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Abstract

Multi-modal Emotion Recognition in Conversa-
tion (MMERC) aims to identify speakers’ emo-
tional states using multi-modal conversational
data, significant for various domains. MMERC
requires addressing emotional causes: con-
textual factors that influence emotions, along-
side emotional evidence directly expressed in
the target utterance. Existing methods pri-
marily model general conversational depen-
dencies, such as sequential utterance relation-
ships or inter-speaker dynamics, but fall short
in capturing diverse and detailed emotional
causes, including emotional contagion, influ-
ences from others, and self-referenced or exter-
nally introduced events. To address these limi-
tations, we propose the Evidence-Cause Atten-
tion Network for Multi-Modal Emotion Recog-
nition in Conversation (ECERC). ECERC in-
tegrates emotional evidence with contextual
causes through five stages: Evidence Gating
extracts and refines emotional evidence across
modalities; Cause Encoding captures causes
from conversational context; Evidence-Cause
Interaction uses attention to integrate evidence
with diverse causes, generating rich candidate
features for emotion inference; Feature Gat-
ing adaptively weights contributions of candi-
date features; and Emotion Classification clas-
sifies emotions. We evaluate ECERC on two
widely used benchmark datasets, IEMOCAP
and MELD. Experimental results show that
ECERC achieves competitive performance in
weighted F1-score and accuracy, demonstrating
its effectiveness in MMERC .

1 Introduction

Multi-modal Emotion Recognition in Conversation

(MMERC) involves identifying a speaker’s emo-

tional state using multi-modal data (e.g., text, audio,

and video) in a conversational context. This task
*Corresponding author.

'Our codes will be released at https://github.com/TAN-
OpenLab/ECERC.

holds significant importance in domains such as
emotional support systems (Liu et al., 2021; Tu
et al., 2022), customer service (Li et al., 2019;
Lou et al., 2023; Qiu et al., 2020), and other
emotion-sensitive applications. Recognizing speak-
ers’ emotional states during multi-modal conver-
sations poses significant challenges. Unlike emo-
tion recognition in isolated utterances (Seyeditabari
et al., 2018), which primarily relies on extracting
emotional evidence (explicit expressions of emo-
tions in the target utterance), conversational emo-
tion recognition requires understanding emotional
causes (contextual factors within the conversation
that influence the speaker’s emotions). This task
becomes especially significant when the target ut-
terance lacks enough emotional cues, necessitating
careful analysis of the conversational context to
uncover relevant causes.

Most existing MMERC approaches have focused
on capturing sequential utterance relationships or
inter-speaker dynamics through models based on re-
currence (Hazarika et al., 2018c,a; Majumder et al.,
2019) and graphs (Ghosal et al., 2019a; Zhang et al.,
2019; Hu et al., 2021b; Mao et al., 2021; Shi and
Huang, 2023; Zhang and Li, 2023; Shi and Huang,
2023; Chandola et al., 2024; Yao and Shi, 2024,
Zhang et al., 2023b; Chen et al., 2023). Despite the
remarkable progress achieved by previous methods,
they only capture general conversational dependen-
cies and fail to identify and differentiate specific
emotional causes. As noted in (Poria et al., 2021),
key causes influencing emotions include: 1) Emo-
tional contagion from prior emotions. 2) Influence
of others’ emotions. 3) No context, self-referenced
events (textual semantics). 4) Events uttered by
others. For example, in Figure 1, Speaker B ex-
hibits evidence of sadness in their utterance (e.g.,
lowering their head and speaking in a low voice),
which is caused by Speaker A’s prior sadness in
the conversation. Other types of cause cases can be
found in Appendix B. The limited consideration of
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Figure 1: An illustration of the emotion evidence and
its cause: influence of others’ emotions. Speaker B
shows evidence of sadness, such as lowering his head
and speaking in a low voice, influenced by Speaker A’s
sadness in the context.

these detailed causes constrains the performance of
existing methods.

To address these limitations, we propose the
Evidence-Cause Attention Network for Multi-
Modal Emotion Recognition in Conversation
(ECERC), a novel method that comprehensively
considers the four types of causes. ECERC utilizes
attention mechanisms to integrate emotional evi-
dence with diverse contextual causes for enhanced
emotion recognition. Specifically, The approach
primarily consists of five stages: Evidence Gat-
ing, Cause Encoding, Evidence-Cause Interaction,
Feature Gating, and Emotion Classification.

Evidence Gating: Emotional evidence is ex-
tracted from each utterance using existing modality-
specific emotion models. Then an inter-modal evi-
dence gating mechanism, inspired by GRUs (Cho,
2014), evaluates and adjusts the contribution of
each modality. This step suppresses conflicting or
unimportant modalities, improving the quality of
emotional evidence. Cause Encoding: Potential
causes are extracted from the conversational con-
text through two processes: event encoding and
emotion encoding. Event factors are captured us-
ing pre-trained language models, while emotional
evidence from prior utterances represents the emo-
tional factors for the target speaker. Both event
and emotion information are encoded to produce
context-aware cause representations. Evidence-
Cause Interaction: To model the complex inter-
action between evidence and causes, we introduce
a multi-faceted evidence-cause interaction module,
comprising 1) Self-Party Event Attention: Focuses
on events referenced by the speaker in the target ut-
terance. 2) Cross-Party Event Attention: Considers
events introduced by other speakers. 3) Self-Party
Emotion Attention: Tracks the speaker’s prior emo-
tional states. 4) Cross-Party Emotion Attention: In-
corporates emotional influences from others. These

