
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2078–2091
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CompileAgent: Automated Real-World Repo-Level Compilation with
Tool-Integrated LLM-based Agent System

Li Hu1*, Guoqiang Chen2*, Xiuwei Shang1, Shaoyin Cheng1,3†, Benlong Wu1,
Gangyang Li1, Xu Zhu1, Weiming Zhang1,3, Nenghai Yu1,3

1University of Science and Technology of China 2QI-ANXIN Technology Research Institute
3Anhui Province Key Laboratory of Digital Security

{pdxbshx,shangxw,dizzylong,ligangyang,zhuxu24}@mail.ustc.edu.cn
{sycheng,zhangwm,ynh}@ustc.edu.cn guoqiangchen@qianxin.com

Abstract

With open-source projects growing in size and
complexity, manual compilation becomes te-
dious and error-prone, highlighting the need
for automation to improve efficiency and ac-
curacy. However, the complexity of compi-
lation instruction search and error resolution
makes automatic compilation challenging. In-
spired by the success of LLM-based agents in
various fields, we propose CompileAgent, the
first LLM-based agent framework dedicated
to repo-level compilation. CompileAgent inte-
grates five tools and a flow-based agent strat-
egy, enabling interaction with software arti-
facts for compilation instruction search and
error resolution. To measure the effective-
ness of our method, we design a public repo-
level benchmark CompileAgentBench, and we
also design two baselines for comparison by
combining two compilation-friendly schemes.
The performance on this benchmark shows
that our method significantly improves the
compilation success rate, ranging from 10%
to 71%. Meanwhile, we evaluate the per-
formance of CompileAgent under different
agent strategies and verify the effectiveness
of the flow-based strategy. Additionally, we
emphasize the scalability of CompileAgent,
further expanding its application prospects.
The complete code and data are available at
https://github.com/Ch3nYe/AutoCompiler.

1 Introduction

Compilation is the process of converting source
code into executable files or libraries. Currently,
many open-source tool libraries and application
software projects can be used directly after com-
piling into executable files or libraries. Not only
that, these files or libraries can also be used for sub-
sequent work, including building diverse datasets
(Ye et al., 2023), conducting performance testing

* Both authors contributed equally to this research.
† Corresponding author

and optimization (Tan et al., 2020), security and
vulnerability analysis (Jiang et al., 2024), etc.

For single-file compilation, the compiler only
needs to process a single source code file and
generate the corresponding target code. However,
compiling an open-source code repository shared
by others is a far more complex, time-consuming
(Wang et al., 2024b) and demanding task in actual
software engineering. This process goes beyond
handling the source code itself and requires ad-
dressing intricate challenges such as environment
adaptation, dependency management, and build
configuration. As a result, developers tend to spend
most of their time troubleshooting challenges dur-
ing the compilation process.

To date, no research has specifically focused on
how to achieve automated compilation at the repos-
itory level. Drawing from developers’ experience
in compiling code repositories, we identify two
core challenges in this task. The first is the discov-
ery and accurate extraction of compilation instruc-
tions from repositories, which often involve varied
build systems, scripts, and configurations. The
second challenge is resolving compilation errors
encountered during the process, which is required
to address issues such as dependency conflicts, en-
vironment mismatches, and code compatibility.

Recently, the application of LLM-based agents
for automating complex tasks has gained signifi-
cant attention across various fields. They have been
successfully employed in areas such as code gener-
ation (Huang et al., 2023; Zhang et al., 2024a), bug
fixing (Liu et al., 2024b; Bouzenia et al., 2024),
and penetration testing (Deng et al., 2024; Shen
et al., 2024; Bianou and Batogna, 2024), where
they autonomously perform tasks that traditionally
require human intervention. Inspired by the suc-
cess of these applications, we propose leveraging
agents for the automation of repository-level compi-
lation tasks. By doing so, we aim to streamline the
compilation process, reduce manual intervention,

2078

https://github.com/Ch3nYe/AutoCompiler

and address the challenges inherent in compiling
open-source repositories.

In this paper, we propose CompileAgent, the first
novel approach that leverages LLM-based agents
for automated repo-level compilation. To address
the two key challenges identified earlier, we have
designed five specialized tools and a flow-based
agent strategy. CompileAgent can effectively com-
plete the compilation of code repositories by in-
teracting with external tools. To evaluate the ef-
fectiveness of our approach, we manually con-
structed CompileAgentBench, a benchmark de-
signed for repository compilation. This benchmark
consists of 100 repositories in C and C++, sourced
from Github. We further conducted comprehen-
sive experiments to evaluate the performance of
CompileAgent by applying it to seven well-known
LLMs, with parameter sizes ranging from 32B to
236B, to demonstrate its broad applicability. When
compared to the existing baselines, CompileAgent
achieved a notable increase in compilation success
rates across all LLMs, with improvements reach-
ing up to 71%. Additionally, the total compila-
tion time can be reduced by up to 121.9 hours,
while maintaining a low cost of only $0.22 per
project. We compared the flow-based strategy with
several other strategies suitable for the compilation
task, further validating its effectiveness. Moreover,
we conducted ablation experiments to validate the
necessity of each component within the system.
These experiments provide strong evidence that
CompileAgent effectively addresses the challenges
of code repository compilation.

Our contributions can be summarized as follows:

• We make the first attempt to explore repo-level
compilation by LLM-based agent, offering valu-
able insights into the practical application of
agents in real-world scenarios.

• We propose CompileAgent, a LLM-based agent
framework tailored for the repo-level compi-
lation task. By incorporating five specialized
tools and a flow-based agent strategy, the frame-
work enables LLMs to autonomously and effec-
tively complete the compilation of repositories.

• We construct CompileAgentBench, a bench-
mark for compiling code repositories that in-
cludes high-quality repositories with compila-
tion instructions of varying difficulty and cover-
ing a wide range of topics.

• Experimental results on seven LLMs demon-
strate the effectiveness of CompileAgent in

compiling code repositories, highlighting the
potential of agent-based approaches for tack-
ling complex software engineering challenges.

2 Background
2.1 LLMs and Agents
LLMs have demonstrated remarkable performance
across a wide range of Natural Language Process-
ing (NLP) tasks, such as text generation, summa-
rization, translation, and question-answering. Their
ability to understand and generate human-like text
makes them a powerful tool for various applica-
tions. However, LLMs are limited to NLP tasks
and struggle with tasks that involve direct interac-
tion with the external environment.

Recent advancements in LLMs have signifi-
cantly expanded their capabilities, with many mod-
els now supporting function calls as part of their
core functionalities. This enhancement allows
LLMs to dynamically interact with external sys-
tems and tools, playing a key role in the develop-
ment of the AI agents (Qian et al., 2024b; Islam
et al., 2024; Huang et al., 2024; Qian et al., 2024a;
Chen et al., 2023; Xie et al., 2023). Nowadays,
with the popularity of agent-based frameworks, re-
searchers have begun to develop agent-based meth-
ods to solve complex tasks, such as OpenHands
(Wang et al., 2024e), AutoCodeRover (Zhang et al.,
2024b), and SWE-Agent (Yang et al., 2024).

