelsie made 2 * 9 = 18 cookies. </Step 1>
<Step 2> Assume that Kelsie made one-fourth the number of cookies Suzanne made, so Kelsie made 1/4 * 36 = 9
cookies. </Step 2>
<Step 3> 9 </Step 3>

Q: Jane has saved $4 of her allowance every week for the past 8 weeks. If she continues to save the same amount each
week, how many more weeks will it take for her to have saved a total of $60?
A: <Step 1> Calculate the total amount Jane has saved so far. Total savings = Amount saved per week × Number of
weeks Total savings = $4 × 8 = $32 </Step 1>
<Step 2> Assume Jane needs to save $60 in total. Total savings = $60 </Step 2>
<Step 3> Calculate the number of weeks needed to reach $60. Number of weeks needed = Total savings ÷ Amount
saved per week Number of weeks needed = $60 ÷ $4 = 15 </Step 3>
<Step 4> 60 </Step 4>

Q: An infinite geometric series has common ratio 1/8 and sum 60. What is the first term of the series?
A: <Step 1> Recall the formula for the sum of an infinite geometric series. The sum S of an infinite geometric series
with first term a and common ratio r (where |r| < 1) is given by: S = a

1−r
</Step 1>

<Step 2> We are given that the sum S is 60 and the common ratio r is 1
8

. Substitute these values into the formula:
60 = a

1− 1
8

</Step 2>

<Step 3> Simplify the denominator: 1− 1
8
= 8

8
− 1

8
= 7

8
</Step 3>

<Step 4> Substitute the simplified denominator back into the equation: 60 = a
7
8

</Step 4>

<Step 5> Invert the fraction in the denominator and solve for a: 60 = a · 8
7

, a = 60× 7
8

, a = 420
8

, a = 52.5 </Step 5>
<Step 6> 52.5 </Step 6>

Q: Mia and Emma are currently 16 years apart in age. If Mia, who is younger than Emma, is 40 years old, what’s the
average of their ages?
A: <Step 1> Determine Emma’s age. Emma’s age = Mia’s age - 16 years Emma’s age = 40 - 16 = 24 </Step 1>
<Step 2> Calculate the sum of Mia and Emma’s ages. Sum of ages = Mia’s age + Emma’s age Sum of ages = 40 + 24 =
64 </Step 2>
<Step 3> Find the average of their ages. Average age = Sum of ages / 2 Average age = 64 / 2 = 32 </Step 3>
<Step 4> 32 </Step 4>

21618

A.7 Sample predictions for complex reasoning datasets

Tom had 27 pennies and 15 dimes in his bank . His dad gave him 33 dimes and 49 nickels . How many dimes does he have now ? Question

48Gold Answer

Initial

Response

Step 1: Tom had 27 pennies and 15 dimes initially. Convert the pennies to dimes. Since there are 10 pennies in 1 dime, we can
convert 27 pennies to 27 ÷ 10 = 2.7 dimes.

Step 2: Tom has 15 dimes initially, so he has a total of 15 + 2.7 = 17.7 dimes initially. His dad gave him 33 dimes and 49 nickels.

We'll ignore the nickels for now and focus on the dimes.

Step 3: Add the 33 dimes given by his dad to the initial 17.7 dimes. Total dimes = 17.7 + 33 = 50.7 dimes. Since you can't have a

fraction of a dime, we'll round the total dimes to the nearest whole number.

Step 4: Round the total dimes to the nearest whole number. 50.7 ≈ 51 dimes

Step 5: 51

Score: 0.3973

Score: 0.3464

Score: 0.2204
Score: 0.1965
Score: 0.1960

Revised

Response

Step 1: Tom had 27 pennies and 15 dimes initially.

Step 2: Add the 33 dimes given by his dad to the initial 15 dimes. Total dimes = 15 + 33 = 48 dimes

Step 3: Now, let's consider the pennies. Each penny is worth $0.01, and Tom has 27 pennies. Convert the 27 pennies to dimes.
Since 1 dime is equal to 10 pennies, we can divide the number of pennies by 10 to get the number of dimes. 27 pennies ÷ 10 =

2.7 dimes. Now, let's add the 2.7 dimes to the total dimes. Total dimes = 48 + 2.7 = 50.7 dimes

Step 4: Since you can't have a fraction of a dime, we'll round the total dimes to the nearest whole number. Round the total dimes

to the nearest whole number. 50.7 ≈ 51 dimes. The correct answer is 51 dimes!