sub-modules retrieve and integrate diverse cause in-
formation with evidence, producing diverse candi-
date feature representations for emotion inference.
Feature Gating: Not all causes influence emotions
equally. The Feature Gating module dynamically
weighs the contributions of different candidate fea-
tures using two cause-specific parameter matrices
(one for events, one for emotions). This ensures
that only the most relevant causes are emphasized
for the current inference. Emotion Classification:
Finally, the refined features are concatenated and
passed through a fully connected perceptron for
emotion classification.

To evaluate the effectiveness of our proposed
ECERC, we conduct extensive experiments on the
widely used MMERC benchmark dataset IEMO-
CAP (Busso et al., 2008) and MELD (Poria et al.,
2019). The experimental results show that our ap-
proach achieves competitive performance in terms
of weighted F1-score and Accuracy metrics. These
promising findings confirm the effectiveness of our
method. Overall, the main contributions of this
paper are summarized as follows:

* We introduce ECERC, a novel approach that
comprehensively considers the four identified
types of causes, and leverages attention mech-
anisms to integrate emotional evidence with
diverse cause information, enabling more ef-
fective emotion recognition.

* Specifically, ECERC incorporates five key
components: Evidence Gating refines emo-
tional evidence across modalities; Cause
Encoding captures conversational causes;
Evidence-Cause Interaction integrates evi-
dence with causes via attention; Feature Gat-
ing weights candidate features; and Emotion
Classification identifies emotions.

* We conduct extensive experiments on the
widely-used benchmark dataset IEMOCAP
and MELD, achieving competitive perfor-
mance, and proving our ECERC'’s effective-
ness.

2 Related Work

Existing studies on conversational emotion recog-
nition primarily focus on modeling conversational
context using various recurrence-based or graph-
based structures to infer emotional categories.
Among recurrence-based methods, Bi-LSTM
(Poria et al., 2017) processes context-independent
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unimodal evidence through an LSTM (Hochreiter
and Schmidhuber, 1997; Graves, 2014) network
to generate context-sensitive unimodal represen-
tations for each utterance, concatenating the out-
puts for a second LSTM network. CMN (Hazarika
et al., 2018d) utilizes GRUs to sequentially store
past utterance emotions from each speaker, cap-
turing inter-speaker emotion dependencies. ICON
(Hazarika et al., 2018b) extends CMN by model-
ing self- and inter-speaker emotional influences
with global memories via GRUs. DialogueRNN
(Majumder et al., 2019) employs three GRUs to
track speaker states, conversational context, and
emotions using concatenated multimodal emotion
representations. COSMIC (Ghosal et al., 2020)
leverages commonsense knowledge to model in-
terlocutor interactions with GRUs. DialogueCRN
(Hu et al., 2021a) focuses on the text modality,
employing multi-turn reasoning modules based on
LSTMs to extract and integrate emotional features
from a cognitive perspective. These methods, how-
ever, struggle to capture information from distant
utterances, limiting their effectiveness in emotion
recognition within conversations. To address these
limitations, graph-based methods have emerged.
Among graph-based methods, DialogueGCN
(Ghosal et al., 2019b) represents conversational
context with a relation-specific directed graph.
MMGCN (Hu et al., 2021b) constructs fully con-
nected graphs within each modality and builds
cross-modality edges for corresponding utterances.
DAG-ERC (Shen et al., 2021) creates a directed
acyclic graph based on speaker identity and posi-
tional relations, focusing solely on the text modal-
ity. UniMSE (Hu et al., 2022b) unifies sentiment
and emotions. MM-DFN (Hu et al., 2022a) im-
plements a graph-based dynamic fusion module to
enhance complementarity and reduce redundancy
across modalities. CMCF (Zhang and Li, 2023)
performs cross-modality context fusion and seman-
tic refinement using semantic graph-based trans-
formers. MultiEMO (Shi and Huang, 2023) model
the cross-modal interactions and mapping relation-
ships across multiple modalities. Dual GAT (Zhang
et al., 2023a) integrates speaker-aware context and
discourse structure within the text modality to ad-
dress overlooked discourse relationships. M3Net
(Chen et al., 2023) captures intricate multivariate
relationships among modalities and context. SDT
(Ma et al., 2024) combines a Transformer-based
architecture (we also regard Transformer (Vaswani,
2017) as a graph-based method because the self-

attention in the Transformer can also be viewed as
a fully connected graph) with a hierarchical gated
fusion strategy for intra- and inter-modal emotion
interactions. HAUCL (Yi et al., 2024) Leverages
hypergraphs to optimize hypergraph reconstruction,
contrastive learning, and emotion recognition for
globally optimal performance.

Despite these advancements, existing methods
often capture general conversational dependencies,
lacking detailed differentiation and comprehensive
modeling of different types of causes, constrain-
ing their performance. This study addresses these
limitations by focusing on these critical aspects.