2.2 Automatic Compilation
In modern software development, there are a large
number of open-source code repositories, but due
to differences in project management and document
writing among developers, the quality and standard-
ization of compilation guides vary. Many projects
lack detailed compilation instructions, which may
cause users to encounter problems such as incon-
sistent environment configuration or lack of nec-
essary dependencies when trying to compile. In
addition, some open-source projects store compi-
lation guides in external documents or websites
without clearly marking them in the codebase, re-
sulting in the compilation process that relies on
manual steps, which is both error-prone and time-
consuming. These problems make it more chal-
lenging to automate the compilation of open-source
projects, and also highlight the importance of au-
tomated compilation tools in improving the main-
tainability and scalability of open-source projects.

Oss-Fuzz-Gen(Liu et al., 2024a) is an open-
source tool designed to fuzz real-world projects,

2079

root@65c6382231:/work/openssl# ./Configure && make –j32

…

collect2: error: ld returned 1 exit status

make[1]: *** [Makefile:30535: test/sha_test] Error 1

make[1]: Leaving directory '/work/openssl’

make: *** [Makefile:3715: build_sw] Error 2

Interactive Environment

-[Overview]-
OpenSSL is a robust, commercial-grade, full-featured Open Source Toolkit for the TLS (formerly

SSL), DTLS and QUIC (currently client side only) protocols...

Project Introduction

-[Options]-
--debug Build OpenSSL with debugging symbols and zero optimization level.

--release Build OpenSSL without debugging symbols. This is the default.

Configuration Options

-[Build]-
Build OpenSSL by running:

$ make #Unix $ mms # !(or mmk) OpenVMS $ nmake #Windows

This will build the OpenSSL libraries (libcrypto.a and libssl.a on Unix, corresponding on other

platforms) and the OpenSSL binary (openssl).

Compilation Guidance

-[Test]-
After a successful build, and before installing, the libraries

should be tested. Run:

$ make test #Unix $ mms test #OpenVMS $ nmake test #Windows

Warning: you MUST run the tests from an unprivileged account (or disable your privileges

temporarily if your platform allows it).

Test Instructions

-[Demo]-
Note: Makefiles are provided in the demo subfolders to demonstrate how to build them, but are

not frequently used. Configure openssl with enable-demos to build them automatically through

the perl based build system

Bio:Demonstration of a simple TLS client and server…

Demostrations

Input Documentation

README.md

apps

crypto

demos

doc

…

config

…

OpenSSL

bio

Makefile

Input Repository Structure

.so

Target Files

Automated Compilation System

Figure 1: An illustrative example of the automated repo-level compilation. The task input contains code repository
documentation and structure, and the automated compilation system can interact with the interactive environment.

including a part for building projects. This part
works by analyzing the structure of the code
repository and searching for specific files. Based
on the presence of these files, a set of prede-
fined compilation instructions is then executed
to build the project. For example, if the reposi-
tory contains bootstrap.sh and Makefile.am,
Oss-Fuzz-Gen will execute the “./bootstrap.sh;
./configure; make” commands in sequence to
build the project. However, Oss-Fuzz-Gen may not
be sufficient for projects where the specified files
are absent. Additionally, the tool lacks adaptability
to changing environments, making it less flexible
in dynamic or evolving software projects.

To be closer to realistic compilation scenarios,
we formalize repo-level compilation tasks and pro-
pose CompileAgent to help LLMs complete this
complex task. We also built a repo-level compila-
tion benchmark CompileAgentBench to evaluate
our approach and provide details of the benchmark
in Appendix A. Compared with Oss-Fuzz-Gen,
CompileAgent is more suitable for handling real-
world compilation tasks.

3 Repo-Level Compilation Task

To bridge the gap between current compilation
tasks and real-world software building scenarios,
we formalized the repo-level compilation task. Un-
like simple file-level compilation, code repositories
often entail complex build configurations and inter-
dependencies across multiple files. Consequently,
an automated compile system as shown in Figure 1,
which is an integrated tool or a comprehensive
framework designed to facilitate the entire compi-
lation process, must comprehend the entire reposi-
tory, its dependencies, and the interactions between

its components to ensure successful compilation
at the repo-level. The repo-level compilation task
focuses on managing the compilation process by
considering all relevant software artifacts within
the repository, including documentation, repository
structure, and interactive environment.
Documentation. It provides essential insights into
the project, including project introduction, con-
figuration options, compilation guidelines, testing
frameworks, and demonstrations. Automated com-
pile system can leverage it to extract and inter-
pret information necessary for accurately configur-
ing and executing the compilation process. More-
over, documentation often contains nuanced details
about platform-specific dependencies or build set-
tings that are critical for success.
Repository Structure. The structure of a repos-
itory reflects the organization and relationships
among its files and modules. Effective repo-level
compilation depends on a deep understanding these
relationships, including dependency hierarchies be-
tween files or modules, and adhering to build se-
quence constraints(e.g., resolving “cmake” config-
urations before invoking “make”). Furthermore,
addressing external library dependencies, such as
linking with libraries like OpenSSL or Boost, is
crucial for ensuring both compatibility and correct-
ness. Efficiently navigating this structure is pivotal
for repositories with intricate interdependencies.
Interactive Environment. The interactive environ-
ment is integral to successful repo-level compila-
tion, as it provides essential support throughout the
process. It can provide detailed error messages and
diagnostic information to the automated compile
system during the compilation process, allowing
it to identify and resolve issues in real time. This

2080

Install.txt

https://**.com

README

Instrcution Extractor

spider

I feel the compilation instructions

might be in the following files:

1. README

2. …

I think the instructions might

be in the following files:

1. install.md

2. …

SearchAgent-Ⅰ

root$ tree . –L 2

…

 apps/

 ciphers.c

 client.pem

 …

 include/

 crypto/

 openssl/

 buffererr.h

 …

SummarizeAgent

MasterAgent

I will use the SHELL tool to

execute these commands

CompileNavigator Module

File Navigator

Discuss
SearchAgent-Ⅱ

SearchAgent-Ⅱ

SearchAgent-Ⅱ

MasterAgent

Project Codebase

Stage1: Initial Solutions Generation

Compilation Errors

.obj/quickjs.o: in function

`js_atomics_wait’:

/work/quickjs.c:55805: undefined

reference to

`__pthread_cond_timedwait64’

collect2: error: ld returned 1 exit

status

collect2: error: ld returned 1 exit

status

Website Search

Final Solutions:

The following com-

mand can solve the

compilation errors:
```

1.CFLAGS=‘-lpthread’

2. ./configure

3. make
 ```

…

ErrorSolver Module

MasterAgent

I can’t solve, I

will use … tool

⑩C
o
m

p
ila

tio
n

 E
r
r
o
r

The solution is

valid and com-

piled success-

fully

Multi-Agent Discussion

MasterAgent

Target Files

.so

⑨ Compilation Success

Input

Shell

Stage2: Multi-Round Discussion

Same Solutions

Grouping

Diff …

Prompt

The compilation error: …

Most agent think the solution: …

Their reasoning process: …

But one agent think the

solution: …

Its reasoning process: …

Reasoning: The error …

Solution: configure with pth-

read support:‘./config –prefix…’

Reasoning: The error …

Solution: configure like this:

‘C-FLAGS=‘-pthread’ ./config.’