Step 5: 51

Score: 0.3093

Score: 0.9402
Score: 0.8895

Score: 0.2425
Score: 0.1184

Revised

Response

I'm ready to correct the reasoning path starting from Step 3. The issue with Step 3 is that we're trying to convert pennies to dimes,

which is unnecessary. We already know the number of dimes Tom has, and we don't need to convert pennies to dimes. We should

focus on adding the pennies to the total amount of money Tom has.

Step 1: Tom had 27 pennies and 15 dimes initially.

Step 2: Add the 33 dimes given by his dad to the initial 15 dimes. Total dimes = 15 + 33 = 48 dimes
Step 3: Tom's dad gave him 49 nickels. Since each nickel is worth $0.05, the total value of the nickels is: 49 nickels × $0.05 =

$2.45
Step 4: Add this amount to the initial amount Tom had: $2.45 + (27 pennies × $0.01) = $2.45 + $0.27 = $2.72 Now, add the value

of the dimes to the total amount: $2.72 + (48 dimes × $0.10) = $2.72 + $4.80 = $7.52

Step 5: The correct answer is still 48 dimes.

As the addition of pennies and nickels doesn't change the number of dimes Tom has.

Step 6: 48

Final Answer 48

Score: 0.9402
Score: 0.8895

Score: 0.8787

Score: 0.8541

Score: 0.8405
Score: 0.8402

Figure 10: Example outputs obtained by STEPCO for AddSub dataset.

28 children were riding on the bus. At the bus stop 82 children got on the bus while some got off the bus. Then there were 30

children altogether on the bus. How many more children got on the bus than those that got off?
Question

2Gold Answer

Initial

Response

Step 1: 82 children got on the bus, so the total number of children on the bus becomes: 28 + 82 = 110

Step 2: However, some children got off the bus. Let's call the number of children who got off the bus "x". Then, the number of

children who got on the bus is 82.

Step 3: Since there were 30 children on the bus at the end.

The number of children who got off the bus is: 110 - 30 = 80

Step 4: Now, we can find the number of children who got on the bus by subtracting the number of children who got off the bus from

the number of children who got on the bus: 82 - x = 80

Step 5: To find the value of x, we can subtract 80 from both sides of the equation: x = 82 – 80 → x = 2

Step 6: Therefore, 2 children got off the bus, and 82 - 2 = 80 children got on the bus.

Step 7: To find the difference between the number of children who got on the bus and those who got off, we subtract the number

of children who got off from the number of children who got on: 80 - 2 = 78. The answer is 78.

Step 8: 78

Score: 0.9254

Score: 0.1741
Score: 0.3390

Score: 0.4414

Score: 0.8737

Final Answer 48

Score: 0.8203
Score: 0.8451

Score: 0.7726

Score: 0.7211
Score: 0.7184

Step 1: 82 children got on the bus, so the total number of children on the bus becomes: 28 + 82 = 110

Step 2: However, some children got off the bus. Let's call the number of children who got off the bus "x". Then, the number of

children who got on the bus is 82.

Step 3: Since there were 30 children on the bus at the end.

The number of children who got off the bus is: 110 - 30 = 80

Step 4: Now, we can find the number of children who got on the bus by subtracting the number of children who got off the bus from

the number of children who got on the bus: 82 - x = 80

Step 5: To find the value of x, we can subtract 80 from both sides of the equation: x = 82 – 80 → x = 2

Step 6: To find the difference between the number of children who got on the bus and those who got off, we subtract the number

of children who got off from the number of children who got on: 82 - 80 = 2. The revised answer is 2. Thank you for pointing out the

error!

Step 7: 2

Score: 0.9254

Score: 0.8737

Score: 0.7726

Score: 0.7211
Score: 0.7184

Revised

Response

Figure 11: Example outputs obtained by STEPCO for SVAMP dataset.

21619

David has zero fewer apples than Marin. Marin has three apples. How many apples does David have?Question

3Gold Answer

Initial

Response

Step 1: Since David has zero fewer apples than Marin, it means David has the same number of apples as Marin, but one more.

