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Abstract

Direct Preference Optimization (DPO) has
emerged as a promising framework for align-
ing Large Language Models (LLMs) with hu-
man preferences by directly optimizing the log-
likelihood difference between chosen and re-
jected responses. However, existing methods
assign equal importance to all tokens in the re-
sponse, while humans focus on more meaning-
ful parts. This leads to suboptimal preference
optimization, as irrelevant or noisy tokens dis-
proportionately influence DPO loss. To address
this limitation, we propose Optimal Transport-
based token weighting scheme for enhanc-
ing direct Preference Optimization (OTPO).
By emphasizing semantically meaningful to-
ken pairs and de-emphasizing less relevant
ones, our method introduces a context-aware
token weighting scheme that yields a more con-
trastive reward difference estimate. This adap-
tive weighting enhances reward stability, im-
proves interpretability, and ensures that prefer-
ence optimization focuses on meaningful dif-
ferences between responses. Extensive experi-
ments have validated OTPO’s effectiveness in
improving instruction-following ability across
various settings.'

1 Introduction

Aligning large language models with human prefer-
ences (Ouyang et al., 2022) and values (Yao et al.,
2023; Yi et al., 2023) guides LLMs to be helpful,
honest, and harmless, preventing misuse of their
powerful abilities (Bai et al., 2022). Reinforcement
Learning from Human Feedback (RLHF) achieves
this objective via fine-tuning the LLM to optimize
the learned reward model (Ouyang et al., 2022).
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Code is available at https://github.com/Mimasss2/OTPO.
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Figure 1: The uniform weighting in DPO leads to sub-
optimal alignment results, allowing less relevant signals
to dominate. OTPO identifies the contextually similar
parts in pairwise responses as targets and upweights
target signals. r(y.) denotes the estimated reward under
each method.

Offline direct preference optimization algorithms,
e.g., DPO (Rafailov et al., 2024b), simplify
this process by applying reparameterization to
implicitly model the reward as the log ratio
likelihood of the response, which is equivalent
to the sum of log ratio likelihoods of all tokens.
This transformation results in a simple binary
cross-entropy objective of reward difference, and
has been widely adopted due to its training stability
and efficiency (Xiao et al., 2024).

The DPO loss treats each token equally, which
can bias the model to overlook less important fac-
tors and learn by shortcuts, leading to suboptimal
results (Park et al., 2024). In Fig. 1, tokens less
relevant to the question dominate the reward, while
important parts like “Cat likes to eat fish” should
be paid more attention. Current methods, includ-
ing SimPO (Meng et al., 2024), SamPO (Lu et al.,
2024), and LDDPO (Liu et al., 2024b), primarily
focus on the length bias caused by imbalanced to-
tal token weight between a chosen response and a
rejected response. They apply a heuristic weight-
ing scheme to reduce the difference in total token
weight. Moreover, they can not distinguish the
important tokens relevant to instruction-following
due to a lack of supervision signal. Recent work
like APO (Dao, 2024) has attempted to address this
issue by rewriting the irrelevant parts to maintain
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minimum difference with the other response, yet it
relies heavily on the external reviser.

In this paper, we propose an Optimal Transport-
based weighting scheme for direct Preference
Optimization (OTPO), a novel unsupervised frame-
work for calculating token weights in direct prefer-
ence optimization. Our key innovation lies in em-
phasizing tokens where the responses agree (similar
tokens) as indicators of higher quality or shared in-
formation, and de-emphasizing tokens where they
disagree. We observe that these shared parts of
responses are more likely to be relevant to the
question, as there are multiple ways to represent
the same answer. Specifically, we utilize an un-
balanced optimal transport approach to dynami-
cally assign a fixed total weight budget to token-
level weights based on the similarity between to-
kens in chosen and rejected responses, allocating
higher weights to more semantically relevant to-
kens. This allows for estimating the minimum ef-
fort required to transform one response to the other.
Compared to previous methods, our method im-
proves reward stability, enhances the transparency
of preference optimization, and ensures the opti-
mization focuses on more meaningful differences
between responses.

To sum up, our contributions are threefold:

* We identify the issue of treating tokens equally
in DPO and propose a general weighting
scheme that incorporates previous methods.

* We design an optimal transport-based token
weighting scheme to identify important tokens
without extra supervision signal.

» Extensive experiments have validated OTPO’s
effectiveness across various settings, achiev-
ing up to 10.9% length-controlled win rate
increase on AlpacaEval2 compared to DPO.

2 Methods

We first provide a simple background of DPO
(Sec. 2.1). To refine the understanding of the re-
ward difference term A, in DPO, we decompose
it from a more granular perspective and propose a
general weighting scheme that incorporates previ-
ous methods (Sec. 2.2). By examining interactions
at the level of chosen-rejected token pairs, we iden-
tify opportunities for improvement in how reward
differences are computed and propose our OTWPO
algorithm for more nuanced adjustments (Sec. 2.3).
Fig. 2 shows the overall framework.

2.1 Background: Direct Preference
Optimization

DPO eliminates the need for explicitly learning
a reward model and reparameterizes the reward
model as:

r(z,y) = plog Tolylz) + plog Z(x) (1)
Trref (y | Z )
Here, my is the model to be optimized, 7 is a ref-
erence model, 7, (y|x) denotes the probability of a
response y given input x under policy 7, and Z(z)
is an unknown partition function. Incorporating the
above reward model into the Bradley-Terry model,
the final DPO loss function is:

L(7Tg; Mrer) = _E(x,yc,yr)ND[IOgU(BAT)] (2)

7'f'ref(yc|m) 71—ref(y7"|'fv)

where (x, y¢, yr) is a preference pair consisting of
a prompt x, a chosen response ., and a rejected
response y, from the preference dataset D. And o
denotes the sigmoid function.

Formally, given a response y of length |y|, its
probability under the policy is factorized as the
multiplicative product of each token’s probability
mo(ylx) = leyzll 7o(y'|z,y<?). The reparameter-
ized reward difference term A\, in DPO treats the
entire response as a single action, in contrast to
classical RLHF methods that model each token as
an action and optimize token-level value functions
with sparse rewards at the terminal state (Rafailov
et al., 2024a). This can mislead optimization by
causing the policy to focus on less important tokens
and learn through shortcuts, potentially undermin-
ing the intended reward signal.

2.2 Decomposing DPO Loss

We first break down the reward difference A, in
DPO loss at the token level to explicitly reveal how
each token contributes to the optimization process.
Operating at the token level, we have (see proofs
in Appx. K.1):

[Yel [yr]
Ar=) ac—) 4,
i=1 j=1 4)
o (yilw, ys*)

where ¢. = log ; :
’ Tref (Yi]x, ys*)

Here, i denotes the log-likelihood ratio of the i-th
token in y, between the model and the reference
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Figure 2: Overall framework. (a) We compute the token-level weighting scheme using optimal transport. Each
response’s distribution is made up of its tokens, represented as vectors in the LLM’s representation space. The
optimized transport plan is visualized using a Sankey diagram. (b) We decompose the DPO loss at the token level

and apply the weighting scheme obtained in (a).

Method Weighting Scheme
DPO w; =1, Vie[l,|yl]
SimPO wj |y‘, Vi € [1,]y|]
wi=1,VieSsS, w=0,Vi¢Ss
SamPO i ere S ~ Uniform(m, [1, []])
LDDPO wi = 1,'Vz € [1,m]
wi=a, Vi€ [m+1 lyl]
OTPO o.) Z'yrl Lij, Z‘ycl Iy

Table 1: Weighting schemes for different methods. Here,
|y| is the current response length, |y.| and |y..| denote
the lengths of the chosen and rejected responses, re-
spectively. m = min(|y.|, |y-|), and @ € [0,1] is a
hyperparameter in LDDPO. I' is the optimized transport
plan in Eq. 9.

distribution. We can see that each token contributes
equally by its log-likelihood ratio. We further in-
corporate a token-level weighting scheme for A,
and express it as:

yel yr|

A, = chqc > wid] 5)
j=1

where w! represents the weight assigned to the
i-th token in response y.. This decomposition ex-
presses A, in terms of differences in weighted to-
ken log-probability ratio difference. DPO can be
viewed as a special case of Eq. 5, assigning a uni-
form weight of 1 for all tokens.