I revise my previous opinion, and the compil-

ation instructions might be in the following files:

1. README

2. …

Now, I will use the Insturction_Extractor tool to

extract the instructions.

The compilation instructions

are as follows:

1. ./configure

2. …

Reasoning: The error …

Solution: update the openssl to

the lastest version, then add …

Reasoning: The error …

Solution: using the –pthread

flag: ./config –pthread …

Reasoning: The error …

Solution: use `CFLAGS=fPIC`

make OR add –fPIC…

Reasoning: The error …

Solution: adding ‘-lpthread’ to

the linker flags.

① ②

③

④

⑤

⑥

⑦

⑧

⑪

⑫

⑬

⑭

⑮

⑯

Figure 2: The overview of CompileAgent. By providing the repository of a given project, the automated compilation
process can be seamlessly completed using the designed modules and agent strategy. Agents not explicitly specified
are driven by DeepSeek-v2.5.

dynamic feedback loop allows the automated com-
pile system to adjust the compilation process as
needed, ensuring greater accuracy and efficiency.
Additionally, the interactive environment should
isolate the compilation process to safeguard the
physical machine and provide independent build
environments for each project.

In this paper, we consider LLM-based agent as
an automated compilation system. Our objective is
to rigorously evaluate its effectiveness in automat-
ing the repo-level compilation, ensuring that it can
accurately identify the correct compilation instruc-
tions and efficiently resolve any issues that arise
during the compilation process.

4 Method
In this section, we present the design of the LLM-
based agent framework, CompileAgent, aimed at
automating repo-level compilation. To effectively
address the two key challenges mentioned in sec-
tion 1, we design two core modules, CompileNavi-
gator and ErrorSolver, which together include five
supporting tools, all integrated into a flow-based
agent strategy, as shown in Figure 2.

4.1 Designed Modules
When searching for compilation instructions in the
given code repository, users typically rely on the
repository’s structure to identify potential files con-
taining the necessary instructions. Moreover, when
encountering difficulties during the compilation

process that are hard to resolve, they often seek
solutions through online resources, LLMs or other
methods. To locate compilation instructions and
resolve compilation errors, we model the process
of solving the challenges and design the following
two modules.

4.1.1 CompileNavigator

The CompileNavigator module is designed to
tackle the challenge of finding the correct com-
pilation instructions within a code repository. Typi-
cally, the necessary instructions are scattered across
different documentation types, such as README,
doc.html, install.txt, etc. making it difficult
to locate them quickly. To address this challenge,
the module employs three key tools: Shell, File
Navigator, and Instruction Extractor.
Shell. To ensure the security of physical machine
during the compilation process, we isolate the en-
tire compilation workflow from the host system by
creating a container using Docker. The downloaded
project is mounted into this container, and an SSH
connection is established to access the terminal
shell. The Docker container is built on the Ubuntu
22.04 operating system image. Through this tool,
LLMs can interact with the interactive environment
and execute any necessary commands.
File Navigator. To accurately locate the file con-
taining the compilation instructions, we design two
agents, SearchAgent I and SearchAgent II. The

2081

repository’s structural information is provided as
input, and the two agents engage in a collabora-
tive discussion to determine the most likely file
containing the compilation instructions. We verify
the necessity of using two Search Agents in the
subsequent ablation experiments.
Instruction Extractor. After identifying the files
that likely contain the compilation instructions, the
next task is to extract the instructions from them.
In order to complete this, we design the Summa-
rizeAgent, which reads the content of a specified
file and searches for URLs related to compilation
instructions within the file. If such URLs are found,
requests are sent to retrieve the web page content.
Finally, SummarizeAgent summarizes and outputs
the relevant compilation instructions.

4.1.2 ErrorSolver
The ErrorSolver module is designed to address
compilation errors during the project build process,
which can stem from various issues such as syntax
problems, missing dependencies, or configuration
conflicts. To resolve these errors, we develop two
key tools in this module: Website Search and Multi-
Agent Discussion.
Website Search. Developers frequently publish
solutions to compilation problems on websites,
which search engines treat as valuable knowledge
databases. When faced with similar problems,
users can submit queries to search engines to find
relevant solutions. Inspired by this, we encapsulate
Google Search engine into a tool. However, since
search results may include irrelevant content, we in-
struct the agents using the tool to prioritize reliable,
open-source websites, like Github and StackOver-
flow, and then aggregate the relevant information
to provide a solution to the user’s query.
Multi-Agent Discussion. Although there are vari-
ous single-agent approaches exist for solving rea-
soning tasks, such as self-polishing (Xi et al.,
2023b), self-reflection (Yan et al., 2024), self-
consistency (Wang et al., 2024a) and selection-
inference (Creswell et al., 2022), we think these
complex reasoning approaches are unnecessary for
solving compilation errors. Compilation errors typ-
ically come with clear error messages, such as path
or environment configuration issues and compati-
bility problems. These errors can generally be re-
solved through straightforward analysis, consulting

https://www.google.com/
https://github.com/
https://stackoverflow.com/

documentation, and making reasonable inferences,
without the need of advanced reasoning processes.
Inspired by Wang et al. (Wang et al., 2024d) and
reconcile (Chen et al., 2024), we propose a Multi-
Agent Discussion approach specifically designed to
address compilation errors. In this method, multi-
agents first analyze the complex compilation er-
ror and generate an initial solution. The agents
then enter a multi-round discussion phase, where
each can revise its analysis and response based on
the inputs from the other agents in the previous
round. The discussion continues until a consensus
is reached or for up to R rounds. At the end of each
round, the solutions, consisting of command lines,
are segmented, and repeated terms are counted. If
the number of repeated terms exceeds a specified
threshold, the solutions are considered equivalent,
and a final team response is generated. In this pa-
per, we set up three agents for the discussion, with
a maximum of 3 Rounds.

4.2 Agent Strategy
When compiling a given project, users typically be-
gin by consulting the project’s compilation guide,
and then execute the relevant compilation com-
mands based on their environment. If issues arise
during the process, they often resort to online
searches or query tools like ChatGPT to trou-
bleshoot until the compilation succeeds. Inspired
by this workflow, to enable LLMs to effectively
leverage our designed tools, we propose a flow-
based agent strategy tailored for the automated
compilation task.