3 Methodology
3.1 Task Definition

We are given a dataset D = {conversation;}_;,
where I denotes the total number of conversations.
Each conversation conversation; consists of a
sequence of utterances {u; ;|7 € {1,...,J(i)}},
with J(7) representing the number of utterances
in the ¢-th conversation. The dataset contains K
modalities, and each utterance u; ; is represented
as {u; j x|k € {1, ..., K}}. The emotional category
label for utterance u;_; is denoted as y; ; € {0,1}C,
where C' is the number of emotion categories. The
utterance u; j is spoken by the speaker s(u; ;) € S,
where S is the set of all participants in the dataset.
The goal is to develop a model that predicts the
emotional category label y; ; based on the preced-
ing utterances {u; 1, u;2,...,u;;} and the corre-
sponding speakers {s(u; 1), s(u;2), ..., s(w; )}

3.2 Preprocessing

Since emotional evidence typically appears across
each modality of the target utterance, we follow
previous works (Chen et al., 2023; Ma et al., 2024;
Yi et al., 2024) and extract emotion features from
each modality of the target utterance as the emo-
tion evidence. Consistent with these studies, the
RoBERTa Large model (Liu et al., 2019) finetuned
on emotion labels of transcripts is utilized to extract
context-independent emotion features from the text,
OpenSMILE (Eyben et al., 2010) and 3D-CNN are
utilized to extract emotional features from acous-
tic and visual. Finally, for u; ;, we obtain the
representations of emotional evidence 77"} € R,

The causes of the emotion in the target utter-
ance can be attributed to the events discussed in
the conversation, as well as the emotions of the par-
ticipants expressed in prior utterances. For events,

2066



since event information is conveyed through the
text modality, we adopt a method similar to the
one used for extracting emotional evidence in the
text modality. Specifically, we use the original
RoBERTa Large model to extract utterance-level
semantics from the text and apply average pooling
to obtain the event representation. For instance,
we derive the event representation 7{%% _; € R0
from the utterance u; j, where we define k = 1
to indicate the text modality. Regarding emotions,
the potential causes of emotion in the target utter-
ance u; ; are derived from the emotions in previous
utterances. These are represented by their corre-
sponding emotional evidence 7{"7?, where j; < j.
To facilitate subsequent calculations, we apply a
linear transformation to unify the dimensions of
the different emotional modalities and event repre-
sentations to a common dimension d. Formally,
ik =Wiiih (M
Tij k=1 = WO"'i,j,k:l
where W;, € R4 T, € R%*_ Note that eve
refers to "event", and emo refers to "emotion".

3.3 Our Model

In this section, we introduce our core proposal
ECERC, which consists of five core components:
Evidence Gating, Cause Encoding, Evidence-
Cause Interaction, Feature Gating, and Emotion
Classification, as illustrated in Fig. 2.

Since our approach is based on attention mecha-
nisms, we begin by providing a formal definition
of the standard attention mechanism. It is impor-
tant to note that the symbols used in the attention
equations are distinct from those defined elsewhere
in the paper. For the function Attention(Q, K, V),
where Q € Rlexd K ¢ Rxxd V¢ Rexd we
compute a group of queries, keys, and values.

Q=Ww,
K = Wi(K)" 2)
V=W,

where W, W), € R&>d W, € Rdvxd, Q €

R&xla [ e R&Xk YV e Ré%*k  After that,

one-head attention is computed.

Q'K
Vd

where (H)! € Rla*% and (-)! indicates the first
head. Here, multi-head attention is applied for

(H)" = Softmax( ,mask) (V)7 3)

diverse representation learning. Formally, for h
heads,

Q= (Whmd(Concat((H)17...7(H)’L))T)T 4)

where Wi,eqq € R&(%dv) () ¢ Rlaxd Then a
residual connection is employed, followed by layer
normalization:

Z = LayerNorm(Q + Q) )
A feed-forward network is then applied:
7 = (Wa Max(0, W1 Z7 + by) + by) " (6)

wherfi Wy € Rhrxd p e RA T}, € RXd1 p, €
R?, Z € Rle*4 Then a residual connection is
employed, followed by layer normalization:

H = LayerNorm(Z + Z) @)

As a result, we obtain a latent representation
matrix of (), that is, H. Note that when (), K, and
V' are identical, this is referred to as Self-Attention;
otherwise, it is Cross-Attention.

Evidence Gating: This component aims to
leverage the latent relationships among multiple
modalities to reduce the influences of conflicting or
unimportant modalities by calculating the weight
of each modality. Specifically, the weight of the
query modality is determined by fusing the features
of the query modality with other modalities, and
then it is weighted to the corresponding modality.
Formally,
wr = Sigmoid(Weri 77 + by + {Worij's, + bolk1 # k})

~emo emo

Tigk = Wk O Tijk

®

where W, € R™4 b, € R%, W, € R4, p, €
R, wy € RY, 770 € RY, © is the Hadamard
product. .

Finally, we obtained an enhanced emotion ev-
idence representation, denoted as 77, through
evidence gating.