Marin has 3 apples, so David has 3 + 1 =?

Step 2: To find the number of apples David has, we add 1 to Marin's number of apples. 3 + 1 = 4

Step 3: 4

Score: 0.1529
Score: 0.1894

Score: 0.1413

Revised

Response

Step 1: Since David has zero fewer apples than Marin, it means David has one fewer apple than Marin. We know Marin has 3

apples, so David has 3 - 1 =?

Step 2: To find the number of apples David has, we subtract 1 from Marin's number of apples. 3 - 1 = 2

Step 3: 2

Score: 0.1697

Score: 0.2289
Score: 0.2621

Revised

Response

Step 1: Since David has zero fewer apples than Marin, it means David has the same number of apples as Marin. We know Marin

has 3 apples, so David also has 3 apples.

Step 2: We can simply state that David has the same number of apples as Marin.

Step 3: Therefore, David has 3 apples. The revised answer is 3.

Step 4: 3

Final Answer 3

Score: 0.9905
Score: 0.9289
Score: 0.9872

Score: 0.9916

Figure 12: Example outputs obtained by STEPCO for ASDiv dataset.

The vending machines sell chips for 40 cents and candy bars for 75 cents. George spent $5 and got 3 bags of chips and had 1%

of his money left. How many candy bars did he buy?
Question

5Gold Answer

Initial

Response

Step 1: Let's start by identifying the information given in the problem. We know that George spent $5 and got 3 bags of chips. We

also know that he had 1% of his money left, which means he spent 99% of his money. Let's assume George initially had x dollars.

Since he spent 99% of his money, he is left with 1% of his money, which is 0.01x.

Step 2: We know that George spent $5, so we can set up an equation: 0.01x = 5 To solve for x, we can divide both sides by 0.01:

x = 5 / 0.01 → x = 500

Step 3: So, George initially had $500. He spent $5, which means he had $495 left. He bought 3 bags of chips, and each bag costs

40 cents, so the total cost of chips is: 3 x 0.40 = $1.20

Step 4: He had $495 left, and he spent $1.20 on chips, so he had: $495 - $1.20 = $493.80 left. He used this money to buy candy

bars, which cost 75 cents each.

Step 5: Let‘s say George bought y candy bars. The total cost of candy bars is: 0.75y. We know that George had $493.80 left, so

we can set up an equation: 0.75y = 493.80. To solve for y, we can divide both sides by 0.75: y = 868

Step 6: However, we need to find the number of candy bars George bought, not the total cost. Since each candy bar costs 75

cents, the number of candy bars is: y = 868 / 0.75 → y = 1152

Step 7: 1152

Score: 0.2014

Score: 0.2859

Score: 0.0135
Score: 0.0488

Score: 0.2194

Revised

Response

Step 1: Let's start by identifying the information given in the problem. We know that George spent $5 and got 3 bags of chips. We

also know that he had 1% of his money left, which means he spent 99% of his money. Let's assume George initially had x dollars.

Since he spent 99% of his money, he is left with 1% of his money, which is 0.01x.

Step 2: We know that George spent $5, so we can set up an equation: 0.01x = 5 To solve for x, we can divide both sides by 0.01:

x = 5 / 0.01 → x = 500

Step 3: So, George initially had $500. He spent $5, which means he had $495 left. However, this is not correct. We should

calculate the amount of money George had left after buying 3 bags of chips, not before. We know that each bag of chips costs 40

cents, so the total cost of chips is: 3 x 0.40 = $1.20. George had $500 initially, and he spent $1.20 on chips. So, he had: $500 -

$1.20 = $498.80 left.

Step 4: He had $498.80 left, and he spent some money on candy bars, which cost 75 cents each. Let‘s say he bought y candy

bars. The total cost of candy bars is: 0.75y. We know that George had $498.80 left, so we can set up an equation: 0.75y = 498.80.

To solve for y, we can divide both sides by 0.75: y = 498.80 / 0.75 → y = 664

Step 5: 664

Score: 0.2269

Score: 0.8856

Score: 0.0258
Score: 0.0379

Revised

Response

Let's start again from Step 1.