The strategy defines the sequence in which tools
are used and connects them seamlessly through
prompts. MasterAgent is responsible for invoking
the tools. The process is as follows:

1 MasterAgent begins by downloading the tar-
get code repository to the local system and mount-
ing it into the container using the Shell tool;

2 Next, MasterAgent uses the Shell tool to run
commands like “tree” within the container to re-
trieve the repository structure;

3 Then, MasterAgent invokes the FileNavigator
tool to identify files that may contain the necessary
compilation instructions;

4 Subsequently, MasterAgent uses the Instruc-
tionExtractor tool to extract the compilation instruc-
tions and execute them via the Shell tool;

5 If the Shell tool returns a successful compi-
lation result, the compilation process is complete.
If a compilation error occurs, MasterAgent first

2082

attempts to resolve the issue independently. If the
issue persists after attempts, the ErrorSolver mod-
ule is activated for several rounds of collaborative
discussion. Finally, the compilation status is deter-
mined based on the Shell tool’s outcome.

5 Experiment

We conduct extensive experiments to answer three
research questions: (1) How much does Com-
pileAgent improve the project compilation success
rate compared to existing methods? (2) How effec-
tive is the flow-based strategy we designed when
compared to existing agent strategies? (3) To what
extent do the tools integrated within CompileAgent
contribute to successful repo-level compilation?

5.1 Experimental Setup
Benchmark. To the best of our knowledge, there
is no existing work that specifically evaluates repo-
level compilation. Therefore, we manually con-
struct a new benchmark for repo-level compilation
to evaluate the effectiveness of our approach in this
domain. We select 100 projects from many C/C++
projects on Github and carefully consider multi-
ple factors during the project selection to ensure
the authority and diversity of CompileAgentBench.
First, we screen the projects based on the number
of stars to ensure that the selected projects have
high representativeness and practical value in the
community. Moreover, we also consider the topics
involved in the projects and finally select projects
covering 14 different fields, including areas such
as crypto, audio, and neural networks. On this ba-
sis, we also pay special attention to whether each
project provided a clear compilation guide. Mean-
while, we arrange for three participants with 3 to
4 years of project development experience to man-
ually compile these 100 projects to further verify
the compilability of the selected projects and the
accuracy of the evaluation. We finally obtain the
target files of these 100 projects, and the entire com-
pilation process took about 46 man-hours. More
details refer to Appendix A.
Baselines. As the first work dedicated to automat-
ing repo-level compilation, there is no related work
for us to compare except Oss-Fuzz-Gen. However,
there are some projects or technologies that are
helpful for automated compilation tasks, such as
the Readme-AI project and Retrival-Augumented
Generation (RAG) techniques.

https://github.com/eli64s/readme-ai

Readme-AI is a developer tool that can gener-
ate well-structured and detailed documentation for
a code repository based solely on its URL or file
path. For cost-effectiveness, we utilize GPT-4o
mini for documentation generation and specify in
the requirements that the “How to compile/build
from source code” section should be included. A
detailed example of this process is provided in Ap-
pendix B. RAG refers to a technique that enhances
the output of LLMs by allowing them to reference
external knowledge sources during response gener-
ation. In the compilation task, we leverage RAG as
a tool. Specifically, we traverse the possible com-
pilation files in the code repository, and then cut
these file contents into chunks and generate vector
embeddings. Each time the compilation instruc-
tions are searched for, LLMs generate instructions
by retrieving the vector database. For a specific
example, please refer to Appendix C.

We also compare the flow-based agent strategy
designed in this paper with existing agent strategies.
According to the research of Wang et al. (Wang
et al., 2024c) and Xi et al. (Xi et al., 2023a), we
select two common agent strategies that are suit-
able for the automated compilation task, including
ReAct (Yao et al., 2022), Plan-and-Execute (Wang
et al., 2023). In addition, we also consider the
comparison with OpenAIFunc (OpenAI, 2023).
Base LLMs. Compilation task automation with
LLM-driven agents faces two key constraints: ac-
curate function calling and sufficient context win-
dow length. Many mainstream small-parameter
LLMs (e.g., Llama3.1 8B) lack built-in support
for function calls, while those models with this ca-
pability are prone to reaching the upper limit of
context length due to multiple rounds of function
calls, thus affecting task completion. Therefore, we
apply CompileAgent to seven large-parameter, ad-
vanced LLMs, including three closed-source LLMs,
i.e., GPT-4o (GPT-4o, 2024), Claude-3-5-sonnet
(Claude, 2024), Gemini-1.5-flash (Gemini, 2024),
as well as four open-source LLMs, i.e., Qwen2.5-
32B-Instruct (Team, 2024), Mixtral-8×7B-Instruct
(MistralAI, 2023), LLama3.1-70B-Instruct (Meta-
LLaMa, 2024), DeepSeek-v2.5 (DeepSeek-AI,
2024). Additional descriptions are provided as a
part of Table 1.
Metrics. In order to comprehensively evaluate the
effectiveness of automated compilation tasks, we
select three key indicators: compilation success
rate, time cost, and expenses. Among these, the
compilation success is determined when the target

2083

Table 1: The Results of Different Baselines on CompileAgentBench.

Models Size Oss-Fuzz-Gen1 Readme-AI RAG CompileAgent

Csr2 Time3Exp4 Csr T ime Exp Csr T ime Exp Csr T ime Exp

Closed-source LLMs

25% 53.01 -
GPT-4o (GPT-4o, 2024) - 72% 128.80 42.94 67% 11.12 45.78 89% 8.38 16.53
Claude-3-5-sonnet (Claude, 2024) - 79% 127.33 55.26 78% 8.30 54.44 96% 5.37 22.02
Gemini-1.5-flash (Gemini, 2024) - 41% 123.68 32.37 46% 9.28 35.72 65% 3.55 2.39

Open-source LLMs

25% 53.01 -
Qwen2.5-32B-Instruct (Team, 2024) 32B 70% 127.82 33.18 62% 10.55 36.73 80% 5.25 3.16
Mixtral-8×7B-Instruct (MistralAI, 2023) 42B 38% 124.60 33.12 45% 10.82 36.49 55% 4.88 4.32
LLama3.1-70B (Meta-LLaMa, 2024) 70B 61% 125.03 33.57 61% 10.98 36.87 79% 7.38 2.71
DeepSeek-v2.5 (DeepSeek-AI, 2024) 236B 71% 125.43 33.70 72% 11.30 36.08 91% 11.38 3.31

1 The Oss-Fuzz-Gen project operates without relying on LLMs.
2 The proportion of successfully compiled projects to all projects.
3 The total duration required to complete the compilation process, measured in hours.
4 The total expense incurred during the compilation process, measured in US dollars.

Table 2: The Results of Different Agent Strategies on CompileAgentBench.