This token weighting scheme incorporates previ-
ous methods for mitigating length bias, as shown
in Tab. 1. Fig. 3 provides a more intuitive illustra-
tion. Length bias refers to the phenomenon where

the model learns to only improve length instead
of quality to increase reward difference compared
to the base model. DPO causes length bias as the
difference in the two responses’ total token weight
0= Z'y" Z'yrl Wi = |ye| — |y | being posi-
tive most of the time. Previous methods essentially
apply a weighting scheme to reduce the total to-
ken weight difference . SimPO down-weight all
tokens’ weight to 1/|y/|, ensuring each response’s
total weight sums to 1. SamPO employs a more
subtle downsampling on the longer response to
only consider the same amount of random tokens
as the other response. LDDPO only down-weights
the over-lengthy parts to reduce §. These methods
apply some heuristic kind of weighting scheme to
mitigate length bias caused by total token weight
bias. Yet a more principled weighting scheme delv-
ing into each token’s importance is needed to solve
the problem fundamentally.

2.3 Optimal Transport based Weighting
Scheme

While prior methods primarily adjust total token
weights, our approach takes a deeper look into the
geometric structure of token pair relationships. We
further break down the reward difference term as
the weighted token log-likelihood difference across
all chosen-rejected token pairs:

Ar =303 Tija—a) (©)
i g

Here, I'; ; represents the weight assigned to each
token pair {y’, y7 }. Then, the previous token level

weights w’, wi corresponds to:

=> Tij, wi=)Y Ty (7)
J i
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Weighting Schemes for Chosen and Rejected Responses
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Figure 3: Weights assigned to the responses given different methods. Here, given the prompt “What is the capital of
Paris?”, the chosen response is “The capital of France is Paris, a major European city known for its art, culture,
and history.”, and the rejected response is “France’s big city? That’s Paris, I guess. The birthplace of Victor Hugo,

Emile Zola, Charles Baudelaire.”

Building on the token-pair level transformation
of the DPO loss, we now focus on exploiting this
finer granular A, to differentiate token pairs based
on their semantic relevance. We aim to empha-
size semantically meaningful token pairs, with
similar meanings and structural roles, while de-
emphasizing less relevant ones. This coincides
with the principle of majority voting, where the
most frequently occurring element is chosen as
the final answer (Wang et al., 2023). In our con-
text, the parts of the responses most relevant to
the question—such as the direct answer “The cap-
ital of France is xxx”—are more likely to appear
consistently across both the chosen and rejected
responses. This is particularly evident in the on-
policy setting, where all responses are generated by
the same policy. These shared parts, representing
the “majority”, carry critical information and thus
are prioritized.

A key challenge arises from the unequal total
weight sums of chosen and rejected responses in
naive DPO loss, while the above formulation inher-
ently requires the same total weight sum for each
response pair, as:

Zwi:ZwZ:ZZFm (®)
i i g

J

The optimal I' is computed by solving the opti-
mization problem later defined in Equation 9. We
ideally want a weighting scheme that accounts for
their structural differences while still ensuring fair-
ness in total weight. A natural way to achieve
this is through optimal transport, which provides a
principled method for aligning distributions while
minimizing their discrepancy. However, standard
optimal transport assumes equal total mass on both
sides, making it incompatible with our setting. To

address this, we adopt unbalanced optimal trans-
port, which allows for flexible mass redistribution
between the two responses while preserving mean-
ingful semantic differences.

The cornerstone of OTPO lies in constructing a
cost matrix M e RI¥e[Xvrl where each entry M;;
quantifies the distance between the i-th token of
the chosen response y. and the j-th token of the
rejected response ¥,.. Since the optimal transport
framework requires the transported distribution to
reside in a proper metric space, directly using the
log-likelihood ratio difference in Eq. 6 is not fea-
sible, as it does not naturally form a metric space.
We take a step back and leverage the last-layer
token representations, which better preserve the
underlying semantic structure. We specifically use
euclidean distance, i.e., M;; = ||hi — hi |2, as it
is commonly used in metric space (Arjovsky et al.,
2017). Here, h! is the hidden state of the ¢-th token
in response v,, extracted from the model’s hidden
representation space.

Building on this cost matrix, we define the opti-
mization problem as:

T = arg lelnzrl,]MZ,J + EIQ(F)
- ©)
+ea(KL(T'L, 1, ) + KLIT1,1y,,)

where T' € RI¥[xI¥r| represents the transport plan
that aligns tokens between the chosen and rejected
responses. (') = 37, >, I jlog(L'; ;) is an en-
tropy regularizer, controlling the sparsity of the
transport plan. Meanwhile, the KL(:) terms en-
sure that the marginal distributions of I are close
to the naive DPO uniform weights, allowing for
controlled deviations. This formulation unifies se-
mantic alignment and token weight control under
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an optimal transport framework, whereas the first
term corresponds to the Wasserstein distance be-
tween the two responses’ distribution.

After solving for the optimal transport plan I'*,
the token-level weights w} and w; are obtained
by summing along the respective dimensions as in
Eq. 7 and normalizing to a predefined scale 7 to
ensure optimization stability:

Il , I'm

c ET, W, = 7’11’ T

Here, |I'| represents the total weight sum of the
transport plan. The normalized transport plan is
equal to the one in Eq. 9 when down-weighting
the distance term by 7/|I"|. This allows for auto-
matic total weight adjustment based on response
length, therefore leading to a more stabilized total
weight budget and preference optimization. We
specifically set 7 = min(|y.|, |y,|) to ensure the to-
tal weight corresponds to the public length, which
is enough to contain a more concise representa-
tion of relevant information most of the time. This
choice helps balance the contributions of the two re-
sponses and reduces the disproportionate influence
of less relevant tokens.

Then we incorporate the optimal token-level
weights w} and w; in Eq. 10 into the reward es-
timation, replacing the uniform weights used in
standard DPO. This allows the model to focus on
semantically significant tokens, yielding a reward
difference estimate:

(10)

[Yel

Ay = Z wilog

i=1

W@(yz’xa yc<l)
Tret (Yel2, &)

1D

|y . .
P ey
= wlog — R

j=1 Wref(yr‘xayr )

This weighted reward difference captures the fine-
grained contributions of individual tokens to the
overall preference. The final OTPO loss is formu-
lated as:

E(T‘-Q; 7Tref) = _E(m,yc,yr)ND [IOgU(BAf)] (12)

In summary, OTPO leverages Optimal Trans-
port to dynamically assign a fixed weight budget
to token pairs based on their semantic relevance,
enabling a fine-grained inspection of the reward
difference term. This approach emphasizes mean-
ingful token interactions while reducing the impact
of less relevant or extraneous tokens, providing a
more robust and interpretable optimization frame-
work of LLM alignment.

3 Experimental Setup

We conduct preference optimization experiments
to compare different optimization methods un-
der various settings, including task, optimization
strategy, and model. The tasks include general
instruction-following and summarization. For gen-
eral instruction-following, we conduct on-policy
optimization on Llama-3-8B and Llama-3.2-3B,
with UltraFeedback (Cui et al., 2024) and Help-
Steer2 (Wang et al., 2025)’s preference version
as the preference training dataset. For the sum-
marization task, we perform offline optimization
on Qwen-2.5-3B (Yang et al., 2024) using off-the-
shelf TL;DR (Stiennon et al., 2020) dataset.
Model Training. In the general instruction-
following task, we mainly consider off-the-shelf
instruction-tuned models with more powerful
instruction-following abilities. We first sample
10 responses per prompt for HelpSteer2 and 5
responses per prompt for UltraFeedback follow-
ing (Meng et al., 2024; Tunstall et al., 2024; Wang
et al., 2025). Then, we annotate the sampled re-
sponses with ArmoRM (Wang et al., 2024a) and se-
lect the response with the highest and lowest score
as Yy, Yy, respectively. In the summarization task,
we first fine-tune Qwen-2.5-3B with the chosen re-
sponses, to obtain basic summarization capability,
and then train the model directly with the TL;DR
dataset. We tune general hyperparameters using
DPO and apply the set of hyperparameters to most
of all preference optimization methods. Please re-
fer to Appx. A for more detailed descriptions.
Baselines. We primarily compare OTPO with
DPO (Rafailov et al., 2024b) and other direct pref-
erence optimization methods, excluding RLHF
approaches that require training an additional
reward model, following prior works such as
SimPO (Meng et al., 2024) and SamPO (Lu et al.,
2024). Our focus is on methods that incorpo-
rate token-level weighting schemes. This includes
SimPO, SamPO, and LDDPO (Liu et al., 2024b),
which adjust the token weights to reduce total to-
ken weight differences and elevate length fairness.
Please refer to Tab. 1 for more details and Fig. 3 for
a more intuitive visualization of explicit token-level
weighting schemes. We also include TDPO (Zeng
et al., 2024), which implicitly applies token weight-
ing via token-level KL divergence. Additionally,
we also include other variants of DPO, including
length regularized DPO (LR-DPO), AOT (Melnyk
et al., 2024), Robust DPO (Ray Chowdhury et al.,
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2024a), RSO (Liu et al., 2024a), SPPO (Wu et al.,
2025) in Appx. C.