Step 1: George spent $5 and got 3 bags of chips. We know that each bag of chips costs 40 cents, so the total cost of chips is: 3 x

0.40 = $1.20.
Step 2: Since George spent $5 on chips and had 1% of his money left, we can set up an equation: 1% of $5 = 0.01 × $5 = $0.05.

This means that George had $0.05 left after buying chips. Since he initially had $5, we can find his initial amount by adding the

amount he spent to the amount he had left: $5 - $0.05 = $4.95. So, George initially had $4.95.

Step 3: Now, we can calculate the amount of money George had left after buying chips: $4.95 - $1.20 = $3.75

Step 4: He had $3.75 left, and he spent some money on candy bars, which cost 75 cents each. Let‘s say he bought y candy bars.

The total cost of candy bars is: 0.75y. We know that George had $3.75 left, so we can set up an equation: 0.75y = 3.75. To solve

for y, we can divide both sides by 0.75: y = 3.75 / 0.75 → y = 5

Step 5: So, George bought 5 candy bars. By correcting the reasoning path starting from Step 1, the probability of obtaining the

correct answer is increased.

Step 6: 5

Final Answer 5

Score: 0.9729

Score: 0.9967
Score: 0.9781

Score: 0.9296

Score: 0.9551
Score: 0.9384

Score: 0.5607

Score: 0.8856

Score: 0.5607

Figure 13: Example outputs obtained by STEPCO for GSM8K dataset.

21620

A straight picket fence is composed of x pickets each of which is 1/2 inch wide. If there are 6 inches of space between each pair of

pickets, which of the following represents the length of fence in feet?
Question

(A) 13x/2, (B) 13x/2 – 6, (C) 13x/24, (D) (13x+1) /24, (E) (13x-12) /24
Answer

Choices

Initial

Response

Step 1: Let's understand the problem. We have a straight picket fence with x pickets, each 1/2 inch wide. There are 6 inches of

space between each pair of pickets.

Step 2: Since there are x pickets, the total width of the pickets is x * 1/2 inches.

Step 3: Now, let's find the total width of the spaces between the pickets. There are 6 inches of space between each pair of pickets,

and since there are x pickets, there are x-1 spaces (because we don't count the space between the last picket and the end of the

fence).

Step 4: The total width of the spaces is (x-1) * 6 inches.

Step 5: The total width of the fence is the sum of the width of the pickets and the spaces between them. Therefore, the total width

is (x * 1/2) + ((x-1) * 6).

Step 6: To convert the total width from inches to feet, we need to divide by 12 (since there are 12 inches in a foot). So, the total

width in feet is ((x * 1/2) + ((x-1) * 6)) / 12.

Step 7: Now, we can simplify the expression by combining like terms. We get (13x/24) + (x-1)/12.

Step 8: Since we are looking for an answer choice that represents the length of the fence in feet, we can combine the fractions

with a common denominator, which is 24. This gives us (13x+1)/24.

Step 9: D

Score: 0.3158

Score: 0.3933

Score: 0.2231

Score: 0.8916

Revised

Response

I understand the problem and the given reasoning path. To increase the probability of getting the correct answer, I will revise the

reasoning steps starting from step 7.

Step 1: Let's understand the problem. We have a straight picket fence with x pickets, each 1/2 inch wide. There are 6 inches of

space between each pair of pickets.

Step 2: Since there are x pickets, the total width of the pickets is x * 1/2 inches.

Step 3: Now, let's find the total width of the spaces between the pickets. There are 6 inches of space between each pair of pickets,

and since there are x pickets, there are x-1 spaces (because we don't count the space between the last picket and the end of the

fence).

Step 4: The total width of the spaces is (x-1) * 6 inches.

Step 5: The total width of the fence is the sum of the width of the pickets and the spaces between them. Therefore, the total width

is (x * 1/2) + ((x-1) * 6).

Step 6: To convert the total width from inches to feet, we need to divide by 12 (since there are 12 inches in a foot). So, the total

width in feet is ((x * 1/2) + ((x-1) * 6)) / 12.

Step 7: To simplify the expression, we can combine the fractions with a common denominator, which is 24. This gives us: (x/24) +

(12(x-1)/24)

Step 8: Combine like terms: (12x+x-12)/24. Simplify: (13x-12)/24

Step 9: E

Final Answer E

Score: 0.8623

Score: 0.9630
Score: 0.8621

Score: 0.8896

EGold Answer

Score: 0.8039
Score: 0.8932

Score: 0.8314

Score: 0.8227

Score: 0.8916
Score: 0.8896

Score: 0.8039
Score: 0.8932

Score: 0.8314

Score: 0.8227

Figure 14: Example outputs obtained by STEPCO for AQuA dataset.