Cause Encoding Next, since causes are dis-
tributed in the conversational context, we initially
encode causes at the context level through attention
to draw their context dependencies. Specifically,
since event semantics and emotional evidence in
conversation are both potential causes, we input
event and emotional features into Attention to ob-
tain their respective representations, each enriched
with contextual information. Formally,

i1 = Attention(r{ y=1, 7§ k=1, T o1, Hmask)
hE™ = Attention(7E™°, 7¢™° 76™° | Hmask)

®
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Figure 2: The overall architecture of the ECERC, which consists of five core components: Evidence Gating, Cause
Encoding, Evidence-Cause Interaction, Feature Gating, and Emotion Classification.

where Hmask represents only historical context at-
tention, as illustrated in Fig. 3(a), r{%e, € R7()x4,

2?36621 c RJ(i)Xd, ffmo c RJ(i)XKd’ hfmo c
RJ()xKd

Finally, through Cause Encoding, we get the
context-aware cause representations hg;? , and
hgme.

Evidence-Cause Interaction Since the primary
information, i.e. the emotional evidence, is not
enough to infer the speaker’s emotions, it is
necessary to integrate auxiliary information, i.e.
causes, to enhance the inference of emotions. As
stated in the Introduction, four factors are consid-
ered as causes of emotions: 1) no-context, self-
referenced events (textual semantics), 2) events
uttered by others, 3) emotional contagion from
prior emotions, and 4) other speakers’ emotions.
We use four attention modules to retrieve and fuse
them with evidence information defined in Equa-
tions (10) (11) (12) (13), respectively. Formally,

~s—eve

J; we® = Attention(hj' 521, hi %

( i,k=15",k=1>

~S—eve ~emo
9i k=1 > Ti,k>1)

1, Imask
s—eve ’k ' ) 10)

= Concat(

~c—eve

Gi ey’ = Attention(hs;2

i,k=1>

eve

i,k=1>

)

(

~C—Eeve ~emo
Gik=1:Tik>1

i1, Cmask) i
.C—eve

= Concat(

emo

;M = Attention(h$™?, h{™?, hi™°, Smask)  (12)

g{ =™’ = Attention(h§"™, h{™°, h{™°, Cmask)  (13)
where gf_eve € RJ(i)XKd, gic_eve € RJ(i)XKd’
S—emo

g; e RJ(i)XKd’ and gic—emo c RJ(@xKd
Imask represents the attention within the target
utterance, as illustrated in Fig. 3(b). Smask rep-
resents the attention within utterances in historical
context spoked by the same speaker, as shown in
Fig. 3(c). C'mask represents the cross-participant
attention, as depicted in Fig. 3(d). Note that since
event information is conveyed through the textual
modality, the event is incorporated into the textual
modality representation of the evidence in Equa-
tions (10) and (11). This intra-modal learning helps
prevent errors caused by modality gaps. The result-
ing features are then concatenated with emotion
evidence from other modalities to form the can-
didate features used to infer the final emotional
states.

As a result, four candidating features are ob-
tained, that is, g;~ "%, g7~ "%, g7~ “"°, and g; “™°.

Feature Gating Since not all causes influence
emotions equally, we use two linear matrices to cal-

culate the weights of candidate features associated
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with different causes, enabling dynamic screening.
The final weighted candidate features are then used
as representations for emotion inference. Formally,

xf—eve — gf—eve @ Sigmoid(g:‘—eve eve + bEUE)

:I:«i:—eve _ gic—eve @ Sigmoid(gic—eveweve 4 beve)

Ss—emo Ss—emo : : Ss—emo emo e€mo
x; =g; © Sigmoid(g; W™ 4+ 6°™)
c—emo c—emo . . c—emo emo E€Mmo
x5 =g; © Sigmoid(g; W™ 4+ 6°)

l',L — Concat(xffe’ue’mffeve’ x§75m07x§75m0)

(14)

where TVeve c RKdXKd,beve c RKd,

KdxKd Kd
J/emo c REdxKd  pemo e REd
xffeve’ peeve mffemo’ xffemo c RJ(xKd

g RI(DxAKd

The four candidate features are weighted and
concatenated, as described above, to form the final
feature representations used for emotion inference.

Emotion Classification Finally, the obtained
feature representation is passed through a linear
layer, followed by a Softmax activation, to gener-
ate the probability distribution over the emotion
categories.

Pi,; = Softmax(x;, ; We + be)
i.s = argmax(Pi5(c)) )
where W, € REdxC p Pi; € RC, ¢ €
{1,2,...,C}.
Objective Function The objective function of
our model is

1 J(%)
1
L= T =7 1N lOgPi,'[yiJ] (16)
mwé; T

where [ is the number of conversations, J (i) is
the number of utterances in sample ¢, P; ; and y; ;
are the probability distribution and ground-truth
of emotion labels for utterance j of dialogue i,
respectively.

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

We evaluate our approach using the widely-used
MMERC dataset IEMOCAP (Busso et al., 2008)
and MELD (Poria et al., 2019). Statistical details
of the dataset are provided in Table 1.