Evaluation. We assess the alignment perfor-
mance using GPT to perform pairwise comparisons.
We adopt AlpacaEval2 (Li et al., 2023; Dubois
et al., 2024), to assess the models’ instruction-
following ability. AlpacaEval2 contains 805 ques-
tions, and uses GPT-4-Turbo to perform side-by-
side comparisons of the model response with a
reference model (GPT-4 Preview). We report the
win rate, length-controlled win rate, and response
average length. The length-controlled win rate is
computed by first estimating the impact of length
differences on each test result and then adjusting for
a length difference of zero to obtain a debiased esti-
mation. We specifically choose this benchmark, as
it controls the effect of response length, while other
LLM-as-a-judge benchmarks may exploit spurious
correlations, including output length, presence of
lists, position biases (Zheng et al., 2023; Koo et al.,
2024; Wang et al., 2024c; Wu and Aji, 2025). For
the summarization task, we follow (Rafailov et al.,
2024b) and evaluate the win rate against the base
model, using GPT-40 as the judge model on 256
randomly sampled test cases from the TL;DR test
set. We also adopt MMLU, GSM8K, ARC Chal-
lenge, HellaSwag, and PiQA to examine the mod-
els’ general ability on multiple domains in Appx. C.

4 Experimental Results

In this section, we present the main results of our
experiments, demonstrating the superior perfor-
mance of OTPO in various settings (Sec. 4.1). Then
we conduct ablation studies to validate the compo-
nents of OTPO (Sec. 4.2). Finally, we conduct a hu-
man evaluation for thorough evaluation (Sec. 4.3).

4.1 Main Results

We present the main results in Tab. 2 and Fig 4,
showcasing OTPO’s superiority in optimizing pref-
erences across different backbones, tasks, and opti-
mization strategies.

Overall preference enhancement of OTPO. As
shown in Tab. 2, OTPO demonstrates the best result
on length-controlled win rate across 2 backbones
and 2 datasets, with an improvement of 2.6% to
10.9% increase compared to DPO, and 1.0% to
3.8% increase compared other baselines. Further-
more, it achieves the best win rate in 3 out of 4
settings, with up to 3.5% increase compared to the
best baseline, demonstrating its robust effective-

Comparison of Win/Tie/Lose Cases Across Methods

Win

OTPO 1 71.9% Tie

Lose
LDDPO { 44.4%
SamPO 4 63.3%
SimPO 55.5%
DPO 54.7%

0 50 100 150 200 250

Number of Cases

Figure 4: TL;DR summarization win rates compared to
the base model, using GPT-4o0 as the evaluator. OTPO
exceeds the existing methods by a large margin.

ness in improving alignment. Notably, OTPO is
also better than other methods as shown in Tab. 9
in Appx. C.

OTPO excels in the domain-specific task. In
summarization task, OTPO exceeds other methods
by a large margin of 8.6% win rate compared to
the best-performing baseline SamPO, as shown in
Fig. 4. As OTPO is trained to emphasize important
parts in a response, it generates summarizations
that are more concise and include key meanings.
As the summarization task specifically requires con-
cise summarizations, we regard all responses ex-
ceeding a certain length as “Lose” during evalua-
tion following (Stiennon et al., 2020).

Mitigating Length bias. Although OTPO ap-
pears relatively less performant in the UltraFeed-
back setting with Llama-3-8B based on the naive
win rate of 47.58%, this can be largely attributed
to its production of substantially shorter responses,
with an average length of 1791 tokens compared to
the longer responses generated by other methods.
Longer responses are not inherently problematic,
especially if increased length leads to improved
quality. However, (Zheng et al., 2023) has shown
that “LLM judge favors longer, verbose responses,
even if they are not as clear, high-quality, or accu-
rate as shorter alternatives.” Our goal with OTPO
is not to shorten responses arbitrarily but to prior-
itize essential, high-quality content, with brevity
emerging as a natural byproduct. By mitigating
unnecessary verbosity, OTPO ensures that mod-
els focus on delivering information more concisely
without sacrificing informativeness, as indicated by
the highest length-controlled win rate 53.37%.

Length bias varies across settings. The re-
sults reveal opposing trends in length bias between
the two datasets, particularly with Llama-3.2-3b-
Instruct. In the UltraFeedback setting, there is a 3%
increase in response length compared to the initial
model, while in the HelpSteer2 setting, there is a
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UltraFeedback Helpsteer2
Method
LC WR (%) WR (%) Length LCWR (%) WR (%) Length
Initial 22.92 22.57 1899 22.92 22.57 1899
DPO 48.14 51.52 2168 27.91 27.45 1945
Llama-3-8b  SimPO 47.56 40.72 1756 26.77 27.25 1984
-Instruct SamPO 52.17 46.31 1806 26.95 27.16 1991
LDDPO 52.1 51.72 2036 28.55 28.54 1956
OTPO 53.37°" 47.58 1791 29.64"" 29.54 1991
Initial 17.97 19.34 2041 17.97 19.34 2041
DPO 26.02 27.96 2094 19.99 20.54 1970
Llama-3.2-3b  SimPO 22.58 22.34 1944 19.03 19.72 1996
-Instruct SamPO 24.08 26.49 2084 18.58 19.65 2018
LDDPO 26.56 25.79 1909 20.29 20.2 1939
OTPO 26.97° 28.61 2075 20.5 21.25 2000

Table 2: AlpacaEval 2 evaluation results under four settings. WR denotes win rate, LC WR denotes length-controlled
win rate. Models aligned using OTPO achieve superior performance on length-controlled win rates across all
settings. The best results are marked in bold. The second-best results are underlined. Results marked with " are

significantly better than others with 99% confidence.

LCWR WR Length

Initial 2292 2257 1899
DPO 48.14  51.52 2168
OTPO 53.37 4758 1791
(1) Ablation of Optimal Transport
Uniform 52.60 4636 1796
Similarity ~ 53.28  46.09 1757
(2) Ablation of Weight Normalization
None 2638  26.07 1939
Mean 52779  46.69 1791
Max 49.85 44.77 1808
Length 48.51 5212 2167

Table 3: Ablation study of OTPO on Llama-3-8B-
Instruct with UltraFeedback. We ablate each component
of OTPO: (1) (middle part) Replace OT weight with
uniform weight or cosine similarity-based weight. (2)
(lower part) Varying the weight sum normalization term
7 by mean/max of the two responses’ length, or each
response length in Eq. 10 after OT.

3% decrease in response length. This suggests that
length bias can manifest differently depending on
the combination of the dataset and the optimized
model, leading to overly lengthy or overly concise
responses. We describe a more detailed analysis of
generated on-policy datasets in Appx. B.

4.2 Ablation Study

We ablate each key design in OTPO: optimal trans-
port guided weighting scheme, and weight normal-

ization, and then report the results in Tab. 3.

4.2.1 Alternatives of Token Weighting Scheme

We replace the optimal transport-based token
weighting scheme with uniform weight, or embed-
ding similarity-based weight for comparison. Uni-
form weight only ensures response length fairness,
while embedding similarity-based weight addition-
ally applies a simplified algorithm with a similar
motivation as OTPO.