Steve is 5'6". He grows 6 inches. Mary is 1000 inches shorter than Steve. How tall is Steve in inches?Question

72Gold Answer

Initial

Response

Step 1: Convert Steve's height from feet and inches to just inches. Since Steve is 5'6", we need to convert the 6 inches to inches.

5 feet = 5 x 12 = 60 inches (since there are 12 inches in a foot) Steve's height is 60 inches + 6 inches = 66 inches

Step 2: Mary is 1000 inches shorter than Steve. We need to find Mary's height by subtracting 1000 inches from Steve's height.

Mary's height = Steve's height - 1000 inches = 66 inches - 1000 inches = -934 inches

Step 3: Since we're only interested in Steve's height, we can ignore Mary's height and focus on Steve's height. Steve's height = 66

inches

Step 4: 66

Score: 0.4237
Score: 0.4010

Revised

Response

Thank you for pointing out the error! From Step 3, I noticed that the teacher mentioned that the reasoning path from Step 3 onward

may contain errors and that I need to revise the steps. Therefore, I will revise Step 3 and Step 4 to ensure the accuracy of the

result. Here is the revised reasoning path:

Step 1: Convert Steve's height from feet and inches to just inches. Since Steve is 5'6", we need to convert the 6 inches to inches.

5 feet = 5 x 12 = 60 inches (since there are 12 inches in a foot) Steve's height is 60 inches + 6 inches = 66 inches

Step 2: Mary is 1000 inches shorter than Steve. We need to find Mary's height by subtracting 1000 inches from Steve's height.

Mary's height = Steve's height - 1000 inches = 66 inches - 1000 inches = -934 inches

Step 3: Since Steve grows 6 inches, we need to add 6 inches to his original height to find his new height. Steve's new height =

Steve's original height + 6 inches = 66 inches + 6 inches = 72 inches

Step 4: 72

Score: 0.9289

Score: 0.7425

Final Answer 72

Score: 0.9146
Score: 0.8911

Score: 0.9289

Score: 0.7425

Figure 15: Example outputs obtained by STEPCO for GSM-IC2 dataset.

21621

Let 𝑃(𝑥) be a monic polynomial of degree 3. Suppose that 𝑃(𝑥) has remainder 𝑅(𝑥) when it is divided by (𝑥 − 1)(𝑥 − 4), and

remainder 2𝑅(𝑥) when it is divided by (𝑥 − 2)(𝑥 − 3). Given that 𝑃(0) = 5, find 𝑃(5).
Question

15Gold Answer

Initial

Response

Step 1: Determine the form of 𝑃(𝑥): 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥), 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥) , where 𝑄(𝑥) and

𝑆(𝑥) are polynomials of degree 1 or less.

Step 2: Use the given 𝑃(0) = 5: 𝑃(0) = (0 − 1)(0 − 4)𝑄(0) + 𝑅(0) = −4𝑄(0) + 𝑅(0) = 5
Step 3: Express 𝑅(𝑥) and 2𝑅(𝑥): From 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥): 𝑅(𝑥) = 𝑎𝑥 + 𝑏 (since 𝑅(𝑥) is linear). From 𝑃(𝑥) =
(𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥): 2𝑅(𝑥) = 2(𝑎𝑥 + 𝑏) = 2𝑎𝑥 + 2𝑏
Step 4: Set up equations using the remainders: 𝑃(1) = 𝑅(1) = 𝑎 + 𝑏, 𝑃(2) = 2𝑅(2) = 2(2𝑎 + 𝑏) = 4𝑎 + 2𝑏
Step 5: Use 𝑃(0) = 5 to find 𝑄(0): −4𝑄 0 + 𝑅 0 = 5
Step 6: Solve for 𝑎 and 𝑏: Solve the system of equations from Steps 4 and 5 to find 𝑎 and 𝑏.