IEMOCAP comprises 151 conversations across
five sessions, with ten different speakers. The fi-
nal session is reserved for testing. The dataset
includes 7,433 utterances, each labeled with one of

P1 Pz pP1 P2 P1 P2 P1 P2
P1 ‘ p1 .
r @@ @
90O p1 o
P 9000 - o
(a) Hmask (b) Imask
P1 P2 p1 P2 P1 P2 P1 P2

P1 P1

p2 O 2 @

p: @ O b1 O

p2 O O p. @ o

(c) Smask (d) Cmask

Figure 3: Illustration of different masks. Hmask:
Masked for historical context; Imask: masked for the
speaker self; Smask: masked for the speaker in context;
Cmask: masked for other parties in context. pl and p2
represent two parties. The vertical axis represents Q
and the horizontal axis represents K in Attention. Green
and white represent the attention and inattention among
parties, respectively.

Table 1: Statistics of the datasets.

# Conversations # Utterances

Dataset  ryyin  valid  Test  Train  Valid  Test  Classes

IEMOCAP 120 31 5810 1623 6
MELD 1038 114 280 9989 1109 2610 7

six emotions: happy, sad, neutral, angry, excited,
or frustrated. As no validation set is provided, we
randomly select 10% of the training conversations
from IEMOCAP to be used as the validation set.

MELD contains 1,433 dialogues and 13,708 ut-
terances from 304 speakers in the Friends TV series.
The dataset consists of multi-speaker conversations,
with each utterance labeled with one of seven emo-
tions: anger, disgust, sadness, joy, neutral, surprise,
or fear. We follow the official dataset splits, which
include 1,039 dialogues (9,989 utterances) for train-
ing, 114 dialogues (1,109 utterances) for validation,
and the remaining dialogues for testing.

4.1.2 Baselines

To ensure a comprehensive evaluation of ECERC,
we perform a comparative analysis, comparing
our model against the typical MMERC meth-
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Table 2: Comparison of our approach against MMERC baselines on the IEMOCAP dataset. F1.=F1-score. Acc.=

Accuracy.

Emotion Categories of IEMOCAP

Overall (weighted)

| Happy Sad Neutral Angry Excited Frustrated | Fl. Acc.
DialogueRNN (Majumder et al., 2019) 52.81 80.16 68.45 63.88 67.75 61.56 66.60 66.48
DialogueGCN (Ghosal et al., 2019b) 53.38 74.61 64.08 57.01 77.18 43.81 61.64 62.23
MMGCN (Hu et al., 2021b) 42.14 83.67 63.98 64.25 73.90 59.13 65.73 65.80
MM-DEN (Hu et al., 2022a) 46.09 82.74 69.77 68.52 71.14 65.44 68.73 69.07
M3Net (Chen et al., 2023) 51.35 81.51 68.81 64.29 73.02 61.17 67.69 67.65
SDT (Ma et al., 2024) 53.68 79.01 68.47 66.92 72.16 66.40 68.78 68.47
HAUCL (Yi et al., 2024) 54.30 81.85 68.24 65.90 77.03 64.52 69.56 69.62
ECERC (ours) ‘ 60.86 79.28 71.95 66.27 78.29 68.25 ‘ 71.78 71.60

Table 3: Comparison of our approach against MMERC baselines on the MELD dataset. F1.=F1-score. Acc.=

Accuracy.

‘ Emotion Categories of MELD ‘ Overall (weighted)

‘ Neutral Surprise Fear Sad Joy Disgust Angry ‘ F1. Acc.
DialogueRNN (Majumder et al., 2019) 78.00 55.59 20.51 39.80 62.30 23.21 51.46 64.09 64.29
DialogueGCN (Ghosal et al., 2019b) 71.76 58.43 8.70 38.64 58.66 15.09 50.81 63.10 63.83
MMGCN (Hu et al., 2021b) 79.58 58.54 0.00 43.34 63.69 0.00 50.56 64.55 66.21
MM-DEN (Hu et al., 2022a) 77.38 57.19 14.29 41.36 63.25 20.41 51.44 64.04 63.83
M3Net (Chen et al., 2023) 78.61 58.48 2222 41.65 62.71 29.75 49.44 64.84 65.17
SDT (Ma et al., 2024) 79.59 58.01 6.18 43.70 63.36 19.08 50.86 65.12 66.18
HAUCL (Yi et al., 2024) 79.11 59.27 19.18 41.11 62.93 22.00 52.89 65.35 66.25

ECERC (ours) 79.80 58.98 26.12

40.95 64.95 31.43 53.89 66.46 67.32

ods proposed in recent years which have open-
sourced their original codes or been success-
fully reproduced by us: DialogueRNN (Majumder
et al., 2019), DialogueGCN (Ghosal et al., 2019b),
MMGCN (Hu et al., 2021b), MM-DEN (Hu et al.,
2022a), M3Net (Chen et al., 2023), SDT (Ma et al.,
2024), and HAUCL (Yi et al., 2024). These works
have open-sourced their original codes, so we con-
duct the baseline comparison by re-running their
released original codes of baselines on our experi-
mental platform to achieve a fair comparison.