Uniform weight ensures response length fair-
ness. Uniform weight simply down-weight tokens
in the longer response’s weight to % in
DPO without OT (“Uniform™), so that each re-
sponse’s weight sum up to min(|y.|, |yr|). Com-
pared to DPO, it decreases average response length
(-372), thus trading off win rate (-10%) against
length-controlled win rate (+9.3%).

Similarity-based weighting scheme improves
performance. The embedding similarity-based
weighting method (“Similarity”) simplifies the OT
process while adhering to the same intuition. For
each token in the response, its representation is
compared to the average representation of all to-
kens in the other response using cosine similar-
ity. These similarities are then passed through a
softmax function to calculate relative importance
across all tokens in the response. Finally, we as-
sign the same total weight budget min(|y.|, |y,|)
based on the relative importance to obtain the fi-
nal weight. This approach further improves length
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Figure 5: Trend of gradient norm during training.

fairness by considering token-level relationships
between the chosen and rejected responses. How-
ever, it is slightly worse than OTPO in both length-
controlled win rate and win rate, as it only con-
siders the relationship of each token to the other
response, while failing to consider more detailed
token pair relationships.

4.2.2 Impact of Weight Normalization

We test various normalization strategies alongside
OT, experimental indicates that they are worse than
the original “min” normalization.

Other normalization variants lead to large
fluctuations in training.. We further report the
trend of gradient norm during training in Fig. 5.
Using no normalization (“None”) leads to signif-
icantly lower alignment performance, less than
half of the best length-controlled win rate. This is
mainly due to the large fluctuations in total weight
IT"|, thus leading to too aggressive gradient updates.
Using mean or max for normalization leads to a
decrease in both length-controlled win rate and win
rate. This may relate to the large fluctuations in the
shorter response’s weight upscale across samples,
which can lead to suboptimal performance.

Separating normalization for each response
achieves the best win rate. We train a version
where each response’s weights are rescaled to
match its original sum, i.e. 7 = |y.| for y. and
7 = |y, | for y,, alongside the application of OT
(“Length”). This approach, while slightly improv-
ing both the length-controlled win rate and win
rate over the DPO baseline, lags behind OTPO in
terms of length-controlled win rate as it leads to
a mismatch between the chosen and rejected re-
sponses’ distributions, which affects overall align-
ment. These findings demonstrate the complemen-
tary roles of OT and weight normalization in opti-
mizing both response quality and alignment.

Expertl Expert2

DPO 0.46 0.5
SimPO 0.56 0.54
SamPO 0.48 0.46
LDDPO 0.56 0.48

OTPO 0.62 0.64

Table 4: Human evaluation of the win rates of different
methods compared to the base model. OTPO is consid-
ered the best by both experts.

4.3 Human Evaluation

We conduct human evaluations to further verify the
effectiveness of OTPO. We randomly sample 50
questions across multiple domains as input, prompt
the base model, i.e. L1ama-3-8B-Instruct, and
the model aligned using UltraFeedback to answer
the question. Then we ask human experts to choose
the better response based on relevance, coherence,
completeness, and conciseness. The two responses’
positions are randomly swapped to ensure evalu-
ation fairness. See more details of human evalua-
tion’s setting in Appx. J.2. Tab. 4 reports win rates
judged by human experts. We find the two experts’
annotation results have a relatively low correlation
of 0.37, which can be attributed to the diverse na-
ture of human preference and the similarity across
responses from the same model family. Results
show that OTPO is considered the best among the
two experts despite their diverse preferences.

S Complexity and Efficiency Analysis

In this section, we analyze the computational and
memory complexity of OTPO, mostly attributed to
the optimal transport learning schema, and com-
pare its efficiency with related methods.

Time Complexity. The optimal transport learn-
ing schema has a time complexity of O(n?), which
is negligible compared to the transformer’s forward
pass complexity of O(In%d + Ind?), where n is the
input length, d is the hidden dimension, and [ is the
model depth.

Memory Complexity. The OT step requires stor-
ing the pairwise cost matrix M € R, two auxil-
iary vectors in R!, and an additional matrix of the
same shape as M. This results in a memory com-
plexity of O(I?), which is minor compared to the
memory requirement of the transformer forward
and backward passes, typically O(I(n? + nd?)).
As aresult, OTPO introduces negligible additional
memory overhead.
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Figure 6: Comparison of training time across differ-
ent preference optimization methods. We normalize
DPQO’s training time as the baseline (1.00) and report
each method’s relative time as a fraction of it. Per-Run
Time is for a single training run; 7otal Time includes
time for hyperparameter tuning based on DPO’s optimal
settings.

Empirical Efficiency. As shown in Fig. 6,
OTPO exhibits training efficiency comparable to
existing preference optimization methods. Despite
the slight increase in per-run cost due to the OT
computation, OTPO remains favorable in terms of
total training time, especially when hyperparameter
tuning is considered. Given the optimal /5 for DPO,
SimPO requires extensive tuning due to its sensi-
tivity to its hyperparameters 3, vy, while OTPO is
more stable and thus requires fewer runs.

In summary, OTPO introduces minimal over-
head in both time and memory while offering im-
proved instruction-following performance. This
favorable trade-off makes OTPO a practical and
efficient choice for alignment training.

6 Related Work

Preference Optimization for LLMs. Preference
optimization plays a vital role in aligning LLMs
with human values and expectations. First pro-
posed in (Ouyang et al., 2022), they train the pol-
icy using proximal policy optimization to maxi-
mize the estimated reward given by a trained re-
ward model. Direct preference optimization elim-
inates the need for a reward model and directly
leverages pairwise comparisons to guide models
toward preferred behaviors. Many efforts have
been taken to improve the offline learning objec-
tive or to reduce computational costs. RSO (Liu
et al., 2024a), IPO (Gheshlaghi Azar et al., 2024),
EXO (Ji et al., 2024), NCA (Chen et al., 2024),
BCO (Jung et al., 2024), SPPO (Wu et al., 2025)
replace the sigmoid function in DPO with other
non-linear variants to model different preference

objectives. CDPO (Mitchell, 2023), Robust DPO
(R-DPO) (Ray Chowdhury et al., 2024b) enhances
DPO by improving robustness to preference noise,
and RPO (Pang et al., 2024) adds a negative log-
likelihood term to prevent large decrease in cho-
sen responses’ probability. To tackle the com-
monly observed length bias, SimPO (Meng et al.,
2024), SamPO (Lu et al., 2024), LDDPO (Liu et al.,
2024b) apply a heuristical kind of token weighting
scheme to elevate length fairness between two re-
sponses. APO (D’Oosterlinck et al., 2025) rewrites
irrelevant parts with an external LLM to create min-
imally contrastive preference data. Our work builds
upon these insights, introducing optimal transport
to calculate token weights by assigning more im-
portance to those semantically relevant tokens.
Optimal Transport for Machine Learning. Op-
timal Transport has proven to be a powerful tool
in machine learning, particularly for tasks involv-
ing distribution alignment , such as transfer learn-
ing (Flamary et al., 2016; Courty et al., 2017),
generative modeling, e.g. Wasserstein GANs (Ar-
jovsky et al., 2017) and (Wang et al., 2024b), natu-
ral language processing (Asano et al., 2020), and
recommendation (Han et al., 2024). In particu-
lar, recent efforts have also utilized OT to per-
form preference optimization on unpaired pref-
erence datasets by achieving distributional dom-
inance (Melnyk et al., 2024). We apply OT to align
token distributions between chosen and rejected
responses in preference optimization, capturing
the fine-grained differences in token semantics and
context, and enabling a more principled weighting
mechanism.

7 Conclusion

In this paper, we proposed an Optimal Transport-
based token weighting scheme for direct
Preference Optimization (OTPO), a context-aware
token weighting scheme to reinforce semantically
meaningful differences in reward estimation.
OTPO leverages optimal transport to dynamically
assign a fixed total weight budget to each token
pair in the chosen and rejected response based on
their semantic similarity, and then aggregate each
token pair’s log-likelihood ratio difference as a
contrastive reward difference estimate. It repre-
sents a step toward more robust and interpretable
reward estimation and lays the groundwork for
future exploration into fine-grained preference
modeling in alignment tasks.
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Limitations

Our experiments were limited to off-policy and
on-policy setups for direct preference optimiza-
tion. Recent research has highlighted that iterative
on-policy setups may yield larger improvements
in instruction-following performance. We did not
explore such setups due to limited computational
resources. This leaves room for future work to
further enhance model performance using OTPO
under iterative on-policy setups.

