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Abstract

Large Language Models (LLMs) offer a trans-
parent brain with accessible parameters that
encode extensive knowledge, which can be an-
alyzed, located and transferred. Consequently,
a key research challenge is to transcend tra-
ditional knowledge transfer paradigms rooted
in symbolic language and achieve genuine
Parametric Knowledge Transfer (PKT). Signif-
icantly, exploring effective methods for trans-
ferring knowledge across LLMs of different
scales through parameters presents an intrigu-
ing and valuable research direction. In this
paper, we first demonstrate Alignment in para-
metric space is the fundamental prerequisite to
achieve successful cross-scale PKT. We rede-
fine the previously explored knowledge trans-
fer as Post-Align PKT (PostPKT), which uti-
lizes extracted parameters for LoRA initial-
ization and requires subsequent fine-tune for
alignment. Hence, to reduce cost for further
fine-tuning, we introduce a novel Pre-Align
PKT (PrePKT) paradigm and propose a solu-
tion called LaTen (Locate-Then-Align) that
aligns the parametric spaces of LLMs across
scales only using several training steps with-
out following training. Comprehensive exper-
iments on four benchmarks demonstrate that
both PostPKT and PrePKT face challenges in
achieving consistently stable transfer. Through
in-depth analysis, we identify Neural Incom-
patibility as the ethological and parametric
structural differences between LLMs of vary-
ing scales, presenting fundamental challenges
to achieving effective PKT. These findings pro-
vide fresh insights into the parametric architec-
tures of LLMs and highlight promising direc-
tions for future research on efficient PKT. Our
code is available at https://github.com/
TraelounG/Neural_Incompatibility.

1 Introduction

Human beings have non-transparent thoughts with-
out inherited memory, requiring them to learn
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Figure 1: Different paradigms of knowledge transfer
between cross-scale LLMs. Compared to human-like
symbolic knowledge transfer based on language (as
shown in (a)), we aspire for LLMs to achieve more
efficient knowledge transfer leveraging knowledgeable
parameters (as illustrated in (b)).

through communication in language-based settings.
Based on this language-based knowledge trans-
fer paradigm (Figure 1(a)), Large Language Mod-
els (LLMs) have acquired a wealth of knowledge
and abilities to understand and solve general tasks,
with a massive amount of knowledge encoded in
their parameters during pretraining on an extensive
corpus (Achiam et al., 2023; Brown et al., 2020;
Ouyang et al., 2022). However, unlike the unknow-
able and opaque nature of the human brain, the ac-
cessible parameters and information flow of LLMs
(e.g. Llama (Touvron et al., 2023)) function as
a transparent brain that directly encodes factual
knowledge, which can be systematically analyzed,
precisely located and effectively transferred.
Existing studies (Geva et al., 2020; Wang et al.,
2022; Yu and Ananiadou, 2024) have made signif-
icant progress in interpreting knowledge localiza-
tion and information flow in the transparent brain of
LLMs, allowing possible knowledge manipulation.
Model merging (Wortsman et al., 2022; Matena
and Raffel, 2022; Yu et al., 2024) combines mod-
els with different capabilities to create a multitask
capable model by merging weights. Although this
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approach performs parametric knowledge merge,
it is limited to models of the same scale and the
same checkpoint. In real-world scenarios, it is
more common for larger and smaller LLMs to form
natural paired. Compared to smaller LLMs M,
larger LLMs M; encapsulate more world knowl-
edge due to they contain larger parameter scales
and extended training processes, making them intu-
itively appear as more extensively trained versions
of smaller LLMs. Building on this insight, the key
research question becomes: Can knowledge be ef-
fectively transferred from larger LLMs to smaller
ones through parameters?

We define this challenge as Parametric Knowl-
edge Transfer (PKT) in cross-scale LLMs. Then,
We first demonstrate through simple experiments
that achieving Alignment in the parametric space
is a prerequisite for successful cross-scale PKT. No-
tably, PKT comprises three key stages: 1) Knowl-
edge Extraction, which extracts task-related
knowledge from M ;; 2) Parameter Alignment,
which aligns the extracted knowledge with Mg;
and 3) Knowledge Injection, which performs the
final parameters integration. Existing research on
PKT performs alignment after knowledge injection
by further training, which we refer to this paradigm
as Post-Align PKT (PostPKT). PostPKT uses the
extracted parameters to initialize certain modules
(e.g. Low-Rank Adaptation (LoRA) (Hu et al.,
2021)) for injection while holding the overall pa-
rameter unchanged. SEEKING (Zhong et al., 2023)
addresses PostPKT by employing sensitivity-based
knowledge location combined with LoRA-driven
injection, followed by additional fine-tuning for
alignment. Despite achieving improved perfor-
mance after training for several epochs on 1,000 ex-
amples, this approach incurs high alignment costs.
As aresult, it is not only expensive but also unable
to directly enhance the model’s performance.

To reduce cost for further fine-tuning, we in-
troduce a novel paradigm of PKT, which takes
parameter alignment before injection called Pre-
Align PKT (PrePKT). In this paradigm, we as-
pire to directly enhance LLLMs ability after injec-
tion. To achieve this goal, we propose LaTen
(Locate-Then-Align) to facilitate the alignment of
parametric spaces in LLMs across different scales
(Figure 1(b)). Specifically, LaTen uses neuron-
level attribution (Yu and Ananiadou, 2024) to ad-
dress discrepancies in layer number and identify
the most informative neurons for transfer in both
feed-forward networks (FFNs) and multi-head self-

attention (MHSA) modules. To perform dimen-
sionality reduction, we use a simple MLP-based
hypernetwork, which learns to map the parameter
space of ®; to ® by training on a small subset for
alignment (< 100). By decoding just one seed sam-
ple with the larger model, task-related parameters
can be identified and projected into the target para-
metric space, enabling immediate improvements in
downstream task performance.