Models Size OpenAIFunc1 PlanAndExecute ReAct Flow-based

Csr T ime Exp Csr T ime Exp Csr T ime Exp Csr T ime Exp

Closed-source LLMs
GPT-4o (GPT-4o, 2024) - 80% 6.75 22.51 40% 5.18 10.02 72% 6.58 23.63 89% 8.38 16.53
Claude-3-5-sonnet (Claude, 2024) - - - - 72% 5.02 13.77 81% 8.40 25.26 96% 5.37 22.02

Open-source LLMs
LLama3.1-70B (Meta-LLaMa, 2024) 70B - - - 26% 4.77 2.14 49% 10.48 6.52 79% 7.38 2.71
DeepSeek-v2.5 (DeepSeek-AI, 2024) 236B - - - 70% 6.72 1.42 78% 11.32 3.88 91% 11.38 3.31

1 The openaifunc refers to OpenAI’s LLMs equipped with the capability to invoke functions.

files in the precompiled projects completely match
those generated by CompileAgent.

5.2 Repo-Level Compilation Performance

In this experiment, we use the specially designed
repo-level benchmark, CompileAgentBench, to
evaluate the performance of CompileAgent and
three baselines in compiling code repositories
across seven well-known LLMs. The results are
presented in Table 1.

It turns out that our proposed CompileAgent-
Bench is more challenging when not using LLMs
methods, as evidenced by the lower compilation
success rate of Oss-Fuzz-Gen. Compared with
existing baselines, CompileAgent has significant
performance improvements on LLMs with vari-
ous sizes. Specifically, CompileAgent achieves
the highest performance on the Claude-3-5-sonnet
model, improving by 71%, 17%, and 18% over
all baselines, respectively; in terms of time cost, it
saves 47.64 hours, 121.96 hours, and 2.93 hours;
in terms of expenses, the average cost per project is
only $0.22. Excluding Oss-Fuzz-Gen, the total cost
is reduced by $33.24 and $32.42, respectively. The
performance improvement on other LLMs ranges
from 30% to 71%, 10% to 24%, and 10% to 22%,
which clearly demonstrates the effectiveness of our

method. This indicates that the integrated tools
in CompileAgent can effectively assist LLMs in
completing the compilation process, meeting the
real-world needs of repo-level compilation.

In addition, we also find that the more advanced
LLMs tend to show better performance with Com-
pileAgent. However, for the poor performance of
Mixtral-8×7B-Instruct, we speculate that may be
related to its model architecture design.

5.3 Strategy Performance

We also evaluate the impact of different agent strate-
gies on CompileAgent, and make slight modifica-
tions to other strategies, enabling them to call the
tool we designed. Additionally, we strategically
select a set of representative LLMs for evaluation,
considering the constraints of available resources
and computing power. Table 2 summarizes the
experimental results of the evaluation.

Our flow-based agent strategy achieves the high-
est compilation success rate on Claude-3-5-sonnet,
but it also brings a lot of costs. It is worth noting
that the success rate of each compilation strategy
generally decreases when using LLMs with fewer
parameters. Despite this, our designed strategy can
still achieve a 30%-53% higher success rate than
other agent strategies while maintaining low time

2084

Table 3: Average tool usage number and ablation result
on CompileAgentBench for CompileAgent which is
based on GPT-4o.

Tools Usage Ablation Result

Csr T ime Exp

CompileAgent - 89% 8.38 16.53

Shell1 - - - -
File Navigator(No-Agent)

1.21
81% 6.93 17.32

File Navigator(Single-Agent) 83% 7.65 16.92
File Navigator(Three-Agent) 89% 9.54 16.29
Instruction Extractor2 1.63 77% 7.18 18.26
Website Search 0.61 84% 7.25 16.53
Multi-Agent Discussion 1.87 71% 8.77 18.89

1 The Shell tool is essential for executing compilation instructions and
is a necessary condition for compilation tasks.

2 We retain the core functionality of the Instruction Extractor while
removing the web content crawling feature.

and cost. These findings emphasize that the flow-
based agent strategy we designed can also maintain
a high compilation success rate even under LLMs
with different parameter specifications, showing
stronger robustness than other agent strategies.

Additionally, combined with the results of the
first experiment, we find that the ReAct and Flow-
based strategies are more suitable for the compila-
tion task, and the PlanAndExecute strategy appears
less suited for the task.

5.4 Ablation Study
In order to evaluate the impact of our designed
tools on CompileAgent, we conduct an ablation
study. In this experiment, we select GPT-4o with
Flow-based as the ablation subject and record the
usage frequency of each tool during the compila-
tion process. We then perform the ablation of these
tools, and the results are presented in Table 3.

Our experimental results indicate that in the ab-
lation experiments on the FileNavigator tool, the
single-agent has a lower compilation success rate
and a higher overall cost compared to the two-agent,
although it requires less time. In contrast, the three-
agent shows a similar compilation success rate and
cost to the two-agent but results in a higher time
cost. It is worth noting that the Multi-Agent Dis-
cussion tool is the most frequently called in the
compilation task. Ablating this tool leads to a sig-
nificant drop in the compilation success rate, reach-
ing 18%, while the time and cost overhead required
for compilation also increase. This suggests that
CompileAgent relies heavily on the tool when tack-
ling complex problems, as it plays a crucial role in
enhancing both accuracy and efficiency. Moreover,
the ablation results of the other tools demonstrate

their positive contributions to the performance of
CompileAgent to varying degrees. Overall, the
ablation experiment results confirm the effective-
ness and practicality of the tools we designed for
real-world compilation tasks.

In addition, we also conduct an ablation
study on the LLMs used within the LLM-driven
agents. Specifically, we replace the original large-
parameter models in the CompileNavigator module
with smaller open-source LLMs, keeping all other
settings unchanged. For the ErrorSolver module,
the original multi-agent discussion mechanism is
replaced with multiple smaller LLMs, with the re-
maining configurations kept consistent.

Based on the results in the Table 4, we find a
slight decrease in the compilation success rate after
replacing the small-scale LLMs, but it is within an
acceptable range. We think this is likely due to the
relative simplicity of the compilation instructions
search task, which allows small-scale LLMs to de-
liver satisfactory results. Additionally, both time
cost and expenses are slightly reduced.

According to the results in the Table 5, we ob-
serve a significant drop in compilation success rate
when using more small-scale LLMs. We think the
task of solving compilation errors is essentially a
difficult task, and small-scale LLMs are not com-
petent. Notably, despite the faster inference speed
of these small-scale LLMs, the overall time cost
slightly increases. By analyzing the logs, it is found
that when faced with challenging compilation er-
rors, the Multi-Agent Discussion part is frequently
invoked but often fails to deliver accurate instruc-
tions, leading to a further increase in time cost. Al-
though Multi-Agent Discussion is frequently called
and the number of tokens generated by LLMs rea-
soning increases, the expenses remain stable due to
the low API pricing of small-scale LLMs.

In summary, our experimental findings suggest
that utilizing LLMs with fewer parameters in the
CompileNavigator module can reduce the time cost
and expenses while keeping the drop in compilation
success rate within an acceptable range. However,
within a reasonable cost threshold, we recommend
prioritizing agents driven by larger open-source
LLMs to achieve a higher compilation success rate.
In the ErrorSolver module, using smaller-parameter
LLM-driven agents causes a substantial and unac-
ceptable decline in the compilation success rate,
while the time cost and expenses also do not drop
as significantly as we expect. Therefore, we recom-
mend utilizing more powerful LLMs in the Multi-

2085

Table 4: The Results of Different LLM-driven Agents in CompileNavigator.