Step 7: Find 𝑃(5): Now that we have 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑎𝑥 + 𝑏, calculate 𝑃(5): 𝑃(5) = (5 − 1)(5 − 4)𝑄(5) + 5𝑎 +
 𝑏

Step 8: Calculate 𝑃(5) using the values found: 𝑃(5) = 4𝑄(5) + 5𝑎 + 𝑏. Therefore, the answer is 81.

Step 9: 81

Revised

Response

Step 1: Determine the form of 𝑃(𝑥): 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥), 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥) , where 𝑄(𝑥) and

𝑆(𝑥) are polynomials of degree 1 or less.

Step 2: Use the given 𝑃(0) = 5: 𝑃(0) = (0 − 1)(0 − 4)𝑄(0) + 𝑅(0) = 4𝑄(0) + 𝑅(0) = 5
Step 3: Express 𝑅(𝑥) and 2𝑅(𝑥): From 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥): 𝑅(𝑥) = 𝑎𝑥 + 𝑏 (since 𝑅(𝑥) is linear). From 𝑃(𝑥) =
(𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥): 2𝑅(𝑥) = 2(𝑎𝑥 + 𝑏) = 2𝑎𝑥 + 2𝑏
Step 4: Set up equations using the remainders: For 𝑃(1) = 𝑅(1): 𝑃(1) = (−1)(−3)𝑄(1) + 𝑅(1) = 3𝑄(1) + 𝑅(1) = 𝑎 + 𝑏
For 𝑃(2) = 2𝑅(2): 𝑃(2) = (2 − 1)(2 − 4)𝑄(2) + 𝑅(2) = (−2)𝑄(2) + 𝑅(2) = 2𝑎 + 𝑏
Step 5: Use 𝑃(0) = 5 to find 𝑄(0): 4𝑄 0 + 𝑅 0 = 5
Step 6: Solve for 𝑎 and 𝑏: Solve the system of equations from Steps 4 and 5 to find 𝑎 and 𝑏.

Step 7: Find 𝑃(5): Now that we have 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑎𝑥 + 𝑏, calculate 𝑃(5): 𝑃 5 = 5 − 1 5 − 4 𝑄 5 + 5𝑎 +
 𝑏 = 4𝑄 5 + 5𝑎 + 𝑏

Step 8: Calculate 𝑃(5) using the values found: Substitute the values of 𝑄(5), 𝑎, and 𝑏 obtained from previous steps into the

equation for 𝑃(5). Therefore, 𝑃(5) evaluates to 101.

Step 9: 101

Revised

Response

Final Answer 15

Step 1: Determine the form of 𝑃(𝑥): 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥), 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥) , where 𝑄(𝑥) and

𝑆(𝑥) are polynomials of degree 1 or less.

Step 2: Use the given 𝑃(0) = 5: 𝑃(0) = (0 − 1)(0 − 4)𝑄(0) + 𝑅(0) = 4𝑄(0) + 𝑅(0) = 5
Step 3: Express 𝑅(𝑥) and 2𝑅(𝑥): From 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥): 𝑅(𝑥) = 𝑎𝑥 + 𝑏 (since 𝑅(𝑥) is linear). From 𝑃(𝑥) =
(𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥): 2𝑅(𝑥) = 2(𝑎𝑥 + 𝑏) = 2𝑎𝑥 + 2𝑏
Step 4: Set up equations using the remainders: For 𝑃(2) = 2𝑅(2): 𝑃 2 = 2 − 1 2 − 4 𝑄 2 + 𝑅 2 = −2 𝑄 2 + 𝑅 2 =
2𝑎 + 𝑏. For 𝑃(3) = 2𝑅(3): 𝑃(3) = (3 − 1)(3 − 4)𝑄(3) + 𝑅(3) = (−2)𝑄(3) + 𝑅(3) = 3𝑎 + 𝑏
Step 5: Use 𝑃(0) = 5 to find 𝑄(0): 4𝑄 0 + 𝑅 0 = 5
Step 6: Solve for 𝑎 and 𝑏: Solve the system of equations from Steps 4 and 5 to find 𝑎 and 𝑏.