Our experiments focus on PostPKT and PrePKT
in three benchmark categories: world knowl-
edge, mathematical reasoning, and code genera-
tion, using Llama-2-based models (Touvron et al.,
2023). For PostPKT, we compare SEEKING with
PiSSA (Meng et al., 2024) which decomposes the
original parameters of ®; to derive LoRA. Our
results show that LoORA parameters derived from
larger M are less effective compared to those de-
rived from the model Mj itself. Concurrently, al-
though our proposed LaTen demonstrates promis-
ing performance, it still faces challenges in achiev-
ing consistently stable PrePKT. Through in-depth
analysis, we identify Neural Incompatibility as
the ethological and parametric structural differ-
ences between cross-scale LLMs which are similar
to the cross-species neural mechanism (Lu et al.,
2024; Wang et al., 2025), presenting fundamental
challenges to achieve optimal parametric knowl-
edge transfer. These findings offer novel insights
into the parametric structures of LLMs and suggest
directions for future research on efficient PKT. Our
main contributions are summarized as follows:

* We are the first to comprehensively define
and explore parametric knowledge transfer
between cross-scale LLMs.

* We identify the importance of alignment
and systematically study parametric knowl-
edge transfer from Pre-Align and Post-Align
paradigms.

* We propose a novel method Locate-Then-
Align to first try to solve Pre-Align challenge,
which leverages neuron attribution and hyper-
network techniques to execute alignment with
minimal training data achieves promissing per-
formance.

* Comprehensive quantitative and qualitative
assessments have highlighted the neural in-
compatibility as a key challenge arising from
ethological and parametric structural differ-
ences in cross-scale LLMs.
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2 Related Work

2.1 Location of Parametric Knowledge

Large language models (LLMs) encode vast
amounts of knowledge in their parameter space
through pre-training on large-scale corpora. Conse-
quently, numerous studies have focused on identi-
fying where knowledge is stored in language mod-
els, particularly in "neurons" (Song et al., 2024;
Tang et al., 2024; Niu et al., 2024; Chen et al.,
2024a,c). Dai et al. (2021) first introduced the
term “knowledge neuron” referring to the specific
medium within the model that stores knowledge.
Their work demonstrated that the factual knowl-
edge encoded in a model’s parameters could be
modified by manipulating these neurons. Building
on this, Meng et al. (2022a) refined the process of
identifying knowledge in LLMs using causal trac-
ing, showing that FFN layers in the middle blocks
of the model are critical for encoding factual knowl-
edge. To address the computational overhead of
these methods, Yu and Ananiadou (2024) proposed
a static attribution approach inspired by the logit
lens (nostalgebraist, 2020), enabling the identifica-
tion of important neurons with reduced computa-
tional and memory requirements. Based on these
advancements, we adopt neurons as the fundamen-
tal units for our work and apply a modified neuron
attribution method adapted from (Yu and Anani-
adou, 2024) to achieve knowledge extraction.

2.2 Manipulation of Parametric Knowledge

With the recognition of how knowledge stored in
model parameters, exist research has sought to exe-
cute diverse operations on these parameters, aiming
to manipulate the implicit knowledge. Knowledge
editing aims to update the parameters related to
specific knowledge in a model without affecting
its other capabilities (De Cao et al., 2021; Mitchell
et al., 2021; Meng et al., 2022a,b). We categorize
editing as fine-grained knowledge manipulation,
whereas its counterpart, coarse-grained manipula-
tion, encompasses tasks such as model merging (Jin
et al., 2022; Yu et al., 2024; Bowen et al., 2024).
Model merging typically starts with models of the
same scale, or even identical checkpoints, to com-
bine multiple models with different capabilities
into a single, multitask model. A series of studies
regard the delta parameter as task vector (Ilharco
et al., 2022; Zhang et al., 2023; Huang et al., 2024),
which can be leveraged through arithmetic opera-
tions such as addition and subtraction to acquire or

forget specific skills, demonstrating strong gener-
alization capabilities. DyPRAG (Tan et al., 2025)
transforms symbolic documents into parametric
knowledge using a hypernetwork. However, these
approaches are either limited to individual mod-
els or require maintaining the same scale and even
identical checkpoints. Moreover, they do not ex-
plore how parametric knowledge can be transferred
across models of different scales.

2.3 Transfer of Parametric Knowledge

Large language models can achieve explicit knowl-
edge transfer through language or logits, known
as knowledge distillation (Hinton, 2015). How-
ever, this approach overlooks the rich parametric
knowledge encoded within the model’s weights.
Existing methods for parametric knowledge trans-
fer primarily focus on model merging, directly
combining parameters from models of same scale.
However, little attention has been given to transfer-
ring knowledge across models of different scales.
While inference-time proxy-tuning techniques (Liu
et al., 2024; Wu et al., 2024) allow smaller models
to influence larger ones by adjusting output logits,
they do not directly leverage the implicit parametric
knowledge. Recent work SEEKING (Zhong et al.,
2023) has explored knowledge transfer between
models of different scales. It leverages sensitivity-
based extraction and LoRA-driven injection, fol-
lowed by Post-Alignment using training. In this
study, we conduct a comprehensive analysis of both
PostPKT and our proposed PrePKT to investigate
strategies for achieving efficient and effective PKT.

3 Challenge of Pre-Align Parametric
Knowledge Transfer

SEEKING (Zhong et al., 2023), designed to ad-
dress Post-align PKT, leverages delta parameters
AO extracted from M; for LoRA initialization,
demonstrating advantages over random initializa-
tion. Since the overall parameters remain un-
changed after injection, we refer to the subsequent
fine-tuning process as post-alignment. This pro-
cess, which aligns the LoRA parameters from M;
with the original ones, plays a critical role in en-
hancing PostPKT. However, the post-alignment
process is expensive and requires training on large-
scale data. A more intuitive and cost-effective
approach is to directly inject a certain form of
A® into the original parameters, thereby immedi-
ately enhancing task-specific knowledge without
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the need for additional training. In this section, we
try to solve this without alignment to determine
its significance in this new context. We adopt sev-
eral straightforward and commonly used methods.
However, we find that all of these unaligned trans-
fer methods fail. Through analysis, we identify key
statistical factors contributing to this failure, under-
scoring the critical importance of pre-alignment
in our newly proposed Pre-Align PKT paradigm.