MasterAgent SearchAgent SummarizeAgent CompilationSuccessRate TimeCost Expense

DeepSeek-v2.5 DeepSeek-v2.5 DeepSeek-v2.5 91% 11.38 3.31
DeepSeek-v2.5 LLama3.1-70B LLama3.1-70B 87% 11.12 3.23
DeepSeek-v2.5 Qwen2.5-32B-Instruct Qwen2.5-32B-Instruct 82% 11.04 3.17

Table 5: The Results of Different LLM-driven Agents in ErrorSolver.

MasterAgent Multi-Agents CompilationSuccessRate TimeCost Expense

DeepSeek-v2.5 GPT-4o, Claude-3-5-sonnet, DeepSeek-v2.5 91% 11.38 3.31
DeepSeek-v2.5 GPT-4o, Claude-3-5-sonnet, LLama3.1-70B 87% 11.46 3.14
DeepSeek-v2.5 GPT-4o, LLama3.1-70B, Mixtral-8x7B-Instruct 73% 12.37 2.86
DeepSeek-v2.5 LLama3.1-70B, Mixtral-8x7B-Instruct, Qwen2.5-32B-Instruct 68% 12.91 2.67

Agent Discussion to ensure better performance.

6 Discussion
6.1 Failure Analysis
In the previous experiments, CompileAgent en-
counters several compilation failures. After an-
alyzing the logs, we summarize the most common
three errors in the compilation process: I) Complex
Build Dependencies. Some projects rely on intri-
cate dependency chains involving specific versions
of libraries, and missing or incompatible depen-
dencies lead to building failures. II) Toolchain
Mismatch. Some projects require specific versions
of compilers, interpreters, or build tools that are
not available or configured properly in the Com-
pileAgent environment, resulting in compilation
errors. III) Configuration Complexity. The com-
plex configuration settings in some projects, such
as unmatched environmental variables and improp-
erly defined parameters, resulting in the failure of
compilation.

6.2 Multi-Language and Multi-Architecture
Compilation

Although the CompileAgent proposed in this arti-
cle is primarily designed for C/C++ projects, it can
also support multi-language and multi-architecture
compilation due to its inherent scalability and flex-
ibility, and can be further expanded to realize the
automated compilation process in different envi-
ronments.

For multi-language compilation, we can first in-
stall the interactive environment of each language
in Docker and dynamically adjust the toolchain
by detecting the specific programming language
used by the project. This process includes select-
ing the appropriate compiler and configuring rele-
vant language-specific build tools, such as javac for
Java, npm for JavaScript, and the Go compiler for

Go. We conduct compilation tests on Go language
projects, more details can refer to Appendix D.

For multi-architecture compilation, we can lever-
age the powerful system emulation tools provided
by QEMU to enable CompileAgent to interact with
environments of different processor architectures
such as ARM, MIPS, and X86, thereby achieving
cross-platform compilation.

6.3 Large-Scale Code Analysis
By integrating with multiple sophisticated code
analysis tools, CompileAgent can comprehensively
evaluate the security of repositories during the com-
pilation process, further ensuring the reliability of
compilation results, especially for some potentially
malicious or vulnerable code repositories. Specif-
ically, we can encapsulate tools such as Coverity
Scan and the Scan-Build and invoke them to per-
form security analysis when CompileAgent per-
forms compilation, identifying critical vulnerabil-
ities, including buffer overflows or unsafe coding
practices.

7 Conclusion

In this paper, we propose CompileAgent, the first
LLM-based agent framework designed for repo-
level compilation, which integrates five tools and
a flow-based agent strategy to enable LLMs to in-
teract with software artifacts. To assess its perfor-
mance, we construct a public repo-level compila-
tion benchmark CompileAgentBench, and estab-
lish two compilation-friendly schemes as baselines.
Experimental results on multiple LLMs demon-
strate the effectiveness of CompileAgent. Finally,
We also highlight the scalability of CompileAgent
and expand its application prospects.

https://www.qemu.org/
https://scan.coverity.com/
https://github.com/llvm/llvm-project

2086

Limitations

Our work is the first attempt to use LLM-based
agents to handle the repo-level compilation task,
and verify the effectiveness of CompileAgent
through comprehensive experiments. However,
there are still some limitations that need to be fur-
ther addressed in the future:

Firstly, CompileAgent relies on the understand-
ing capability of LLMs. During compilation, the
agents may misinterpret prompts or instructions,
leading to repeated or incorrect actions, which im-
pacts its efficiency in resolving compilation issues.
Future work will explore fine-tuning models to im-
prove their in interpreting instructions.

Secondly, the tools incorporated into Com-
pileAgent are relatively basic, leaving unexplored
potential for leveraging more advanced program-
ming and debugging tools. Later we can expand
the toolset to improve the performance of agents
in tackling intricate compilation tasks and error
resolution.

Finally, we find the design of prompts signifi-
cantly influences the overall system performance,
and carefully crafting prompts for each agent is
crucial for achieving optimal results. In the future
work, we will explore more effective agent strate-
gies to improve overall system performance.

Ethics Consideration

We promise that CompileAgent is inspired by real-
world needs for code repositories compilation, with
CompileAgentBench constructed from real-world
code repositories to ensure practical relevance. Dur-
ing our experiments, all projects were manually re-
viewed to verify the absence of private information
or offensive content. Additionally, we manually
compiled each project to validate the reliability of
CompileAgentBench.

Acknowledgments

This work was supported in part by the Natural Sci-
ence Foundation of China under Grant U20B2047,
62072421, 62002334, 62102386, and 62121002.

References
Stanislas G. Bianou and Rodrigue G. Batogna. 2024.

Pentest-ai, an llm-powered multi-agents framework
for penetration testing automation leveraging mitre
attack. In 2024 IEEE International Conference on
Cyber Security and Resilience (CSR), pages 763–770.

Islem Bouzenia, Premkumar Devanbu, and Michael
Pradel. 2024. Repairagent: An autonomous, llm-
based agent for program repair. arXiv preprint
arXiv:2403.17134.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. 2024.
ReConcile: Round-table conference improves rea-
soning via consensus among diverse LLMs. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7066–7085, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Liang Chen, Yichi Zhang, Shuhuai Ren, Haozhe Zhao,
Zefan Cai, Yuchi Wang, Peiyi Wang, Tianyu Liu, and
Baobao Chang. 2023. Towards end-to-end embod-
ied decision making via multi-modal large language
model: Explorations with gpt4-vision and beyond.
arXiv preprint arXiv:2310.02071.

Claude. 2024. https://www.anthropic.com/
claude/sonnet.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. Preprint,
arXiv:2205.09712.