We conducted our experiments on relatively
small models. While this scale provides meaning-
ful insights, the scalability and generalizability of
our algorithms to larger models, such as those with
hundreds of billions of parameters, remain to be
validated. Addressing this limitation would require
significant computational resources and could fur-
ther confirm the robustness of our approach across
different model sizes.

For evaluating alignment quality, we relied on
GPT-4 as the evaluation judge. While GPT-4 offers
state-of-the-art evaluation capabilities, it may in-
troduce potential biases and result in less accurate
or reliable judgments. This could affect the evalua-
tion of alignment improvements, and future work
may explore more robust, unbiased, and possibly
human-in-the-loop evaluation mechanisms.

Ethical Statements

We performed only a relatively simple check on
the datasets used in our experiments. Although we
made efforts to ensure the datasets were suitable for
training alignment models, they may contain few
harmful or inappropriate content. Addressing these
issues requires more thorough dataset curation and
filtering processes, which were beyond the scope
of this work.

Due to the availability of datasets, our training
experiments were conducted mainly on English
datasets. We have not verified the generalizability
or effectiveness of our algorithm on non-English
datasets. This limitation underscores the need for
future work to ensure alignment algorithms are
robust across languages and culturally diverse con-
texts.

Our primary focus was on improving instruction-
following abilities in aligned large language mod-
els. However, these models may still exhibit safety
risks, such as generating harmful or biased outputs,
which were not fully addressed in this study. Post-
alignment safety evaluations and interventions are

critical to mitigate such risks and ensure the respon-
sible deployment of these models.
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A Implementation Details

We use UltraFeedback (Cui et al., 2024), the
preference-transformed HelpSteer2 (Wang et al.,

2025), and TL;DR (Stiennon et al., 2020) as pref-
erence training datasets . UltraFeedback contains
61,135 examples in its training split, and Help-
Steer2 contains 9125 examples. TL;DR contains
92,534 summary comparisons for training, and
83,629 test comparisons. We generate the on-policy
training data as follows: 1) Sample n responses for
each prompt with the policy to be optimized. 2)
Discard those samples where the n responses are
identical. 3) Annotate the responses with a reward
model, and select the response with the highest
and lowest score as y., y,. We set n = 5 for Ul-
traFeedback, and n = 10 for HelpSteer2 follow-
ing (Meng et al., 2024; Tunstall et al., 2024; Wang
et al., 2025). The detailed statistics of the on-policy
datasets are listed in Appx. B. Maximum prompt
length and maximum input length are controlled
as (2048, 1800) for the instruction-following task
and (1024, 900) for the summarization task. This
setting accommodates varying input sizes and pre-
vents huge memory costs.

We first conduct preliminary hyperparameter
search on learning rate in {3e~7,5e~",7e "},
batch size in {64, 128,256}, and epoch in {1, 2, 3}.
Results show that training with a learning rate of
5¢~7 and a batch size of 128 for 1 epoch typically
yields the best results, so we use this set of hyperpa-
rameters for all experiments. Then we search 3 in
{0.01,0.05, 0.1} for each setting using DPO, and
set 5 = 0.01 for Llama-3-8B and Qwen-2.5-3B,
B = 0.1 for Llama-3.2-3B across methods except
for SimPO, which requires a much larger 3. As
for method-specific hyperparameters, we report the
search ranges considered in Tab. 5. Optimization
was performed using AdamW with a cosine sched-
ule and warmup ratio of 0.1.

For the Optimal Transport part, each token’s
last-layer hidden state was used as its representa-
tion. We set e; = 1 for UltraFeedback and TL;DR,
€1 = 0.1 for HelpSteer2, and e = 0.2 for all
configurations. As for supervise fine-tuning Qwen-
2.5-3B, we apply a batch size of 128 and a learning
rate of 2e—5 for 1 epoch.

We use the alignment-handbook library with
Apache-2.0 license to perform preference optimiza-
tion and supervise fine-tuning, incorporating the
POT (Flamary et al., 2021) package to compute the
optimal transport plan. For evaluation, we assess
the model’s instruction-following capabilities using
the official AlpacaEval2 repository. Additionally,
we evaluate the model’s general abilities using the
Harness evaluation framework (Gao et al., 2024).
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Table 5: Various preference optimization loss functions with weighting scheme and hyperparameters search range.
Here, Uniform(m, {y}*) denotes uniformly sampling m tokens from all tokens in {y}*, and sg represents the

stop-gradient operator, which blocks the propagation of gradients.

Llama-3-8B  Llama-3.2-3B

UF HS UF HS
count 59876 9084 60692 9087
mean -29 -24 91 -75
std 233 168 447 257
min 4058 -1854 -4094 -2016
25% -67 -75 -99 -115
50% -11 -14 -16 -30
75% 31 37 30 28
max 2218 1193 4079 1266

Table 6: Response length difference summary statistic
of each on-policy dataset. UF denotes UltraFeedBack,
while HS denotes HelpSteer?2.

As for the computation environment, we con-
ducted training on 4xA100 for Llama-3-8B, and
2xA100 for Llama-3.2-3B, Qwen-2.5-3B using Py-
torch. To accelerate training, we utilized FlashAt-
tention2 (Dao, 2024), DeepSpeed Zero 3 (Rasley
et al., 2020; Ren et al., 2021), and bfloat16 preci-
sion.

B On-policy Dataset Statistics

We present the statistics of length differences in the
generated on-policy datasets in Tab. 6. To provide
a clearer visualization of the length difference dis-
tribution, we leave out the top and bottom 2.5% of
samples and visualize the remaining data using a
violin plot in Fig. 7. The results show that prompts
in HelpSteer2 tend to produce preference data pairs

N
o
o

o
L

—2001

—400 1

—600 -

dataset
I UltraFeedback
[ HelpSteer2

Length Difference |yw| — ||

—800 A

LIama3-Bb-Instruct LIama3.2—éB—Instruct
Model

Figure 7: Dataset length difference (|y.| — |y.|) distri-

bution. Dash lines indicated the quartiles.

with more negative length differences, having a
median of -30 compared to -16 for UltraFeedback
with Llama-3.2-8B. Notably, the length differences
in the long-tail regions are significantly smaller
for Llama-3.2-3B, further highlighting the contrast
between the two models.

We sample 50 samples from each on-policy
dataset to verify that the data does not contain any
information that uniquely identifies individual peo-
ple of offensive content.

C General Ability Evaluation

C.1 Benchmark Description

To further validate the effect of OTPO on the mod-
els’ general abilities, we evaluate the aligned mod-
els using 5 popular benchmarks:
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MMLU GSMS8K ARC HellaSwag PiQA Average
Llama-3-8b-Instruct + UltraFeedback
Initial 65.64 75.59  56.57 57.70 78.18 66.74
DPO 65.80 7498  56.83 56.07 7492  65.72
SimPO 65.75 75.13 56.06 54.41 75.73 65.42
SamPO  65.62 70.43 55.46 53.98 74.21 63.94
LDDPO 65.73 71.65 57.17 55.13 7470  64.87
OTPO 65.48 70.51 55.29 53.94 74.48 63.94
Llama-3-8b-Instruct + HelpSteer2
Initial 65.64 75.59  56.57 57.70 78.18 66.74
DPO 65.79 7597  56.66 57.87 78.73 67.00
SimPO 65.72 75.36  56.66 57.79 78.40  66.79
SamPO  65.81 75.66  56.91 57.91 78.40  66.94
LDDPO  65.69 75.13 56.74 57.93 78.40  66.78
OTPO 65.80 76.04  57.17 57.88 78.35 67.05
Llama-3.2-3b-Instruct + UltraFeedback
Initial 59.71 64.14 4590 52.34 75.63 59.54
DPO 60.06 66.49  46.84 52.48 75.84  60.34
SimPO 59.84 6497  47.18 52.54 75.73 60.05
SamPO  59.72 65.88  46.84 52.53 76.01 60.20
LDDPO  60.00 66.03  47.18 52.49 75.79 60.30
OTPO 59.98 66.41 46.67 52.50 7590  60.29
Llama-3.2-3b-Instruct + HelpSteer2
Initial 59.71 64.14  45.90 52.34 75.63 59.54
DPO 59.64 64.29  46.16 52.38 75.68 59.63
SimPO 59.78 64.22  46.16 52.33 75.84  59.67
SamPO  59.68 63.53  46.08 52.22 7590  59.48
LDDPO  59.67 63.99  46.16 52.37 75.63 59.56
OTPO 59.71 64.44  46.33 52.31 75.84  59.73

Table 7: General ability evaluation results across 4 settings.
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* MMLU (Hendrycks et al., 2021): A massive
multitask language understanding benchmark
spanning broad domains. It consists of 4 sub-
groups and 57 subsets. We select the model’s
answer based on the probabilities of ‘A’, ‘B’,
‘C’, and ‘D’, as suggested in the original paper,
and report the overall accuracy.