3.1 Analysis Setup

We first illustrate how Transformer (Vaswani, 2017)
works and denote several symbols, detailed in Ap-
pendix A.1. Due to the parametric space mismatch
between M; and M, the achievement of knowl-
edge transfer hinges on discrepancy dimension
and layer number problem. For example, chat
version of Llama-2-7b has a layer number L of
32, hidden dimension d of 4096 and FFN neuron
numbers N of 11008, while 40, 5120 and 13824
for chat version of Llama-2-13b, respectively. To
reach the conclusion, we employ several basic ap-
proaches, relying solely on pre-selected layers and
standard dimension reduction techniques. For layer
selection, we propose three methods: TOP-Lsg,
BOTTOM-L, and RANDOM-L,. Given a smaller
LLM M, with Lg layers, these methods select the
top, bottom, or random L layers from M;, respec-
tively. To match hidden dimension d; and ds, we
use standard dimensionality reduction techniques
PCA (Abdi and Williams, 2010), WHITENING (Su,
2021) and a learning-based EMBEDDING TRANS-
FORM. For the numbers of FFN neuron /V; and N,
RANDOM and IMPORTANCE are selected. Mean-
while, we consider sensitivity-based knowledge
localization method SEEKING (Zhong et al., 2023)
as the strongest among the evaluated baselines. No-
tably, we directly using the extracted A®¢xiract a8
delta parameters, i.e. @) = O3 + AOcxyaer. De-
tails on these methods can be found in Appendix B.

3.2 Results of Unaligned Baselines

The results are presented in Figure 2 using MMLU
benchmark (Hendrycks et al., 2021). The Llama-2-
13b-Chat and Llama-2-7b-Chat models score 52.90
and 44.20, respectively. All unaligned transfer
methods significantly impair the model’s ability to
perform specific tasks, with some cases resulting in
nearly zero functionality. For instance, when using
the IMPORTANCE method for neuron selection and
the EMBEDDING TRANSFORM for dimensionality
reduction, several approaches achieve a score of

Llama-2-13b-chat: 52.90
52.9
Llama-2-7b-chat: 44.20

42.3
Seeking-Llama-2-7b-chat-with-13b: 38.50

uoRIB|SS UOINSN

importan¢e

<
d L—Loo

embedding
pca
whitening

Di i
Mension Reduction

Figure 2: Performance of different baseline methods in
MMLU.

22.95 with a degradation of 21.25. Notably, SEEK-
ING also causes a significant performance drop of
5.70 compared to the original model.

We begin our statistical analysis of the delta
parameter ranges and observe that the delta pa-
rameters from regular supervised fine-tuning (SFT)
exhibit a distinct pattern compared to those from
the SEEKING method. Specifically, the delta pa-
rameter ranges for normal SFT are smaller (within
0.002, as shown in Figures 7 and 8 aligns with (Yu
et al., 2024)), while those from SEEKING are larger
(exceeding 0.005 in Figure 9), with some even sur-
passing 1. Consequently, directly injecting these
large range parameters can significantly alter the
parameter distribution (e.g. potentially flipping 6;
from positive to negative).

Furthermore, we find that unaligned delta pa-
rameters exhibit low parametric similarity to the
original weights, indicating an absence of useful
task-related information in LoRA initialization. In
contrast, well-aligned SFT delta parameters demon-
strate significantly higher similarity to the original
weights. We conduct further in-depth analysis in
Section 5.3. Based on these observations, we con-
clude that alignment is a crucial factor for achiev-
ing PKT. Therefore, implementing pre-alignment
in the parametric space during PrePKT presents a
significant challenge.

4 LaTen: Locate-Then-Align for
Pre-Align Parametric Knowledge
Transfer

Based on the observations and conclusions in Sec-
tion 3, we propose a novel Locate-Then-Align
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(LaTen) method to solve PrePKT and achieve para-
metric space alignment, while preventing to disrupt
the injected model and without additional training.
Specifically, we utilize static neuron-level attribu-
tion (Yu and Ananiadou, 2024) method to locate
knowledgeable parameters for transferring, accord-
ing to both FFN and MHSA neurons contain task-
related parametric knowledge (Geva et al., 2023;
Chen et al., 2024b). The neuron-level attribution
method is detailed in Appendix A.2.

4.1 Parametric Knowledge Transfer
Definition

Considering a smaller LLM M and a larger LLM
M, initially parameterized by &, and ©;, respec-
tively. For a specific task 7, corresponding to a
training dataset DT = {(«7,y7)}%, compris-
ing () input-output instances and a extract dataset
D7,.... and an alignment dataset DaThgn. The over-
all goal is to extract delta parameters A®7 .
from ©; based on D7 then align to ®; to ob-

e extract?
tain A@ i,

AGeTxtract = Extract(©;; Os; DZ;tract) (1
A@Z]rign = Align(AQGTXtarct; Derign or Dt7r;in> (2)

where Extract(-) representing the logic for parame-
ter extraction and Align(-) encapsulating the align-
ment process for cross-scale PKT. Notably, DZlii n
only uses in PrePKT, while PostPKE trains for
alignment on larger Dg;in. Knowledge injection
will execute to merge the delta parameters into O:

s

O, + A@aThgn, for PrePKT

3)
where in PostPKT, the LoORA BA matrices are
initialized using A®Z,.... by SVD (Golub and
Reinsch, 1971), and the injection is performed be-
fore the Align(-) while keeping the overall weight
unchanged. In contrast, our proposed PrePKT
first performs Align(-) and then executes injection.
By incorporating the well-aligned parameters, the

model ability on task 7 is directly enhanced.

o — {@8 — A®T .. +BA, for PostPKT

4.2 Neuron-level Localization for Knowledge
Extraction

Existing studies have demonstrated that neurons
in FFEN and MHSA of Transformer serve as fun-
damental units for storing knowledge or specific
skills (Geva et al., 2020; Dai et al., 2021). These

neurons can be leveraged to modify the model’s
behavior, such as editing (Meng et al., 2022a,b) in
single model, which have not been fully explored
in a couple of models of different scales.

We use the neuron-level attribution method (Yu
and Ananiadou, 2024) to locate task-related use-
ful neurons for knowledge extraction. As detailed
in Appendix A.2, we use this method to gain im-
portance score of each neuron vector v, denoted
as I'mp(v), can be computed by measuring the
change in the output distribution of a predicted to-
ken . Since an answer y typically consists of T'
tokens, we only choose the last useful token ¢ for
attribution score. This process produces a score
matrix S with dimensions SN € RL*N for the
FFN and SMHSA ¢ RLxd for the MHSA, where
each element S; ; represents the importance score
of neuron v in the ith layer at the jth position. To
perform layer selection, we sum S; ; over layers to
get SE};I;, SM&?A € R’ then choosing the top-L
layers for M;. To align with neuron number of
M, we select the top-c neurons [; in layer [ by
sorting S; . in descending order, where c equals IV
or ds for FFN or MHSA, repectively. Based on I;,
we then extract the corresponding key and value
neurons to obtain the unaligned delta parameters
A®T . € RNsXd for FEN or R% % for MHSA.