4.1.3 Settings

The hyperparameters of our model are grid-
searched and set as follows. The batch size is
64 and 32 on IEMOCAP and MELD respectively.
We set the learning rate as 1le — 4 and le — 5 on
IEMOCAP and MELD respectively. The unified di-
mension of multiple emotion modalities and event
representations d is 128. The hyperparameters in
the Attention function follow their default setting
(Vaswani, 2017). We use Adam (Kingma and Ba,
2014) optimizer to train our model on both datasets.
We conduct experiments on a Windows operating
system with a GPU A100. The codes are imple-
mented in PyTorch.

4.2 Model Comparison

To evaluate the effectiveness of our proposed
ECERC, we compare its performance against sev-

eral strong MMERC baselines. Experiments were
conducted on two widely recognized MMERC
benchmark datasets, IEMOCAP and MELD, with
the results presented in Table 2 and Table 3, respec-
tively. Both tables primarily focus on the F1-score
as the main evaluation metric, supplemented by
Accuracy as a secondary measure. Specifically,
the tables provide category-wise F1 scores and the
overall performance metrics (weighted average F1
score and Accuracy). Bolded results denote the best
performance in each group with p < 0.05. From
the tables, it is evident that ECERC outperforms
all baseline models. On the IEMOCAP dataset,
ECERC surpasses the second-best model, HAUCL,
by 2.22% in F1-score and 1.98% in Accuracy. Sim-
ilarly, on the MELD dataset, ECERC achieves im-
provements of 1.11% in Fl-score and 1.07% in
Accuracy over HAUCL. These consistent improve-
ments on diverse datasets validate the effectiveness
of ECERC. Furthermore, ECERC demonstrates
strong results across most emotion categories, con-
sistently exceeding baseline performance in many
cases. This suggests that ECERC’s ability to inte-
grate emotional evidence with causal reasoning is
effective across a variety of emotional contexts, not
just specific emotion categories. Overall, these find-
ings highlight that comprehensively considering
causal factors and integrating them with emotional
evidence significantly enhances emotional infer-
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ence capabilities. This could be attributed to its
explicit integration of causal factors, which aligns
closely with human emotional understanding, pro-
viding critical context, and leading to more precise
classifications.

4.3 Ablation Study
4.3.1 Effect of Core Components

In order to verify the importance of each core com-
ponent in ECERC, we remove them one at a time to
evaluate their impact on model performance. The
experimental results are shown in Table 4. Regard-
ing Evidence, we test Evidence Gating. Regarding
causes, we examine Event Encoding and Emotion
Encoding. Regarding evidence-cause interaction,
we evaluate Self-Party Event Attention, Self-Party
Emotion Attention, Cross-Party Event Attention,
and Cross-Party Emotion Attention. Regarding can-
didate features, we verify Feature Gating. The re-
sults show that removing any of these components
significantly degrades model performance, high-
lighting the importance of each element. Specifi-
cally, when Evidence Gating is removed, all modal-
ity weights become equal, causing modalities with
smaller contributions to introduce biases into the
evidence representation, which affects subsequent
reasoning. Removing Event Encoding and Emotion
Encoding leads to a loss of contextual information
in cause encoding, diminishing the quality of cause
representation. When Self-Party Event Attention,
Self-Party Event Attention, Self-Party Event Atten-
tion, and Self-Party Event Attention are removed
respectively, the corresponding four cause factors
are ignored, lowering the accuracy of emotion in-
ference. When Feature Gating is removed, all key
cause factors contribute equally to emotion infer-
ence, but the actual target emotion is affected by
different causes to varying degrees, so this will
disturb the inference results. In conclusion, this
experiment demonstrates the importance of these
core components.

4.3.2 Effect of Modalities

We also conduct ablation experiments on modali-
ties to investigate how different modality configu-
rations impact emotion recognition performance.
By removing one or two modalities at a time, we
obtained the results presented in Table 5. In this
table, V. stands for vision, A. represents acoustic,
and T. refers to text. Our findings show that the
textual modality significantly outperforms the other
two, highlighting its dominant role in the task. Ad-

Table 4: Impact of core components on models’ perfor-
mance.

IEMOCAP MELD

Fl1. Acc. Fl1. Acc.
ECERC 71.78 71.60 66.46 67.32
w/o Evidence Gating 69.39 69.17 65.40 66.28
w/o Event Encoding 69.63 69.46 65.34 66.28
w/o Emotion Encoding 68.99 68.78 65.85 66.85
w/o Self-Party Event Attention 69.86 69.66 65.36 66.31
w/o Cross-Party Event Attention 69.63 69.50 65.40 66.50
w/o Self-Party Emotion Attention 66.81 66.60 65.22 66.27
w/o Cross-Party Emotion Attention 67.55 67.49 65.35 66.34
w/o Feature Gating 68.79 68.68 65.50 66.58

Table 5: Impact of modalities on models’ performance.

IEMOCAP MELD
Modalities FL. Acc. Fl. Acc.
T.&A &V. 7178 71.60 66.46 67.32
T.&A. 69.89 69.71 6521 65.95
T.&V. 67.89 67.84 6553 66.63
A&V 50.11 59.21 43.54 4778
T. 6351 6334 65.25 66.37
A 56.05 56.99 3223 47.98
V. 2757 30.72 4324 4833

ditionally, any bimodal combination surpasses its
unimodal counterpart, with the fusion of textual
and acoustic or visual modalities outperforming
the combination of acoustic and visual alone, due
to the importance of textual features. Finally, the
best performance is achieved when all three modal-
ities are used, confirming that useful information
for emotion inference exists in multiple expres-
sions of textual semantics, acoustics, and vision,
and emphasizing the need to integrate multimodal
information for effective MMERC.