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng
Liu, Yuekang Li, Yuan Xu, Tianwei Zhang,
Yang Liu, Martin Pinzger, and Stefan Rass. 2024.
{PentestGPT}: Evaluating and harnessing large lan-
guage models for automated penetration testing. In
33rd USENIX Security Symposium (USENIX Security
24), pages 847–864.

Gemini. 2024. https://deepmind.google/
technologies/gemini/flash.

GPT-4o. 2024. https://platform.openai.com/
docs/models/gpt-4o.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,
and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010.

Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu
Shen, Yong Xu, Chaoyun Zhang, and Yuzhong Qu.
2024. QueryAgent: A reliable and efficient reason-
ing framework with environmental feedback based
self-correction. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5014–5035,
Bangkok, Thailand. Association for Computational
Linguistics.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. MapCoder: Multi-agent
code generation for competitive problem solving. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

2087

https://doi.org/10.1109/CSR61664.2024.10679480
https://doi.org/10.1109/CSR61664.2024.10679480
https://doi.org/10.1109/CSR61664.2024.10679480
https://doi.org/10.18653/v1/2024.acl-long.381
https://doi.org/10.18653/v1/2024.acl-long.381
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://deepmind.google/technologies/gemini/flash
https://deepmind.google/technologies/gemini/flash
https://deepmind.google/technologies/gemini/flash
https://deepmind.google/technologies/gemini/flash
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://doi.org/10.18653/v1/2024.acl-long.274
https://doi.org/10.18653/v1/2024.acl-long.274
https://doi.org/10.18653/v1/2024.acl-long.274
https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.acl-long.269

Long Papers), pages 4912–4944, Bangkok, Thailand.
Association for Computational Linguistics.

Ling Jiang, Junwen An, Huihui Huang, Qiyi Tang, Sen
Nie, Shi Wu, and Yuqun Zhang. 2024. Binaryai: Bi-
nary software composition analysis via intelligent
binary source code matching. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE ’24, New York, NY, USA.
Association for Computing Machinery.

Dongge Liu, Oliver Chang, Jonathan metzman, Martin
Sablotny, and Mihai Maruseac. 2024a. OSS-Fuzz-
Gen: Automated Fuzz Target Generation.

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu,
Yexuan Shi, Zhao Zhang, and Chao Peng. 2024b.
Marscode agent: Ai-native automated bug fixing.
arXiv preprint arXiv:2409.00899.

Meta-LLaMa. 2024. https://huggingface.co/
meta-llama/Llama-3.1-70B.

MistralAI. 2023. https://huggingface.co/
mistralai/Mixtral-8x7B-Instruct-v0.1.

OpenAI. 2023. https://openai.com/index/
function-calling-and-other-api-updates/.

OpenAI. 2024. https://openai.com/index/
new-embedding-models-and-api-updates/.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024a. ChatDev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174–15186, Bangkok, Thailand. Association
for Computational Linguistics.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024b. Tell me
more! towards implicit user intention understanding
of language model driven agents. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1088–1113, Bangkok, Thailand. Association
for Computational Linguistics.

Xiangmin Shen, Lingzhi Wang, Zhenyuan Li, Yan Chen,
Wencheng Zhao, Dawei Sun, Jiashui Wang, and Wei
Ruan. 2024. Pentestagent: Incorporating llm agents
to automated penetration testing. arXiv preprint
arXiv:2411.05185.

Cheng Tan, Chenhao Xie, Ang Li, Kevin J. Barker,
and Antonino Tumeo. 2020. Opencgra: An open-
source unified framework for modeling, testing, and
evaluating cgras. In 2020 IEEE 38th International
Conference on Computer Design (ICCD), pages 381–
388.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and
Mohit Bansal. 2024a. Soft self-consistency improves
language models agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 287–301,
Bangkok, Thailand. Association for Computational
Linguistics.

Hao Wang, Zeyu Gao, Chao Zhang, Zihan Sha,
Mingyang Sun, Yuchen Zhou, Wenyu Zhu, Wenju
Sun, Han Qiu, and Xi Xiao. 2024b. Clap: Learn-
ing transferable binary code representations with nat-
ural language supervision. In Proceedings of the
33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, page
503–515, New York, NY, USA. Association for Com-
puting Machinery.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024c. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. arXiv
preprint arXiv:2305.04091.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024d. Rethinking the bounds of
LLM reasoning: Are multi-agent discussions the key?
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 6106–6131, Bangkok, Thailand.
Association for Computational Linguistics.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F.
Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H.
Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe
Zhang, Binyuan Hui, Junyang Lin, Robert Bren-
nan, Hao Peng, Heng Ji, and Graham Neubig.
2024e. OpenHands: An Open Platform for AI Soft-
ware Developers as Generalist Agents. Preprint,
arXiv:2407.16741.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023a. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Zhiheng Xi, Senjie Jin, Yuhao Zhou, Rui Zheng,
Songyang Gao, Jia Liu, Tao Gui, Qi Zhang, and Xu-
anjing Huang. 2023b. Self-Polish: Enhance reason-
ing in large language models via problem refinement.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 11383–11406, Sin-
gapore. Association for Computational Linguistics.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,

2088

https://doi.org/10.1145/3597503.3639100
https://doi.org/10.1145/3597503.3639100
https://doi.org/10.1145/3597503.3639100
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.18653/v1/2024.acl-long.61
https://doi.org/10.1109/ICCD50377.2020.00070
https://doi.org/10.1109/ICCD50377.2020.00070
https://doi.org/10.1109/ICCD50377.2020.00070
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2024.acl-short.28
https://doi.org/10.18653/v1/2024.acl-short.28
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.18653/v1/2024.acl-long.331
https://doi.org/10.18653/v1/2024.acl-long.331
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.org/10.18653/v1/2023.findings-emnlp.762
https://doi.org/10.18653/v1/2023.findings-emnlp.762

Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin
Su, Dongchan Shin, Caiming Xiong, and Tao Yu.
2023. Openagents: An open platform for language
agents in the wild. Preprint, arXiv:2310.10634.

Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, and
Yulan He. 2024. Mirror: Multiple-perspective self-
reflection method for knowledge-rich reasoning. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7086–7103, Bangkok, Thailand.
Association for Computational Linguistics.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024. Swe-agent: Agent-computer interfaces
enable automated software engineering. Preprint,
arXiv:2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang,
Yangkai Du, Peiyu Liu, Shouling Ji, and Wenhai
Wang. 2023. CP-BCS: Binary code summarization
guided by control flow graph and pseudo code. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
14740–14752, Singapore. Association for Compu-
tational Linguistics.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.
2024a. CodeAgent: Enhancing code generation with
tool-integrated agent systems for real-world repo-
level coding challenges. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13643–
13658, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Ab-
hik Roychoudhury. 2024b. Autocoderover: Au-
tonomous program improvement. In Proceedings
of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, page
1592–1604, New York, NY, USA. Association for
Computing Machinery.