4.3 Parameter Alignment with Knowledge
Injection

Align(-) as a prerequisite before knowledge in-
jection. Given the absence of explicit parameter-
level correspondence between M, and M;, we em-
ploy traditional language modeling loss for align-
ment optimization. Our training framework oper-
ates as follows: based on each training instance
(2] ,y]) € D] aei» We first extract the raw delta

extract>
parameters A@®7 These parameters are then

extract*
processed through a lightweight hypernetwork (im-
plemented as a two-layer MLP with ReLU acti-
vation) to obtain dimension reduced parameters
A@Z{ign. The target model parameters are subse-
quently injected via ®7 = @, + A@Z{ign. During
alignment, we randomly sample P instances from
the alignment dataset DZ{gin to compute the lan-
guage modeling loss, updating the hypernetwork
for effective parameter alignment. During evalu-
ation, we randomly sample one unseen instance,
process extracted parameters through trained hyper-
network for final alignment, and apply the aligned

parameters to the target model.
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Models MMLU GSM8K HumanEval MBPP
Llama-2-7B-Chat 44.20 16.07 14.05 17.80
Llama-2-13B-Chat 52.90 20.55 18.75 19.20
# Post-Align Parametric Knowledge Transfer
Post-Align on D] (=1000):

-Random Initialization. 49.73 26.51 14.22 15.60

-Seeking + 13B Param. 49.60 28.23 15.44 20.60

-PiSSA Initialization. 49.77 29.32 16.26 21.40
Post-Align on D], (< 100):

-Random Initialization. 44.20 16.35 14.02 18.20

-Seeking + 13B Param. 44.20 14.78 14.63 18.60
# Pre-Align Parametric Knowledge Transfer

-Seeking + Unaligned 13B Param wo Train.  38.50 7.28 0.61 0.00
Pre-Align on DZl—ign (< 100):

-LaTen + Pre-Aligned 13B Param. 44.40 20.47 14.63 18.20

Table 1: Results of Post-Align and Pre-Align parametric knowledge transfer.

5 Experiments

5.1 Experimental Setup

Datasets and Pre-trained Backbones. We select
MMLU (Hendrycks et al., 2021) to evaluate the
professional knowledge of models. We choose
GSMSK (Cobbe et al., 2021) for evaluating math-
ematical reasoning ability. For code generation,
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) are adopted for estimation. For pre-
trained LLMs, we use Llama 2 (Touvron et al.,
2023) to conduct task-related PKT.

Evaluation Metrics. We calculate zero-shot ac-
curacy for GSM8K and MMLU, pass@1 for Hu-
manEval and MBPP.

Implementation Details. Since chosen benchmark
require instruction following ability which not in-
clude in base version, we use chat version in remain
experiments. To execute PKT, we randomly sam-
ple three non-overlapping subsets from the orig-
inal training dataset (we utilize python examples
from (Luo et al., 2023b) as training set for Hu-
manEvall): an extract set of size 32, an align set
of size 80, and a training set of size 1000 (except
MBPP). However, not all examples in the align-
ment set are used for alignment in LaTen. Details
of the count are provided in Table 5. We denote
the Dgign as actual examples used for parameter
alignment in the following section. Additional im-
plementation details and experimental settings can
be found in C.1.

1https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1

5.2 [Experimental Results

Main Results for Post-Align PKT. SEEKING is
the first to investigate the transferability of cross-
scale LLMs and demonstrated that using delta pa-
rameters as LoRA initialization can significantly
enhance the ability of M to acquire task-specific
knowledge. Since this paradigm keeps the overall
parameters unchanged at the beginning, it can be
considered as a variant of LoRA initialized from
larger LLMs. Therefore, we are curious whether
the optimal LoRA initialization originates from
another model or from the model itself?

To explore this, we compare it with a self-
derived LoRA approach: PiSSA (Meng et al.,
2024), which applies singular value decomposition
(SVD) to separate LoRA parameters and residual
components from the original model parameters.
As shown in the upper section of Table 1, SEEKING
outperforms random Gaussian initialized LoRA in
most scenarios. For instance, the SEEKING method
achieves an improvement of 5.0 compared to Gaus-
sian initialization in MBPP. However, SEEKING
shows even lower performance in MMLU task,
demonstrating its instability. Notably, PiSSA con-
sistently achieves higher performance across all
benchmarks compared to SEEKING, with the delta
parameters derived from the same model providing
an additional 0.72 boost in performance on average.

These results suggest that the SEEKING method,
which relies on parameters from a different LLM,
requires more effort but leads to suboptimal per-
formance. We hypothesize that this is due to the
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Models HumanEval MBPP Models HumanEval MBPP

Llama-2-7B 14.05 17.80 Llama-2-7B 14.05 17.80
-PiSSA Initialization 16.26 21.40 # Pre-Align PKT from Llama-2-13B

# Post-Align PKT from Llama-2-13B Llama-2-13B 18.75 19.20

Llama-2-13B 18.75 19.20 —LaTen + 13B Param. 14.63 18.20
-Seeking + 13B Param. 15.44 20.60 # Pre-Align PKT from WizardCoder-13B-Python

# Post-Align PKT from WizardCoder-13B-Python WizardCoder-13B-Python 56.71 41.60

WizardCoder-13B-Python 56.71 41.60 -LaTen + 13B Param. 14.02 18.60
-Seeking + 13B Param. 15.04 19.80 # Pre-Align PKT from CodeLlama-13B-Python

# Post-Align PKT from CodeLlama-13B-Python CodeLlama-13B-Python 47.56 37.80

CodeLlama-13B-Python 47.56 37.80 -LaTen + 13B Param. 14.02 17.80
-Seeking + 13B Param. 16.05 21.40

Table 2: Results of Post-Align PKT from different larger
LLMs in code generation.

incompatibility of the delta parameters from M
compared to M itself.