5 Conclusion

To capture the complex emotional causes that in-
fluence emotions in conversations, We propose
ECERGC, a novel approach for the MMERC task,
which integrates evidence with diverse contextual
causes. ECERC consists of five core stages: Ev-
idence Gating refines emotional evidence across
modalities, Cause Encoding captures causes from
conversational context, Evidence-Cause Interac-
tion model interactions between evidence and di-
verse causes and obtains candidate features, Fea-
ture Gating adaptively weights candidate features,
and Emotion Classification determines the final
emotion. Extensive experiments on [IEMOCAP and
MELD demonstrate the effectiveness of ECERC.
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Limitations

In this paper, we propose a novel approach for
MMERC called ECERC. This approach integrates
emotional evidence with contextual causes for en-
hanced emotion recognition performance. Despite
the progress made, there are still limitations re-
garding the misclassification of closely related cat-
egories, as well as the imbalance in sample sizes,
both of which were analyzed in Appendix C. These
issues continue to pose challenges to the accuracy
of the MMERC models and will need to be care-
fully addressed in future work to enhance its overall
performance.
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Table 6: Evidence Gating

IEMOCAP MELD

Using other modal evidence Fl. Acc. Fl. Acc.

Yes 71.78 71.60 66.46 67.32

No 70.06 69.77 66.02 66.99

Table 7: Feature Gating
IEMOCAP MELD

Using other candidate features Fl. Acc. Fl. Acc.
No 71.78 71.60 66.46 67.32
Yes 70.64 70.38 66.01 66.85

A Impact of Gating Mechanisms with
Distinct Inputs

The two gating mechanisms (Evidence Gating and
Feature Gating) utilize distinct inputs, as defined
in Equations (8) and (14), respectively. This sec-
tion investigates the impact of these gates under
distinct input conditions. Experimental results are
presented in Tables 6 and 7.

The primary objective of Evidence Gating is to
exploit potential connections between emotional
evidence across multiple modalities to assign ap-
propriate weights to each modality (for example,
the emotional tone of speech may be better under-
stood when combined with facial expressions). Its
input comprises evidence from each modality. Ta-
ble 6 examines the performance of Evidence Gating
with and without other modalities. Results reveal a
decline in performance when other modalities are
excluded, as the model is unable to fully utilize
cross-modal associations, leading to diminished
quality of emotional evidence representation.

Similarly, Table 7 evaluates the performance of
Feature Gating with and without additional candi-
date features. The findings indicate that incorporat-
ing other candidate features adversely affects per-
formance. The occurrence of emotion-influenced
causes can be considered independent because each
cause (whether it is an event or a person’s emo-
tional state) can exist and influence a person’s emo-
tional state on its own, without necessarily rely-
ing on the presence or influence of other causes.
Therefore, including other cause-related features
introduces noise in weight calculation, reducing
accuracy.
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Text Emotion Weighted by ECERC

T T T T T T TWeshould go apartment g7 [ T " cCauses |
Soers M o St ()| iy

Context | Speaker B ! [soft voice] That's a good idea. Excited | | Cross-Emotion |
| Speaker A ﬁ [exited voice] Let's go tomorrow. : | Self-Event |
| Speaker B ! [excited voice] Tomf’:;(r’n"\c’;rtrf:vt?rrow, Excited | | Cross-Event |
I_______________________l Evidence |

Target ) i

Utterance Speaker A [excited voice] yeah. Excited | T - \% |

Parties Visual Acoustic Text Emotion Weighted by ECERC
(= v T [T T causes ]
Speaker B ; [soft voice] Is he an actor too, or-? Neutral | | Self-Emotion |

Context | Speaker A [low crying voice]

| Speaker A [low crying voice]

Target

Utterance [low voice]

peaker B

Yeah, he kind of did a lot of
things, but we acted Sad
together, sometimes. |

I feel really bad for his Sad |

I____________fam;ily,youknow. ||
S

| | Cross-Emotion |
Self-Event |
Cross-Event

|
Evidence |
|

Yes of course, of course. Sad | T A Vv

(b) Mainly Influenced by other speaker’s emotions.

Figure 4: Two cases regarding emotion causes.

B Case Study

To demonstrate the efficacy of ECERC, we present
a set of case studies in this section, showcasing four
cases successfully predicted by our model from the
IEMOCAP and MELD datasets. These cases are
illustrated in Figures 4 and 5, where Figure 4 high-
lights emotion-related causes (such as emotional
contagion and influence of others’ emotions), and
Figure 5 showcases event-related causes (including
self-referenced events and events uttered by others).
For each case, we visualize the weights assigned by
ECERC in Evidence Gating (brown) and Feature
Gating (green) to observe how these gates func-
tion. The darker the color, the higher the assigned
weight.