A Benchmark Details

Table 8 presents the composition of CompileAgent-
Bench, which includes 100 popular projects across
14 topics. To align with the distribution of compi-
lation guides in real-world code repositories, Com-
pileAgentBench maintains a ratio of compilation
guides in repo to those not in repo, as well as those
without guides, at 7:2:1.

B Readme-AI Details

Figure 3 shows the Readme-AI how to be used in
our compilation task. Its workflow is that GPT-

4o mini first traverses all project files, generate
a Readme.md file based on specific requirements,
and finally MasterAgent can find the compilation
instructions by reading the Readme.md.

MasterAgent

Readme.mdgpt-4o mini

aes.h

Step1: Generate the Readme

I found the instructions

and will use the Shell

tool to execute them.

Project Codebase

Step2: Search Compilation Instructions

I will read the Read-

me.md and find the

compilation instructions.

MasterAgent

helper.py

…

Figure 3: The details of Readme-AI.

C RAG Details

Figure 4 illustrates how the RAG technology is
applied in our compilation task. We first specify
some files that may contain compilation instruc-
tions, such as README, INSTALL, etc., and then
split the contents of the files into chunks and gener-
ate embeddings and store them in the embedding
database. Finally, MasterAgent retrives the em-
bedding database to obtain the compilation instruc-
tions. The embedding model we use in this article
is text-embedding-3-large (OpenAI, 2024).

Embedding

Model

Install

Step1: Generate the Database

I have known the instr-

uctions and will use the

Shell tool to execute them.

Project Codebase

Step2: Retrive Compilation Instructions

How to compile/build

the project from source

code?

Embedding

Database

MasterAgent

Readme

…

MasterAgent

①

①Retrive

②Return

③Execute

②

③

Retrive the relevant chunks

Embedding

Database

Figure 4: The details of RAG.

D Multi-language Compilation Details

We select 20 popular Go projects from Github to
build a small benchmark, and compare two closed-
source LLMs and two open-source LLMs, and keep

2089

https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2310.10634
https://doi.org/10.18653/v1/2024.acl-long.382
https://doi.org/10.18653/v1/2024.acl-long.382
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.18653/v1/2023.emnlp-main.911
https://doi.org/10.18653/v1/2023.emnlp-main.911
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384

all other configurations consistent with the paper.
Based on the experimental results in the Table 6,
we find that both Claude-3-5-sonnet and DeepSeek-
v2.5 LLMs achieve the highest compilation suc-
cess rate of 90%, and the lowest compilation cost
of each project is only $0.102. The experimental
results fully prove that CompileAgent can be well
applied to compilation tasks of other programming
languages.

Table 6: The Results of CompileAgent on 20 Go Lan-
guage Projects.

Models Size Csr1 Time2 Exp3

Closed-source LLMs
GPT-4o - 85% 2.54 3.22
Claude-3-5-sonnet - 90% 2.31 5.36

Open-source LLMs
LLama3.1-70B 70B 70% 3.17 1.14
DeepSeek-v2.5 236B 90% 3.44 1.83

1 The proportion of successfully compiled projects to all
projects.

2 The total duration required to complete the compilation
process, measured in hours.

3 The total expense incurred during the compilation pro-
cess, measured in US dollars.

The Go language benchmark we built is shown
in the Table 7. Specifically, we select 20 popular
Github projects spanning five different topics and
conduct compilation test.

Table 7: The Details of 20 Go Language Projects.

Project Topic Project Topic

Gin Web Framework Kubernetes Cloud Native
Fiber Web Framework Traefik Cloud Native
Echo Web Framework Prometheus Cloud Native
Beego Web Framework Etcd Cloud Native

Iris Web Framework Helm Cloud Native
GORM Database Cobra Utility Libraries
TiDB Database Viper Utility Libraries

CockroachDB Database FZF Utility Libraries
MinIO Database Mkcert Utility Libraries

PocketBase Database Go-Update Utility Libraries

2090

Table 8: The Composition of CompileAgentBench.

Project Topic Existing Guide No Guide Project Topic Existing Guide No Guide
InRepo NotInRepo InRepo NotInRepo

FFmpeg Audio ✓ libvips Image ✓
aubio Audio ✓ mozjpeg Image ✓
cava Audio ✓ clib Linux ✓

Julius Audio ✓ activate-linux Linux ✓
zstd Compression ✓ libbpf Linux ✓
7z Compression ✓ util-linux Linux ✓

zlib Compression ✓ ttygif Linux ✓
lz4 Compression ✓ box64 Linux ✓

libarchive Compression ✓ fsearch Linux ✓
mbedtls Crypto ✓ uftrace Linux ✓

libsodium Crypto ✓ libtree Linux ✓
wolfssl Crypto ✓ toybox Linux ✓
nettle Crypto ✓ tinyvm Linux ✓

libtomcrypt Crypto ✓ libpcap Linux ✓
libbcrypt Crypto ✓ curl Networking ✓

tiny-AES-c Crypto ✓ masscan Networking ✓
boringssl Crypto ✓ Mongoose Networking ✓

tea-c Crypto ✓ libhv Networking ✓
cryptopp Crypto ✓ wrk Networking ✓

botan Crypto ✓ dsvpn Networking ✓
openssl Crypto ✓ streem Networking ✓
Tongsuo Crypto ✓ vlmcsd Networking ✓
GmSSL Crypto ✓ acl Networking ✓
libgcrypt Crypto ✓ odyssey Networking ✓

redis Database ✓ massdns Networking ✓
libbson Database ✓ h2o Networking ✓

beanstalkd Database ✓ ios-webkit-
debug-proxy Networking ✓

wiredtiger Database ✓ whisper.cpp NN2 ✓
sqlite Database ✓ llama2.c NN ✓

ultrajson DataProcessing ✓ pocketsphinx NN ✓
webdis DataProcessing ✓ lvgl Programming ✓
jansson DataProcessing ✓ libui Programming ✓
json-c DataProcessing ✓ quickjs Programming ✓

libexpat DataProcessing ✓ flex Programming ✓
libelf DataProcessing ✓ libmodbus Security ✓
libusb Embedded ✓ msquic Security ✓
wasm3 Embedded ✓ dount Security ✓
rtl_433 Embedded ✓ redsocks Security ✓

can-utils Embedded ✓ pwnat Security ✓
cc65 Embedded ✓ suricata Security ✓
libffi Embedded ✓ tini Security ✓

uhubctl Embedded ✓ tmux Terminal ✓
open62541 Embedded ✓ sc-im Terminal ✓

snapraid Embedded ✓ pspg Terminal ✓
cglm HPC1 ✓ smenu Terminal ✓
blis HPC ✓ no-more-secrets Terminal ✓
zlog HPC ✓ linenoise Terminal ✓
ompi HPC ✓ shc Terminal ✓
coz HPC ✓ hstr Terminal ✓

ImageMagick Image ✓ goaccess Terminal ✓
1 HPC stands for High Performance Computing.
2 NN stands for Neural Network.

2091