Main Results for Pre-Align PKT. In Section 3,
we explored various methods to extract unaligned
A®OT .t for direct application to the parameters.
However, none of these methods yielded satisfac-
tory results. Instead, they degraded the model origi-
nal capabilities. We also show more comprehensive
results in Table 1 to further demonstrate our finding
of the importance of alignment.

As shown in the lower part of Table 1, our pro-
posed LaTen achieves strong performance across
all benchmarks. For instance, LaTen improves by
4.40 on GSMSK and achieves an average improve-
ment of 1.86 across four datasets compared to the
base model M;. We also employ a more equi-
table setup to compare the PostPKT and PrePKT
paradigms, where PostPKT is restricted to perform-
ing post-align operations solely on the align dataset
DZl—ign (<100). In this setting, LaTen outperforms
models with random initialization. Additionally,
when compared to the PostPKT SEEKING approach
with the same computational cost for alignment,
LaTen demonstrates superior performance in most
settings, particularly on GSM8K, where it achieves
an improvement of 5.69. These results highlight
the potential of PrePKT paradigm and LaTen in
effectively solving it.

It is worth emphasizing that our proposed LaTen
achieves powerful performance with only a few
steps of parameter alignment. However, this phe-
nomenon is a double-edged sword. Identifying the
best checkpoint requires multiple experiments, and
the parameter space alignment process does not
exhibit a straightforward minimum point, making
it more challenging to optimize compared to tradi-
tional language-based transfer methods. Therefore,
exploring stable PrePKT methods is valuable for

Table 3: Results of Pre-Align PKT from different larger
LLMs in code generation.

future research.

5.3 Analysis

Can Stronger M, Transfer Richer Knowledge?
In the above experiment, we observed that using
the parameters derived from larger LLMs M; via
SEEKING to initialize LoRA generally outperforms
random initialization in most cases. However, it
still falls short compared to using LoRA initial-
ized with parameters derived from the model it-
self (Meng et al., 2024). To further investigate
whether the parameters extracted from M carry
useful information, an intuitive hypothesis is that
parameters extracted from M; which specialized in
a specific task should be more useful for PKT.

To test this hypothesis, we employ WizardCoder-
13B-Python (Luo et al., 2023b) and CodeL.lama-
13B-Python (Roziere et al., 2023) as M; for com-
parison. Both WizardCoder and CodeLlama are
fine-tuned on code-specific datasets to enhance
their code generation capabilities, outperforming
Llama-2-13B in this domain. However, as shown
in Table 2, under identical fine-tuning conditions
in PostPKT, initializing LoRA parameters with
WizardCoder-13B unexpectedly resulted in worse
task performance. For example, on the HumanEval
(MBPP) task, performance decreased by 0.4 (0.8)
compared to Llama-2-13B. Although Codel.lama-
13B demonstrated improvements over Llama-2-
13B, it still falls short of matching the performance
of PiSSA. We also examine mathematical genera-
tion task in Table 6 which shows the similar results
in PostPKT. For PrePKT, the results also do not
support our hypothesis, shown in Table 3,

Based on the above experiments, we propose
that LLMs of different parameter scales inherently
exhibit incompatibility in parameters, which makes
ideal PKT largely coincidental. We call this Neu-
ron Incompatibility and further explore the rea-

21592



7B_vs_13B_Layer_Similarity_mip_uj j milari .
4 _Layer ! y_mlp_up_proj 7B_vs_13B_Layer_Similarity_mlp_down_proj
K o7 o 5 08

222426 26 30 32 34 3
Llama-2-13B-Chat layers

Figure 3: Representation Similarity Comparison Results
between LLMs.

sons behind in following discussion.

Ethological Similarity between Cross-Scale
LLMs. To further analyze why both PostPKT and
PrePKT perform suboptimally, we utilize Centered
Kernel Alignment (CKA) (Kornblith et al., 2019),
a method based on the Hilbert-Schmidt Indepen-
dence Criterion (HSIC), to compute the similarity
between feature representations in neural networks.
This metric assesses the similarity in behaviors be-
tween the two models, which can be interpreted as
the ethological similarity of LLMs. We compute
the ethological similarity between Llama-2-7B and
Llama-2-13B across the up-proj, down-proj, v-proj,
and o-proj modules.

As shown in Figure 3, the similarity between 7B
and 13B is notably low, especially in the MHSA
module which plays the most important part for
integrating information (Elhage et al., 2021). In-
terestingly, the up-proj layers demonstrate higher
similarity, likely because they function as key mem-
ories, capturing specific input patterns (Geva et al.,
2020), which tend to be consistent across models.
The weak similarity between M; and M also ex-
plains why LoRA derived from the same model
performs better, as it aligns more closely with the
model’s intrinsic behavior. We identify that the
weak ethological similarity between cross-scale
LLMs is one of the key factors contributing to neu-
ral incompatibility, making ideal parametric knowl-
edge transfer success difficult to achieve.
Parametric Structural Similarity in Different
Methods. We further conduct in-depth analysis
based on parametric structural similarity to fig-
ure out whether it performs important influence on
performance. As shown in Figure 4, we compare

PiSSA up_proj PiSSA down_proj
LoA vs Remaining B LoRA s Remaining

LLLLLLLLLL

Seeking down_proj

Figure 4: Parametric Similarity Comparison Results
between LLMs in MLP Modules.

WlLoR A (i.e. LoRA parameters in layer [) with both
W' and Wﬁemain (i.e. Wi— WioR A) inup-proj and
down-proj modules. First, the pattern of results is
completely opposite between SEEKING and PiSSA.
In SEEKING, the mean similarity between W' and
W1 g4 drops to 0, suggesting that W! ., does not
retain any meaningful information from W*. This
deficiency results in suboptimal performance. For
comparison, PiSSA which utilizes SVD to capture
important parameters for LORA, preserves greater
similarity to the original weights and establishes
an orthogonal relationship with Wﬁemain, making it
more effective for learning new skills. Our findings
indicate that parametric structural similarity plays a
crucial role in further fine-tuning. Specifically, the
similarity between WlLOR A and W! significantly
influences the model’s ability to adapt to new tasks
and execute parameter alignment. The low degree
of similarity emerges as a key factor contributing
to neural incompatibility. We observe the same
pattern in the MHSA module (Figure 6).