¢ GSMSK (Cobbe et al., 2021): A mathemati-
cal benchmark of grade school math problems
for evaluating reasoning abilities. We evalu-
ate the original test split with 1.32k examples
and report the accuracy of answers with strict
exact match.

ARC Challenge (Clark et al., 2018): A more
challenging benchmark involving complex
reasoning over a diverse set of science exam
questions, containing 2590 examples in the
format of multiple choice. We report the nor-
malized accuracy of overall test samples.

HellaSwag (Zellers et al., 2019): A bench-
mark for predicting the endings of stories or
scenarios, evaluating LLLM’s comprehension
and creativity, targeted at commonsense rea-
soning via natural language. We evaluate the
test split containing 10k examples and report
the overall accuracy.

* PiQA (Bisk et al., 2020): A Physical Interac-
tion Question Answering task to test physical
commonsense reasoning, i.e. interaction with
everyday objects in everyday situations. It
contains 20k QA pairs that are either multiple-
choice or true/false questions. We report the
overall accuracy.

C.2 Evaluation Results

We report the general ability evaluation reports
across 4 settings in Tab. 7

General ability assessment. OTPO exhibits
comparable general ability to other baselines,
with fluctuations less than 1% in most of the se-
tups. It consistently achieves the highest average
scores across both Llama-3-8B-Instruct (67.05) and
Llama-3.2-3b-Instruct (59.73) in the HelpSteer2
setup. Moreover, it excels in reasoning ability, re-
sulting in an increase in GSM8K (+0.15%) and
ARC (+0.26%) compared to the best baseline. This
highlights OTPO’s potential to capture contextual
and semantic differences to improve the model’s
reasoning ability.

Training dataset comparison. Helpsteer2 en-
sures consistent general ability improvement across
most of the methods. This can be attributed to
the difference in data distribution. While Ultra-
Feedback mostly contains open-ended questions,
HelpSteer2 contains more reasoning-related ques-
tions. However, training OTPO with UltraFeedback
leads to a drastic decrease in Llama-3-8B-Instruct
(-2.8), specifically on GSM8K(-5.08) and PiQA (-
3.7). This phenomenon is commonly referred to as
“alignment-tax”’, where models trade-off between
general ability and instruction-following ability.
This calls for more rigorous consideration when
choosing the dataset for alignment according to
specific alignment needs.

D Experiments on Other Models

We conducted additional experiments on Qwen-
2.5-3B-Instruct and Mistral-7B-Instruct-v0.2 with
on-policy datasets created from HelpSteer?2 to fur-
ther validate OTPO’s effectiveness. The results are
shown in Tab. 8

E Comparison to Other DPO Variants

OTPO remains the best algorithm compared to
other DPO variants, along with the ones incorporat-
ing a certain kind of weighting scheme. We train
Llama-3-8B on the HelpSteer2 dataset using these
kinds of preference optimization loss:

* AOT (Melnyk et al., 2024) align LLMs by
making the reward distribution of the chosen
responses stochastically dominant in the first
order on the distribution of rejected samples.

* BCO (Jung et al., 2024) trains a binary clas-
sifier that maps the chosen response to 1 and
the rejected response to 0.

* CDPO (Mitchell, 2023) applies label smooth-
ing to the original DPO loss, enhancing ro-
bustness to preference label noise.

* EXO (Ji et al., 2024) replaces the forward KL
with reverse KL when deriving DPO loss.

* [PO (Gheshlaghi Azar et al., 2024) minimizes
the squared loss of margin between the esti-
mated reward margin and a predefined margin.

* NCA (Chen et al., 2024) optimizes the abso-
lute likelihood of each response instead of the
relative likelihood of two responses.
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Qwen-2.5-3B-Instruct

Mistral-7B-Instruct-v(.2

Method
LCWR WR length  LCWR WR length
Initial 16.82 201 2145 1774 1505 1630
DPO 1693  19.62 2100 2725 2478 1775
SimPO 1675 1947 2112  23.56 22 1906
SamPO 1826 20.75 2105 2731 2531 1844
LDDPO 1732 20.15 2107 2822 25.84 1815
OTPO 19.71°" 22.06 2074 30.35"" 282 1839

Table 8: AlpacaEval 2 evaluation results with HelpSteer2 as the training dataset, Qwen-2.5-3B-Instruct and Mistral-
7B-Instruct-v0.2 as the backbone model. WR denotes win rate, LC WR denotes length-controlled win rate. Models
aligned using OTPO achieve the best performance on length-controlled win rates and win rates on both models. The
best results are marked in bold. The second-best results are underlined. Results marked with *** are significantly

better than others with 99% confidence.

LCWR (%) WR (%) Length

Initial 22.92 22.57 1899
DPO 2791 27.45 1945
AOT 28.55 27.83 1924
BCO 29.23 28.76 1955
CDPO 28.62 28.52 1954
EXO 27.22 26.82 1937
IPO 25.02 26.06 2021
NCA 27.72 27.82 1951
R-DPO 28.66 28.34 1940
RSO 28.93 28.8 1961
RPO 27.43 27.41 1963
SPPO 28.48 28.13 1946
LR-DPO 28.23 22.53 1654
SimPO 26.77 27.25 1984
SamPO 26.95 27.16 1991
LDDPO 28.55 28.54 1956
OTPO 29.64 29.54 1991

Table 9: A more comprehensive comparison of DPO
variants on AlpacaEval2, with the lower part incorpo-
rating an implicit token weighting scheme. The best
results are marked in bold. The second-best results are
underlined.

* R-DPO (Ray Chowdhury et al., 2024b) model
the probability of existing label noise and ap-
ply label smoothing.

* RSO (Liu et al., 2024a) replaces the sigmoid
function with hinge loss.

* RPO (Pang et al., 2024) adds a negative log-
likelihood loss of the chosen response to DPO
loss, alleviating the decrease in the chosen
reward.

e SPPO (Wu et al., 2025) treats the chosen and
rejected response as two players, and solves
the Nash equilibrium by pushing the chosen
reward to 1/2 and the rejected reward to -1/2

* LR-DPO (Park et al., 2024) adds a length reg-
ularization term by adding a weighted length
difference to the reward difference term.

We leave the incorporation of an optimal transport-
based weighting scheme to these DPO variants for
future work.

F Hyperparameter Sensitivity

We analyze the sensitivity of OTPO to hyperparam-
eters €1, €2, focusing on their effects on absolute
token weight difference, normalization value 7, and
reward margin. Llama-3.2-3B and the HelpSteer2
dataset are utilized for this study. The results, pre-
sented in Fig. 10, reveal several key insights.

Impact of ¢; on token weight difference.
Higher values of ¢; result in smaller weight differ-
ences, as the entropy regularization term imposes
stronger penalization, leading to smoother weight
distributions. On the other hand, ¢ shows almost
no impact on token weight difference.

Differing changes of ¢;, ¢2 on normalization
value 7. A larger ey decreases 7 by imposing
stronger penalties on marginal differences, whereas
increasing €; implicitly downweights the impact
of marginal differences overall, leading to a higher
7. This interplay reflects the contrasting roles of
these hyperparameters in shaping the weight nor-
malization process, as well as the necessity of the
normalization term 7 in stabilizing training.