Step 7: Find 𝑃(5): Now that we have 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑎𝑥 + 𝑏, calculate 𝑃(5): 𝑃 5 = 5 − 1 5 − 4 𝑄 5 + 5𝑎 +
 𝑏 = 4𝑄 5 + 5𝑎 + 𝑏

Step 8: Calculate 𝑃(5) using the values found: Substitute the values of 𝑄(5), 𝑎, and 𝑏 obtained from previous steps into the

equation for 𝑃(5). Therefore, 𝑃(5) evaluates to 25.

Step 9: 25

Step 1: Determine the form of 𝑃(𝑥): 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥), 𝑃(𝑥) = (𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥) , where 𝑄(𝑥) and

𝑆(𝑥) are polynomials of degree 1 or less.

Step 2: Use the given 𝑃(0) = 5: 𝑃(0) = (0 − 1)(0 − 4)𝑄(0) + 𝑅(0) = 4𝑄(0) + 𝑅(0) = 5
Step 3: Express 𝑅(𝑥) and 2𝑅(𝑥): From 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑅(𝑥): 𝑅(𝑥) = 𝑎𝑥 + 𝑏 (since 𝑅(𝑥) is linear). From 𝑃(𝑥) =
(𝑥 − 2)(𝑥 − 3)𝑆(𝑥) + 2𝑅(𝑥): 2𝑅(𝑥) = 2(𝑎𝑥 + 𝑏) = 2𝑎𝑥 + 2𝑏
Step 4: Set up equations using the remainders: For 𝑃(2) = 2𝑅(2): 𝑃 2 = 2 − 1 2 − 4 𝑄 2 + 𝑅 2 = −2 𝑄 2 + 𝑅 2 =
2𝑎 + 𝑏. For 𝑃(3) = 2𝑅(3): 𝑃(3) = (3 − 1)(3 − 4)𝑄(3) + 𝑅(3) = (−2)𝑄(3) + 𝑅(3) = 3𝑎 + 𝑏
Step 5: Use 𝑃(0) = 5 to find 𝑄(0): 4𝑄 0 + 𝑅 0 = 5
Step 6: Solve for 𝑎 and 𝑏: Solve the system of equations from Steps 4 and 5 to find 𝑎 and 𝑏. After solving, we find: 𝑎 = 2, 𝑏 =
−3
Step 7: Find 𝑃(5): Now that we have 𝑃(𝑥) = (𝑥 − 1)(𝑥 − 4)𝑄(𝑥) + 𝑎𝑥 + 𝑏, calculate 𝑃(5): 𝑃 5 = 5 − 1 5 − 4 𝑄 5 + 5𝑎 +
 𝑏 = 4𝑄 5 + 5𝑎 + 𝑏 = 4𝑄 5 + 5 ∗ 2 − 3 = 4𝑄 5 + 10 − 3 = 4𝑄 5 + 7

Step 8: Use 𝑃(0) = 5 to find 𝑄(0): 4𝑄(0) − 3 = 5 , 4𝑄(0) = 8, 𝑄(0) = 2
Step 9: Calculate 𝑃(5): 𝑃 5 = 4 ∗ 2 + 7 = 8 + 7 = 15. Therefore, 𝑃(5) evaluates to 15. This rectified reasoning path ensures

that each step is correctly followed, leading to the accurate solution for 𝑃(5).

Step 10: 15

Revised

Response

Figure 16: Example outputs obtained by STEPCO for MATH500 dataset.

21622

Isabelle works in a hotel and runs a bubble bath for each customer who enters the hotel. There are 13 rooms for couples and 14

single rooms. For each bath that is run, Isabelle needs 10ml of bubble bath. Isabelle's father bought 10 tomatoes from the grocery

store. If every room is filled to maximum capacity, how much bubble bath, in millilitres, does Isabelle need?
Question

400Gold Answer

Initial

Response

Step 1: Determine the total number of rooms in the hotel. There are 13 rooms for couples and 14 single rooms, so we add these

numbers together: 13 + 14 = 27. There are a total of 27 rooms in the hotel.

Step 2: Determine the maximum capacity of each room. Since we don't have any information about the maximum capacity of each

room, we'll assume that each room can be filled to its maximum capacity.

Step 3: Calculate the total number of customers that can be accommodated. Since there are 27 rooms, and each room can be

filled to its maximum capacity, we multiply the number of rooms by the number of customers that can be accommodated in each

room: 27 rooms x (1 couple + 1 single) = 27 rooms x 2 = 54 customers. There are a total of 54 customers that can be

accommodated in the hotel.