6 Conclusion

In this work, we comprehensively define and ex-
plore the feasibility of Parametric Knowledge
Transfer (PKT) between cross-scale LLMs. We pro-
pose Locate-Then-Align solution to address newly
raised Pre-Align PKT challenge with reduced align-
ment costs. Through extensive experiments on four
benchmarks, we demonstrate the neural incompat-
ibility between cross-scale LLMs reflects in low
similarity in both ethological and parametric space,
which pose fundamental challenges to achieve ideal
PKT. Our findings offer novel insights into the para-
metric structures of LLMs and aim to elucidate
directions for future research on efficient PKT.
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7 Limitations

This study identifies alignment as the key factor
for achieving PKT and introduces two distinct
paradigms based on this insight. Although current
PKT methods are somewhat effective, they still rely
on language for supervision. Developing simpler
and more efficient approaches that do not depend
on language guidance is a promising direction for
future research. Moreover, the underlying princi-
ples behind PKT’s effectiveness remain unclear,
and it is also uncertain why a stronger M yields no
improvement. These questions highlight important
areas for further investigation. Furthermore, due
to equipment limitations, our experiments were re-
stricted to models between 13B and 7B. Neverthe-
less, the results still provide meaningful evidence
to support our conclusions. In the future, expand-
ing experiments to larger-scale LLMs would be a
worthwhile and necessary direction for exploration.
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A Background

A.1 Transformer

Transformer-based language models (Vaswani,
2017) are at the center of state-of-the-art natu-
ral language processing (Devlin, 2018; Brown
et al., 2020) and have become the most popular
and effective architecture, even in computer vi-
sion (Dosovitskiy, 2020; Tian et al., 2024). A
decoder-only Transformer is stacked with L iden-
tical blocks, mainly containing a multi-head self-
attention (MHSA) module and a feed-forward net-
work (FFN) module.

Follow (Yu and Ananiadou, 2024), We first de-
tail the forward pass from the input token to the
final prediction. Given an input sequence X =
[t1,t2, ..., tp] with T tokens, the model generated
the next token’s probability distribution y over B
tokens in vocabulary V. Each ¢; at position ¢ starts
as a word embedding h? € R? transformed by
the embedding matrix E € RZ*<, Followed by L
transformer layers, each layer output hé (layer [,
position 7) is the sum of the previous layer’s output
hé_l, the FFN output Fﬁ and the attention output
Al

h! = h!"' + Fl 4+ AL 4)

The final probability distribution y of the next to-
ken is computed by multiplying the unembedded
matrix E,, € RB*? and the last position of Lth
layer output:

y = softmax(E,hk). ®)

Diving into how do the two main components work,
the FFN layer’s output is computed by two linear
transformations with a nonlinear function o, while
the MHSA layer’s output is a weighted sum over
H heads on T positions:

H
=> ATTNi(h{ ™", h5 ", ...
j=1

W) ()

Fl. = Wi,.o(Wi (b +Al), (7

RNXd and Wl RdXN

where Wfl down are
two linear matrices in FFN and for clarity we
do not include ngate used in LLama-2. (Geva
et al., 2020) shows that FFN emulates neural mem-
ories (Sukhbaatar et al., 2015) where the Wflp cor-

responds to keys and Wdown to values. Then the
FFN output can be transformed into a weighted

sum of FFN neurons:

N
= Z c§7kdown§€, ®)
k=1
cix =o(upl - (W' +AD), ()

where down!, denotes the kth column of W
referred to as the FFN subvalue. The coefficient

score Cé, i 1 computed by comparing the residual

output hi_l + Al with upfk, the kth row of Wflp,
referred to as the FFN subkey. Meanwhile, the
MHSA output Aﬁ can also be expressed as the sum
of individual head outputs, where each head pro-
duces a weighted sum of the value vectors across
all positions:

H T
Aé:ZZ GaWH(WERT)  (10)
j: n=1
o ;. = softmax(W? hi=" - W5 hi=1) (1)
where W;Jl, Wfl, W2, and W¢, € RAxd/H po

resent the query, key, value, and output matrices of
the jth attention head in the /th layer. The query
and key matrices are used to compute the atten-
tion weight O‘z j.n for the nth position, followed by
applying the softmax function across all positions.
The value and output matrices then transform the
input vector at the nth position into the correspond-
ing value-output vector. Finally, the output of each
attention head is the weighted sum of value-output
vectors across all positions.

A.2 Neuron-level Attribution

Following the definition of neurons from (Yu and
Ananiadou, 2024), the kth FEN neuron is the kth
subvalue of W which is activated by its corre-
sponding subkey upi,. To align with the definition
in FFN neurons, we regard the kth column of W2,
as the kth attention subvalue (neuron) in this head,
whose subkey is the k& th row of W” This design

uses the position value-output W (W” hi~1) as
the base unit, performing an addmon of T x H
vectors to generate each attention output as shown
in Eq.10. Each vector is derived from the attention
subvalue and subkey, similar to Eq.8.

Instead of choosing integrated gradients (Sun-
dararajan et al., 2017; Dai et al., 2021) or causal
tracing (Vig et al., 2020; Meng et al., 2022a),
we use a static neuron-level attribution method
from (Yu and Ananiadou, 2024) . As introduced

21597



above, the final vector h:LF used for predicting the
next token is computed as a direct sum of various
neuron-level vectors. Specifically, h'%r in layer [ can
be decomposed into two components: a single neu-
ron vector v and the remaining vector x = th —V.
The change in the output distribution, measured
using the "logits lens" (nostalgebraist, 2020), can
then be interpreted as the importance score for the
neuron v:

log(p(w|v! +h!~1))
— log(p(w|h'™))

, vt € [th MHSA

alternative to BERT-flow (Li et al., 2020). It
has become a widely adopted technique for
dimensionality reduction while preserving key
features (Liao et al., 2024).