In Figure 4(a), the acoustic modality of the target
utterance carries strong emotional evidence, result-
ing in the highest weight assigned by ECERC. In
contrast, the text modality "yeah" contains mini-
mal emotional evidence, and thus receives the low-
est weight. The emotional evidence interacts with
potential causes to retrieve cause-related informa-
tion and generate candidate features. When gating
candidate features, the target’s emotion is primar-
ily influenced by its own emotional inertia within
the conversation context. Therefore, ECERC as-
signs the highest weight to candidate features from
Self-Party Emotion Attention (self-emotion), while

the weight for Self-Party Event Attention (self-
event) is minimal due to the limited information
in the "yeah" utterance. In Figure 4(b), the vi-
sual and acoustic modalities of the target utterance
exhibit strong emotional signals (head down, low
voice), leading ECERC to assign them relatively
high weights. The text modality provides no signif-
icant emotional evidence, so it receives the lowest
weight. When gating candidate features, the tar-
get’s emotion is mainly influenced by Speaker A’s
emotion in the conversation context. As a result,
ECERC assigns the highest weight to the candidate
features derived from Cross-Party Emotion Atten-
tion (cross-emotion). In Figure 5(a), the visual
and acoustic modalities of the target utterance ex-
press neutral emotions, resulting in relatively high
weights from ECERC. The text modality, while
lacking emotional expression, provides numerous
rational event descriptions: Phoebe asks logical
questions. When gating candidate features, the tar-
get’s emotions are primarily shaped by the event
information present in the target utterance, as well
as emotional inertia within the conversation context.
Therefore, ECERC assigns the highest weight to
candidate features from Self-Party Event Attention
(self-event), with Self-Emotion being secondary
due to the existence of emotional contagion. In
Figure 5(b), the visual and acoustic modalities of
the target utterance display emotional expressions
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Parties Visual Acoustic Text Emotion Weighted by ECERC
T T T ey T Soum havevoutold . . 17T Tcauses 1
7 . So, um, have you told auses
Phoebe 3 - Neutral .
| [alto voice] your parants? | | Self-Emotion |
| No, butit'll be OK, they're C :
. 2 g ross-Emotion
Context | Duncan - [alto voice] pretty cool, my brother’s Neutral | | :
straight so... | | Self-Event
| Phoebe - [alto voice] Here you go. Neutral | | g S— |
Youki hat, Ijust b fon, um, .
—_— = _ TG R e B e Bue i 12 | Fvdence |
Phoebe [alto voice] been around, do you think thatl would have been | Neutral T A A4 |
Utterance s e gne g, |_ —
(a) Mainly influenced by no-context, self-referenced events.
Parties Visual Acoustic Text Emotion Weighted by ECERC
'('i_h_dl________mstWal]aiﬁhe____A___'r__CaTses__—l
andler - i i nger .
| [raised voice] bathroom and.saw Kathy & | | Self-Emotion |
Context = naked! It was like torture! |
anLed | | Cross-Emotion |
R V- [alto voice] Y'know if we ever go to war and Neutral
| 053 . you're captured, you're in for a | | Self-Event |
|______________________|| Cross-Event |
Target X ... mean at least when I've seen her with . |
g Chandler [commandlng clothes on, I could imagine her body was © Neutral | Evidence
Utterance voice] like covered in boles or something. | T A \% |

(b) Mainly influenced by events uttered by others.

Figure 5: Two cases

that contradict the speaker’s actual emotions. Con-
sequently, despite the absence of direct emotional
expression in the text, ECERC assigns relatively
high weights to text modalities. When gating can-
didate features, Chandler’s emotions are likely in-
fluenced by Ross’s previous utterance (a joke) and
tend to be neutral. As a result, ECERC assigns the
highest weight to candidate features from Cross-
Party Event Attention (cross-event). In conclusion,
these case studies demonstrate the functionality
and effectiveness of ECERC, showcasing how the
model dynamically adjusts weights based on dif-
ferent emotional and event-related cues in various
modalities.

C Confusion Matrix

We show the confusion matrix of ECERC on the
IEMOCAP and MELD datasets to analyze the per-
formance, as shown in Figure 6. We observe that:
1) Emotion categories that are closely related tend
to be misclassified, such as Happy vs. Excited, An-
gry vs. Frustrated, and Disgust vs. Angry. This
can be attributed to the similarity in the poten-
tial expressions of these emotions, making them
prone to misclassification. 2) Like most existing
approaches, the model still faces challenges related
to the imbalance in sample sizes across categories.
In IEMOCAP, the sample sizes are relatively bal-
anced, which results in smaller performance vari-

regarding event causes.

ations across categories (with the lowest accuracy
being 66.67% in the Angry category and the high-
est being 78.78% in the Sad category). In contrast,
MELD has more imbalanced sample sizes, leading
to larger performance differences across categories.
For example, the accuracy ranges from a low of
22% in the Fear category to a high of 82.72% in
the Neutral category. The Neutral category, with
the largest sample size in MELD, often leads to
misclassifications of other categories as Neutral,
as shown in the first column of Figure 6(b). This
skew toward Neutral reduces the performance of
other categories, as excessive Neutral training sam-
ples make it easier for non-neutral utterances to be
misclassified as Neutral. These challenges remain
open issues that need to be addressed by future
researchers.
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Figure 6: Confusion Matrix
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