Stability of reward margin. Despite substan-
tial variations in absolute token weight difference
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Figure 9: Reward difference v.s. the length differ-
ence between chosen and rejected responses. While
the optimized reward differences by DPO are concen-
trated around 0.1, the reward differences optimized by
OWTPO are more varied, especially larger when the
length difference is low.

and 7, reward margins exhibit remarkable stability,
The reward margin remains stable at approximately
0.12 across different configurations, and is consis-
tently higher than DPO significantly. This stability
can be attributed to the joint effects of Optimal
Transport and weight sum normalization, which
mitigate fluctuations in token weights while pre-
serving the overall quality of reward estimation.
Thus, OTPO ensures a stable reward estimation
under varying hyperparameter configurations.

G Length Analysis

In this section, we further analyze OTPO’s effect
by comparing the sensitivity of response log prob-
ability and reward difference to response length
(difference).

OTPO exhibits a relatively smaller positive re-
lationship to length compared to DPO, as shown
in Fig. 8. Specifically, the solid dots in the fig-
ure represent the actual test samples, while the
dashed lines indicate linear fits based on these
points. The gentler slope of OTPO relative to
DPO suggests that OTPO provides more stable log
probability estimates despite variations in response

length. This aligns with the findings in Fig. 2, rein-
forcing OTPO’s ability to mitigate length bias.
OTPO leads to more varied reward differ-
ences than DPO, attributing to its contextual
awareness, as shown in Fig. 9. Unlike DPO, where
reward differences remain narrowly distributed
around 0.1 regardless of length differences, OTPO
exhibits a broader range of reward differences,
from -0.4 to 1.0. Notably, responses with larger ab-
solute reward differences are associated with mini-
mal length differences, indicating that OTPO’s re-
ward differences are driven primarily by contextual
rather than length-related factors. This contextual
sensitivity allows OTPO to dynamically optimize
reward differences by focusing on meaningful con-
tent variations rather than superficial length differ-
ences. As a result, OTPO demonstrates superior
adaptability and robustness in aligning reward opti-
mization with instruction-following behavior.

H Case Study on the Transport Plan

We further analyze the transport plan I' visualized
as the Sankey diagram in Fig. 2, providing insights
into the intuition behind optimal transport. In this
diagram, each token is represented by a node, with
tokens from the chosen response on the left and
those from the rejected response on the right. Each
node is labeled with its position in the pairwise
data, its token text, and its aggregate weight w?.
Token positions are indicated using response codes
(C for chosen and R for rejected) and their indices,
e.g., C4 represents the 4th token in the chosen re-
sponse. The lines connecting the nodes in the mid-
dle illustrate the transport flow, I'; ;, between token
pairs, where the thickness of the lines reflects the
magnitude of the flow. The height of each node
is proportional to its aggregate weight, which cor-
responds to the sum of its inflow or outflow. To
highlight the distribution of weights, we divide to-
kens into terciles: tokens in the highest tercile are
colored teal, those in the middle tercile are
, and those in the lowest tercile are

Shared and semantically similar tokens are
densely mapped together. Tokens from the phrase
“The capital of France is Paris” are assigned higher
weights (> 1.5), as shown by the larger bars for
these tokens and stronger connections between
them. These parts directly address the question,
making them critical for reward estimation. Con-
versely, less relevant tokens in the divergent parts,
such as “known for its art” or “the birthplace of Vic-

21328



0.0 0.4

01 02 03 05 0 50 100 150
Absolute Weight Difference compared to DPO

200 250 300 350 400 o1 0s
Normalization Value T

1.0
&1 Value

0 50 100

0.1 0. .
Absolute Weight Difference compared to DPO

150 200 250 300 ) 01 02
Normalization Value ©

0.5
&, Value

Figure 10: Hyperparameter sensitivity analysis of €1 (top), €2 (bottom). (left) Absolute token weight difference
distribution between OTPO and DPO. (middle) The distribution normalization value 7 in Eq.10. (right) Changes in

reward margin.

tor Hugo” are assigned with lower weights (< 0.7),
as they have thinner connections to other tokens
and smaller bars. These parts, while potentially
informative, are less central to the core instruction
and are consequently de-emphasized. This weight-
ing strategy ensures that the reward difference fo-
cuses on the most meaningful content, enhancing
the stability of reward estimation.

A Smooth Transition of Weight. The Sankey
diagram also illustrates a smooth transition of to-
ken weights, as optimal transport gradually shifts
the emphasis from shared, contextually important
tokens to less relevant, unique tokens. Despite
the large weights (> 1.5) received by the upper
shared part, other contextually important tokens
receive moderately high weights (0.8 — 0.9), in-
cluding the token “city” describing Paris, and the
period marking the end of a sentence. This progres-
sion is evident in the intermediate-sized bars and
connections associated with these tokens. As the re-
sponses diverge semantically, the weights of unique
tokens progressively diminish (< 0.7). Tokens like
“known for its art” or “the birthplace of Victor Hugo”
cannot be well-mapped to corresponding tokens in
the other response and therefore spread out thinly
across many connections, as shown by the sparse
and diffused lines in the lower part of the figure.
This smooth transition ensures a natural weighting
scheme that reflects the semantic relevance of each
token.

I Connection to Existing Rewards

We use leave-one-out to explain the importance of
each token to the final reward signal produced by
current reward models, and compare the generated
explanation with OT weight.

Generating token-level explanations. To com-

Method Weight Visualization
The capital Bf France is Paris , a
OT Weight major European city known for its
art , culture , and history |
The Gaptal of France 1§ BAi .
ArmoRM  major European city known for its

art , culture , @fid history |

Table 10: Token weight visualization, darker color
denotes higher weight. OT represents weights com-
puted via Optimal Transport, while ArmoRM, DPO,
and OTPO denotesthe naive leave-one-out explanations
of reward prediction.

pare the weighting scheme with existing rewards,
we generate token-level explanations of explicit or
implicit rewards. We applied a naive leave-one-out
method, where each token was iteratively replaced
with a padding token, and the resulting change in
the reward score was measured. The proportional
reduction in the reward score was treated as the
token’s contribution.

Connection to explicit reward model. We ob-
served a high correlation of 0.76 between token-
level weights computed using Optimal Transport
and the explanation of predictions by an exter-
nal reward model, ArmoRM (Wang et al., 2024a),
as shown in Tab. 10. ArmoRM was selected for
its compatibility with the tokenizer of the back-
bone model, Llama-3-8B, ensuring consistent to-
kenization. Both approaches focus strongly on
the straightforward response to the prompt while
downweighting more detailed explanations. In-
terestingly, since the rejected response contains a
similar expression of the straightforward answer
“The capital of France is Paris”, the OT weight-
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Figure 11: Spearman correlation between token weight-
ing scheme by Optimal Transport and the last token
attention weights of ArmoRM at each layer and atten-
tion head.

ing scheme also emphasizes this part. This aligns
with the intuition behind OTPO, which prioritizes
shared components that are more likely to be rele-
vant to the prompt.

Relationship between OT weights and atten-
tion weights. We further examine the correlation
between token-level weights derived from Optimal
Transport and the attention weights of ArmoRM, as
illustrated in Fig. 11. The highest correlations are
predominantly found in the middle layers, where
the model aggregates sequential context and refines
its understanding of the input. This observation
aligns with prior findings that model explanations
often rely heavily on the middle layers (Kim et al.,
2018), where meaningful internal representations
emerge. Interestingly, despite lower correlations
between OT weights and attention weights in the
upper and lower layers, the leave-one-out explana-
tions in Tab. 10 still exhibit strong overall agree-
ment with OT. This implies that the middle layers
are critical in bridging the gap between token-level
contributions and global model explanations.

J Evaluation Configuration Details

J.1 Summarization Win Rate Calculation

In this section, we include the details for GPT-40 to
generate win rates for summarization. The order of
summaries is randomly chosen for every evaluation.
Considering the special characteristic of short for
summaries, we prompt the model to generate less
than 48 words, and treat the summaries with more
than 48 words as “Lose”. Below is the prompt for

GPT-4o0.

Which of the following summaries does a
better job of summarizing the most im-
-portant points in the given forum post,
without including unimportant or ir-
-relevant details? A good summary is
both precise and concise.

Post:
{post}

Summary A:
{summary_A}

Summary B:
{summary_B}

FIRST provide a one-sentence comparison
of the two summaries, explaining which
you prefer and why. SECOND, on a new
line, state only "A" or "B" to indi-
-cate your choice.