* EMBEDDING TRANSFORM: We propose an
intuitive method for dimensionality reduction
by learning a linear transformation W’ &
R%*ds to map E; to E, using E; = E;W'.
Here, E, € RB*% and E; € RB*% repre-
sent the embedding matrices in Mg and Mj,

Imp(vl) _ l 2 l respectively. This problem is formulated as
log(p(w|v' +h""" + A i inimizati :
gi(p(( l ’hl_l . Al)) ))7 vl € Ith FEN the following minimization task:
—log(p(w .
(12) min|| B, — B, W7 (13)
where w is the prediction token and p(w|x*) is com-
where || - || denotes the Frobenius norm. Af-

puted by multiplying the vector with E,, (in Eq. 5).
Interpretable Neuron Location. Based on our
modified method (Yu and Ananiadou, 2024), the
most influential neurons identified can be analyzed
through the logits lens (nostalgebraist, 2020). As
illustrated in Figure 5, we project these selected
neurons into the vocabulary space, revealing that
the top-10 tokens are strongly associated with both
the question and answer. This approach enables
effective neuron selection, preserving the most rel-
evant neuron information for the specific task and
facilitating the subsequent transfer process.

Task: GSM8K

Question: Barry stands on his head for 10...turns can Barry take standing on his head
during a single 2-hour period?
Answer: Each turn Barry takes standing on his head... So the answer is 8.

Neuron Top10 tokens in vocabulary space

-8024 2,131, 11°,10", '4', '5", 16", 17", '8, '9"

-100 '8, '"Jun', 'eight', 'Zero', 'eigh’, 'middle', 'Friday', 'Middle', 'Jul', 's'

Question: Edward the plumber ... how many washers will be remaining in the bag?

Answer: If Edward needs to use 1 bolt per... So the answer is 4.

Neuron Top10 tokens in vocabulary space

-8918 '4", 'Four', 'four’, 'four', 'fourth', 's', 'Vier', 'uersr', '*', 'cuatro’

-0 'four’, 'four’, 'Four', 'six', 'cuatro', 'vier', "4etsI', 'nine', 'quatre’, "I’

Figure 5: Interpretable neuron location in GSMS8K task.

B Details of Parametric Knowledge
Transfer Baselines

B.1 Unaligned Parametric Knowledge
Transfer Baselines

In this section, we first detail the precise imple-
mentation of WHITENING, EMBEDDING TRANS-
FORM and IMPORTANCE, leaving SEEKING in Sec-
tion B.2.

* WHITENING: BERT-whitening, introduced
by (Su, 2021), provides a simple yet effective

ter derivation, we obtain the closed-form so-
lution: W’ = (El'E;) "'ETE; which is then
applied to perform dimensionality reduction
effectively.

* IMPORTANCE: Following (Bowen et al,
2024), we define the importance I; of the
ith parameter 6; using its amplitude, where
I; = ||6;]|3. Neuron sampling is performed
based on average importance scores across
neurons, while gradient-based scores are uti-
lized in SEEKING.

B.2 Illustrate SEEKING Method

(Zhong et al., 2023) attempts to empirically in-
vestigate post-align parametric knowledge transfer
from larger to smaller models through parametric
perspective. When conducting knowledge extrac-
tion, for a given task 7, the parameter-level impor-
tance score is calculated by sensitivity (Mozer and
Smolensky, 1988):

ST, =10/ VoL y]1©)] (4
where S;rj represents the importance of the sth pa-
rameter 6; relative to sample j and the absolute
value is taken for the purpose of measuring the
amplitude. Then, the final score SZT for task 7 inte-
grates the cumulative sensitivity over the sampled
instances, calculated as 2?21 Sz—j Layer selec-
tion involves calculating a score for each layer by
aggregating the sensitivity scores of all parame-
ters within that layer. The layers are then ranked
in descending order based on the scores, and the
top L; layers are selected while preserving their
original sequential order. Dimension reduction is
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achieved by directly extracting the sub-matrix with
the highest cumulative sensitivity score:
! _ .
Wextract = arg Wn’lCa%{Vl Z Sz' (15)
- 0;EW’

where W! € R™*™ represents a matrix in /th
layer and W’ € R™*™s is a sub-matrix in W' to
match smaller model’s matrix dimensions (ng <
ny,ms < my). Then aggregating W' .. across
all layers can get the final extracted parameters
AGextract-

For knowledge injection, SEEKING utilizes
LoRA (Hu et al., 2021) as a bridge by decompose
WL ... into UV using Singular Value Decom-
position (SVD) (Golub and Reinsch, 1971) then
transfer to U[:, : ][ 7,: 7] VT [: r, :] to match the
rank 7. In the end, SEEKING actually provides a
unaligned LoRA initialization as:

WH=W'- Wl ..+BA (16
where B is initialized as U[:,: #|X[: r,: r|, and A
with VT[: v :]. After injection, the overall param-
eters remain unchanged (the SVD approximation
of the LoRA loss is negligible). Subsequent post-
alignment with a large amount of training data is
the key process.

B.3 Statistical Analysis

Range of Delta Parameters. (Yu et al., 2024)
finds that the SFT delta parameter ranges at a very
small number (with in 0.002) and contains many
redundant information that can be removed. We
first derive the delta parameters from the base and
chat versions of Llama-2 (Touvron et al., 2023).
The results are presented in Figures 7 and 8 which
consistent with (Yu et al., 2024). However, using
SEEKING (Zhong et al., 2023) to directly extract
the delta parameters from M; (e.g., Llama-2-13b)
results in A®gxract values that are poorly aligned
with Mg, leading to a wide range of parameter
differences. As shown in Figure 9, these values
often exceed 0.005, with a maximum of 1.12 and
a minimum of -1.13. When applied directly as
delta parameters, such discrepancies significantly
degrade the model’s performance.

C Detailed Experimens

C.1 Implementations

Baseline Implementations. During fine-tuning,
the smaller model is trained for 5 epochs with a

batch size of 64 and a learning rate of 3e-4 except
for HumanEval of 3e-5 and trained 3 epochs in
SFT setting. Regarding LoRA, we set the rank as
16, and insert LoRA into up-proj and down-proj
of FEN, v-proj and o-proj of MHSA layer. During
the alignment stage, the hypernetwork is trained
with a learning rate of le-5 and a weight decay
of 0.05. We also employ the Mean Square Loss
between A@Zhgn and a zero tensor of the same size
as a constraint. The sample size P is set to 16
and we only transfer 10% neurons in each layer.
Notably, results of PostPKT are mean values from
three runs with different seeds. More details about
datasets are shown in Table 4 and 5. Our inference
process for language models is handled based on
vLLM (Kwon et al., 2023).