Step 4: Calculate the total amount of bubble bath needed. Isabelle needs 10ml of bubble bath for each bath she runs, and there

are 54 customers. We multiply the number of customers by the amount of bubble bath needed per customer: 54 customers x

10ml/customer = 540ml. The answer is 540ml.

Step 5: 540

Revised

Response

Let's revise the reasoning path starting from Step 1.

Step 1: Determine the total number of rooms in the hotel. We are given that there are 13 rooms for couples and 14 single rooms.

To find the total number of rooms, we need to recognize that the number of rooms for couples is not necessarily the same as the

number of rooms for single people. Each room for couples can accommodate 2 people, while each single room can accommodate

1 person. Let‘s calculate the total capacity of the hotel in terms of the number of people: 13 rooms for couples x 2 people/room =

26 people, 14 single rooms x 1 person/room = 14 people. Total capacity = 26 people + 14 people = 40 people. Since each room is

filled to maximum capacity, we can assume that the hotel is filled with 40 people.

Step 2: Determine the total amount of bubble bath needed. We know that Isabelle needs 10ml of bubble bath for each customer.

To find the total amount of bubble bath needed, we multiply the number of customers by the amount of bubble bath needed per

customer: 40 customers x 10ml/customer = 400ml. Therefore, Isabelle needs 400ml of bubble bath. By revising the reasoning path

starting from Step 1, we can increase the probability of obtaining the correct answer to 100%.

Step 3: 400

Score: 0.3561

Score: 0.5258

Score: 0.7196

Final Answer 400

Score: 0.9654

Score: 0.8305
Score: 0.8992

Score: 0.3059

Score: 0.2318

Figure 17: Example outputs obtained by STEPCO for GSM-ICM dataset.

Where would you find a monkey in the wild?Question

(A) zoo, (B) barrel, (C) research laboratory, (D) captivity, (E) thailand
Answer

Choices

Initial

Response

Step 1: Understand the question: The question asks where one would find a monkey in its natural habitat, not in captivity or

artificial environments.

Step 2: Evaluate the answer choices: (A) zoo: Monkeys can be found in zoos, but this is not in the wild. (B) barrel: This answer is

nonsensical and does not relate to the habitat of monkeys. (C) research laboratory: Monkeys can be found in research laboratories,

but again, this is not in the wild. (D) captivity: This generally refers to places like zoos or research facilities, not the wild. (E) thailand:

Thailand is a country and not a habitat.

Step 3: Conclusion: The correct answer is where monkeys live in their natural habitat, which is in the wild, rather than in captivity or

other non-natural environments. The answer is B.

Step 4: B

Revised

Response

Final Answer E

EGold Answer

Step 1: Understand the question: The question asks where one would find a monkey in its natural habitat, not in captivity or

artificial environments.

Step 2: Re-evaluate the choices: (A) zoo: Eliminated because it's not the natural habitat. (B) barrel: Nonsensical and not related to

the wild habitat. (C) research laboratory: Not natural; monkeys are not found in the wild in research labs. (D) captivity: Although

monkeys can be found in captivity, this is not their natural habitat. (E) Thailand: While Thailand is a country, it doesn't specify the

wild habitat where monkeys live.

Step 3: Conclusion: Given that none of the provided options clearly state "wild" or a natural habitat, the closest logical answer

would be (D) captivity, as it contrasts with the wild where monkeys naturally reside. Therefore, the corrected answer should be D.

Step 4: D

Step 1: Understand the question: The question asks where one would find a monkey in its natural habitat, not in captivity or

artificial environments.

Step 2: Narrow down to the correct choice: The answer should reflect the natural habitat of monkeys. Finalize the correct answer:

Since none of the given choices specify the natural habitat explicitly, the closest answer is (E) Thailand, considering it's a country

with diverse natural habitats including jungles and forests where monkeys are found. Therefore, the corrected answer should be E.

This revised reasoning path clarifies that while none of the provided options explicitly state "wild" or a natural habitat, Thailand

(option E) offers a broader consideration of where monkeys can be found in various natural settings, such as jungles and forests.

Step 3: E

Revised

Response

Figure 18: Example outputs obtained by STEPCO for CSQA dataset.

21623