Your response should use the format:
Comparison: <one-sentence comparison
and explanation>

Preferred: <"A" or "B">

Human Evaluation

J.2

In our human evaluation, we recruited human ex-
perts to choose the better response among two re-
sponses to the same question according to certain
requirements. The human experts possess a high
school level of English proficiency, allowing for
easy comprehension of the responses. These ex-
perts were selected from within our academic in-
stitution to ensure a consistent educational back-
ground. To maintain the quality of annotation, we
implemented a compensation structure that rewards
the experts based on the number of pairwise re-
sponses they annotate. This approach was designed
to incentivize thorough and careful consideration
of each response pair.

During the evaluation, the experts were required
to complete their assessments within a two-minute
window for each response. This time constraint
was established to simulate a realistic scenario in
which users need to make quick judgments about
the preference of responses. Both of the experts
were presented with the same set of 50 pairwise
responses for each method, totaling 250 pairwise
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responses, to ensure consistency in the evaluation
process.

Given the two responses to the same question,
the evaluator needs to compare them from five
perspectives, including relevance, coherence, com-
pleteness, conciseness, and instruction following.
Then, the evaluator should make a judgment on
which is the better response (winning response),
or if the two responses are equally good/bad. The
winning response will receive a score of 1, while
the losing response will receive a score of 0. When
the two responses are considered equally good/bad,
then they both receive a score of 0.5.

We show guidelines that were provided to the
evaluators in Fig. 12. These guidelines were crafted
to assist the evaluators in their task and to standard-
ize the evaluation criteria.
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Human Evaluation Guideline

1. Evaluation Format
Each evaluation task presents a prompt and two responses (Response A and Response B). Evaluators need to compare the two
responses based on evaluation criteria listed below and select the better response. If the responses are equally good or bad, evaluators
can choose "Tie."
Example format:
Prompt: [Displayed]
Response A: [Displayed]
Response B: [Displayed]
Your Choice: A(Response A)/B(Response B)/T(Tie)
Optional Comments: [Free-text box]
2. Evaluation Criteria
Evaluators should compare the responses based on the following aspects:
Relevance & Accuracy: Does the response correctly address the prompt? Is the information factually accurate and relevant?
Coherence & Fluency: Is the response well-structured and grammatically correct? Does it read naturally and make logical sense?
Completeness: Does the response provide enough information to fully answer the prompt? Does it leave out key details?
Conciseness: Is the response clear and to the point without unnecessary verbosity? Does it avoid redundancy?
Instruction Following: If the prompt contains specific instructions, does the response adhere to them? Does it ignore or misinterpret any
constraints or requirements?
3. Evaluation Options
For each evaluation task, evaluators must select one of the following options:
® Response A is better (A outperforms B in most criteria)
® Response B is better (B outperforms A in most criteria)
® Tie (Both responses are equally good or equally bad)
4. Examples
Example 1 (Clear Difference in Relevance & Accuracy)
Prompt: What is the capital of France?
Response A: Paris.
Response B: Berlin.
Correct Choice: Response A is better (B is factually incorrect).
Example 2 (Tie due to Equal Performance)
Prompt: Write a short poem about the ocean.
Response A: "The waves dance under the moon, a melody soft and bright."
Response B: "Beneath the sun, the ocean sings, a tune so vast and deep."
Correct Choice: Tie (Both responses are creative and valid).
Example 3 (Coherence & Fluency Issue)
Prompt: Summarize the importance of photosynthesis.
Response A: "Photosynthesis is the process by which plants convert sunlight into energy, producing oxygen as a byproduct."
Response B: "Plant make food sun energy. Oxygen too."
Correct Choice: Response A is better (B lacks coherence and fluency).
5. Payment
Evaluators will be compensated $0.25 per completed evaluation. Payment is based on task completion and quality control measures to

ensure reliable judgments. Evaluators with consistently low-quality judgments may be disqualified from further participation.

Thank you for contributing to this evaluation! Your judgments help improve Al model performance and reliability.

Figure 12: Human Evaluation Guideline.

21332



K Mathematical Derivations

K.1 Token-level DPO loss

We can transform a response y’s probability 7(y|z) given x as follows:

y| |yl |yl

m(yla) = HW (y'ly~',2) = expllog [ [ (v [y<",2)) = exp(Y _logn(y'ly~ ) (13)

=1 i=1

For the reward difference term in Eq. 1:

1 Wﬁ(yc’x) -] 779(:%“’17)

A, = (14)
' Trref (Ye| ) Trer (Yr| )
Since the likelihood of a response is modeled as the multiplicative probability of each token:
lyl
T (ylx) = Hm (' |y~ x (15)
We can express A, as:
[Yel yr| T
]
A, = log H|y 1 el m) H|y ol ) (16)
Hz 1 7Tref(?/c‘?/Q ) Hj:rl 7Tref(?/r|?/r ,T)
yel io<i [yr] <
_ Zlog We(yci|yc<i7 z) _ Zlog 779(?4ﬁ|yr<795) (17)
=1 7Tref(yc|y¢: ) $) =1 Wref(yi“ |yr j, $)
K.2 Token Weight Derivation
We provide the derivations of the results in Tab. 1.
SimPO. The loss in (Meng et al., 2024) can be transformed as:
_ g g
['simpo = - IOgO' ‘ | logﬂ-@(yc|x) |y | logﬂ-@(y’/"x) - (18)
C T
[yl [yr]
logo (o) Zlogﬂ (y]ys" 2 Zlogﬂ Wy, z) — (19)
C 7”
lye| 1 o \yrl 1 o
=—logo [ B ] o8 m(yelys' ) =B ] o8 m(yilys,x) =~ (20)
i=1 7€ j=1'7"

Here, v controls the overall margin to be optimized.
SamPO. Assume the shorter response’s length is m = min(|y.|, |y-|), the loss in (Lu et al., 2024) can
be transformed as:

7Tret t ’ X Tref yr )

m
Lsampo = —logo (ﬁZlog le 0 yr ) ) , where 3 ~ Uniform(m, y*)
=1
(21

Here Uniform(m,y”) denotes uniformly sample m tokens from all tokens in response . Moving the
sampling operation to the token index, we have:

x mo(yp|x
Lsampo = —logo ( 3 log yc,, ) g 3" log ZeWrIT: U y?““ Y ))> , (22)
teS, et (Yel v, ! tes, e (wrle, y7
where S, ~ Uniform(m, [1, |y«|]) (23)
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Here Uniform(m, [1, |y«|]) denotes uniformly sample m numbers from all integers from 1 to |y.|.
LDDPO. (Liu et al., 2024b) transforms the probability of response to:

|y|

w(ylr) = [[=@'le.y™) [ =@y~ (24)
i=1 i=m41
lyl '
= exp logHW N,y T =@, y™) (25)
=1 i=m-+1
:exp(ZIOgﬂ(yﬂy@,x) + Z alogm(y'|ly<', x)) (26)
i=1 i=m+1
Thus the loss can be derived as:
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K.3 Gradient Analysis
The derivative for the log-sigmoid function is:
dlogo(u) 1 do(u) 1
= e = g W0 o) = (o) =o(-w) @9
We can derive the gradient of OTPO as:
VLorpo(mg) = —BEpo(—BA)V(Az) (30)
A Z g T UE) R iy o) an
= w;, — Wy — =
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V(A = 3w Vglog mo(yilz, ys) — 3wV log mo(yilw, ) (32)
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Similarly, the gradient of DPO is:
VLpro(mg) = —BEpo(—BA,)V(A,) (33)
L e e R
A, = log % log 7”— 34
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We compare the gradients of OTPO and DPO to understand the impact on training and alignment
results. For the reward difference term in Eq. 31, 34, OTPO is relatively smaller and more stable, as those
semantically dissimilar tokens are down-weighted. While for gradient updates in Eq. 32, 35, the gradient
scale of OTPO on each token is additionally controlled by the OT weighting scheme instead of uniform
update, performing larger updates on the more important tokens related to prompt and the other response,
while downweighting the updates in the less relevant tokens. This ensures a more meaningful and
concentrated gradient update compared to DPO. Overall, the OT weighting scheme ensures more stable
reward difference term and dynamic gradient updates given the context and pairwise data information.
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