Stronger M; Implementations. For stronger
M;, we choose model which further fine-tuned
on Llama-2-13B to keep comparison. We choose
WizardMath-13B-V1.0? for matheatical reason-
ing. We use WizardCoder-Python-13B* and
CodeLlama-13b-Python* for code-generating task.

Dataset MMLU | GSM8K | HumanEval | MBPP
Train Size 1000 1000 1000 300
Ir 3e-4 3e-4 3e-5 3e-4
Epochs 5 5 3 5

Table 4: Details of training datasets in PostPKT.

Dataset MMLU | GSMSK | HumanEval | MBPP
Align Size 32 64 48 128
Ir 3e-5 3e-5 3e-5 3e-5
Steps 2 4 3 8

Table 5: Details of alignment datasets in PrePKT.

Representation Similarity Implementations. In
order to calculate the representation similarity, we
use PyTorch implementation of Centered Kernel
Alignment (CKA)°. In practice, we randomly sam-
ple 200 examples from the test set of wikitext to
calculate model representations.

C.2 More Results

Strong M; in Mathematical Reasoning. We also
use WizardMath-13B-V1.0 (Luo et al., 2023a) as

2https://huggingface.co/WizardLM/
WizardMath-13B-V1.0
3https://huggingface.co/WizardLM/
WizardCoder-Python-13B-V1.0
*https://huggingface.co/codellama/
CodelLlama-13b-Python-hf
Shttps://github.com/RistoAle97/
centered-kernel-alignment

21599


https://huggingface.co/WizardLM/WizardMath-13B-V1.0
https://huggingface.co/WizardLM/WizardMath-13B-V1.0
https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
https://huggingface.co/codellama/CodeLlama-13b-Python-hf
https://huggingface.co/codellama/CodeLlama-13b-Python-hf
https://github.com/RistoAle97/centered-kernel-alignment
https://github.com/RistoAle97/centered-kernel-alignment

PiSSA v_proj PiSSA o_proj

3 H T 20 %5 EQ 3 5 0 %0 75 EQ

i3 15
Layer Index Layer Index

Seeking v_proj Seeking o_proj

[ g T 20 %

[ H ) 20

iy T5
Layer Index Layer Index

Figure 6: Results for Parametric Similarity Comparison
between LLMs in MHSA Modules.

M for comparison. WizardMath leverages Rein-
forcement Learning from Evol-Instruct Feedback
(RLEIF) to enhance its mathematical reasoning
abilities and outperforms Llama-2-13B in this do-
main. However, as shown in Table 6, under the
same fine-tuning settings, using WizardMath-13B
as the parameter source for LoRA initialization
unexpectedly led to worse task performance. For
instance, on the GSM task, performance dropped
by 3.71 compared to Llama-2-13B and even fell
1.99 below the randomly initialized LoRA baseline.
This result supports our conclusion.

Models GSMS8K

Llama-2-7B 16.07

# Post-Align PKT from Llama-2-13B

Llama-2-13B 20.55
-Seeking + 13B Param. 28.23

# Post-Align PKT from WizardMath-13B

WizardMath-13B 53.15
-Seeking + 13B Param. 24.52

Table 6: Results for implicit parametric knowledge
transfer from different larger LLMs in mathematical
reasoning.

Parametric Similarity in MHSA Modules. As
shown in Figure 6, we observe a similar pattern in
the MHSA modules. This result indicates that the
similarity between W' and WioR A Plays a crucial
role in subsequent SFT.

Comparison with Language-based Knowledge
Distillation. To further assess the effectiveness
of LaTen in low-resource settings, we expanded
our experiments to include comparisons between
Llama-2-7B-Chat and Llama-2-13B-Chat, as well

as additional evaluations on the Qwen2.5 models.
The experimental results are summarized in Ta-
bles 7 and 8. These findings demonstrate that
LaTen consistently outperforms distillation base-
lines in scenarios with extremely limited training
data. Specifically, LaTen achieves performance
that is comparable to or better than approaches
such as supervised knowledge distillation (Super-
vised KD)(Hinton, 2015), sequential knowledge
distillation (SeqKD)(Kim and Rush, 2016), and
generalized knowledge distillation (GKD) (Agar-
wal et al., 2024), while requiring significantly fewer
training examples.

These results underscore the potential of LaTen
for efficient parametric knowledge transfer, partic-
ularly in low-resource scenarios where access to
training data is highly constrained. However, its
performance remains limited by certain vulnerabili-
ties, suggesting that exploring more robust methods
for parametric knowledge transfer presents an in-
triguing direction for future research.

Models GSMS8K Traning Data
Llama-2-7B-Chat 16.07 -
Llama-2-13B-Chat 20.55 -

# Pre-Align Parametric Knowledge Transfer
Pre-Align on D7,

align

-LaTen + Pre-Aligned 13B Param. (5 Steps) 20.47 5x16
# Language-based Knowledge Distillation
Distillation on D],
-SeqKD (5 Epochs) 16.60 5%80
-Supervised KD (5 Epochs) 16.60 5x 80
-GKD (5 Epochs) 16.60 5%80

Table 7: Results for comparison with language-based
knowledge distillation baselines in the Llama-2 series.
Both Pre-Align (step size 16) and distillation are con-
ducted on D, consisting of 80 examples.

align®
Models GSMS8K Training Data
Qwen2.5-1.5B 62.02
Qwen2.5-3B 73.24

# Pre-Align Parametric Knowledge Transfer
Pre-Align on D/

align

-LaTen + Pre—/’iligned 3B Param. (5 Steps)  62.32 5x16
# Language-based Knowledge Distillation
Distillation on D7
-SeqKD (5 Epochs) 62.47 5x%1000
-Supervised KD (5 Epochs) 61.87 5x1000
-GKD (1 Epoch) 62.02 11000

Table 8: Results for comparison with language-based
knowledge distillation baselines in the Qwen2.5 series.
Both Pre-Align (step size 16) and distillation are con-
ducted on D, , consisting of 1000 examples.

train®
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Figure 7: Delta parameter ranges between Llama-2-7b and Llama-2-7b-Chat
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Figure 8: Delta parameter ranges between Llama-2-13b and Llama-2-13b-Chat
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Figure 9: Delta parameter ranges from Llama-2-13b-Chat in GSM8K using SEEKING
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