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Abstract

State-of-the-art multimodal web agents, pow-
ered by Multimodal Large Language Models
(MLLMs), can autonomously execute many
web tasks by processing user instructions
and interacting with graphical user interfaces
(GUIs). Current strategies for building web
agents rely on (i) the generalizability of un-
derlying MLLMs and their steerability via
prompting, and (ii) large-scale fine-tuning of
MLLMs on web-related tasks. However, web
agents still struggle to automate tasks on un-
seen websites and domains, limiting their ap-
plicability to enterprise-specific and propri-
etary platforms. Beyond generalization from
large-scale pre-training and fine-tuning, we pro-
pose building agents for few-shot adaptabil-
ity using human demonstrations. We intro-
duce the AdaptAgent framework that enables
both proprietary and open-weights multimodal
web agents to adapt to new websites and do-
mains using few human demonstrations (up to
2). Our experiments on two popular bench-
marks — Mind2Web & VisualWebArena —
show that using in-context demonstrations (for
proprietary models) or meta-adaptation demon-
strations (for meta-learned open-weights mod-
els) boosts task success rate by 3.36% to 7.21%
over non-adapted state-of-the-art models, cor-
responding to a relative increase of 21.03% to
65.75%. Furthermore, our additional analy-
ses (a) show the effectiveness of multimodal
demonstrations over text-only ones, (b) illumi-
nate how different meta-learning data selection
strategies influence the agent’s generalization,
and (c) demonstrate how the number of few-
shot examples affects the web agent’s success
rate. Our results offer a complementary axis
for developing widely applicable multimodal
web agents beyond large-scale pre-training and
fine-tuning, emphasizing few-shot adaptability.

1 Introduction

Agents automating web-based tasks with minimal
human intervention can significantly boost personal

and workplace productivity (Noy and Zhang, 2023;
Oracle, 2024). A prevalent interaction mechanism
involves a human providing a natural language
instruction (e.g., “use delta.com to book a flight
from JFK to Haneda on . . . ”), and the agent au-
tonomously executing the necessary webpage ac-
tions to complete the user-assigned task (Zheng
et al., 2024a; Deng et al., 2023; Hong et al., 2023).
Large language models (LLMs) can understand
instructions, plan, and predict structured outputs,
serving as backbones for such agents (Veloso,
2005). Remarkable progress has been made in
automating web-based tasks using LLM-based
agents (Lai et al., 2024; Cheng et al., 2024; He et al.,
2024), employing careful prompting (Zheng et al.,
2024a; Koh et al., 2024) and extensive pre-training
and fine-tuning (Deng et al., 2023) to predict ac-
tions using language instructions and HTML/DOM.
With multimodal capabilities, these agents now
process the graphical user interface’s (GUI’s) vi-
sual state to complement the HTML/DOM infor-
mation (Hong et al., 2023). In parallel with the
methodological advancements, evaluating the gen-
eralizability of these multimodal web agents to new
tasks, websites, and domains is a critical compo-
nent to ensure their broad applicability.

Prior works have noted challenges in generaliz-
ing multimodal web agents to new tasks, websites,
and domains, while often relying on large-scale
pre-training (e.g., agents like SeeAct (Zheng et al.,
2024a)) or fine-tuning (e.g., models like CogA-
gent (Hong et al., 2023)). We posit that regardless
of pre-training scale, some tasks and domains will
remain unseen, such as proprietary workflows and
enterprise websites. Since the generalizability of
current state-of-the-art (SoTA) agents is limited
and their fine-tuning is costly, we propose building
web-agents for data-efficient adaptability instead
of relying solely on large-scale pre-training and
fine-tuning. Specifically, we address whether mul-
timodal web agents can adapt to unseen websites
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and domains with only a handful of human demon-
strations (e.g., n = 1 or n = 2).

We consider current SoTA multimodal web
agents — both proprietary and open-weights —
and demonstrate that incorporating just 1 or 2
multimodal human demonstrations (visual snap-
shot + HTML information) can result in an ab-
solute increase in task success rate of 3.36%
to 7.21% on unseen websites and domains, cor-
responding to a relative increase of 21.03% to
65.75% over current performance. We propose
the AdaptAgent framework to effectively use
these few-shot demonstrations through careful in-
context learning (ICL) (Brown, 2020) with pro-
prietary multimodal LLMs (MLLMs) and meta-
learning (Finn et al., 2017b) with open-weights
multimodal LLMs. To establish the role of learn-
ing from few-shot demonstrations, we conduct ex-
tensive experiments on two widely adopted bench-
marks — Mind2Web (Deng et al., 2023) & Visual-
WebArena (Koh et al., 2024) — showing improve-
ments across tasks of varying difficulty levels. Our
key contributions are summarized as:
• We propose the AdaptAgent framework for en-
abling SoTA multimodal web agents to learn from
few-shot human demonstrations. AdaptAgent uses
ICL for data-efficient adaptation of proprietary
MLLMs like GPT-4o (Achiam et al., 2023) and
meta-learning for adapting open-weights MLLMs
like CogAgent (Hong et al., 2023).
• Our extensive experiments on Mind2Web and
VisualWebArena demonstrate the effectiveness of
our methods, resulting in notable increases in task
success rates on unseen websites and domains with
only 1 or 2 multimodal demonstrations.1

• We conduct additional analyses that provide ac-
tionable recommendations for future work by re-
searchers and practitioners. Specifically, we show
that (a) multimodal in-context demonstrations are
more effective than text-only demonstrations, (b)
different data selection strategies for meta-learning
influence the post-adaptation generalization of the
adapted agent, and (c) more demonstrations help
in boosting agent’s performance, but correspond to
higher computational costs and saturating gains.

We believe that the effectiveness of using few-
shot human demonstrations and our empirical in-
sights open a complementary direction for improv-

1For a more granular investigation of the observations, we
conduct ablations to break down the main results, stratifying
improvements based on action sequence complexity and visual
difficulty. See Appendix A.5.

ing the generalizability of multimodal web agents
beyond the current SoTA strategies that rely on
large-scale pre-training and fine-tuning.

2 Related Work

We categorize the related prior work along three di-
mensions: work on UI/Web agents, few-shot learn-
ing approaches with LLMs, and approaches to learn
from demonstrations. An expanded discussion of
the prior work is presented in Appendix A.1.

UI/Web Agents: Controlling digital devices using
AI and natural language input has been a long-
standing goal (Shi et al., 2017; Humphreys et al.,
2022). Before large language models (LLMs), ap-
proaches often used reinforcement learning on top
of models like LSTM and BERT for language pro-
cessing, combined with ResNet-like models for
GUI state understanding (Liu et al., 2018; Iki and
Aizawa, 2022). With the advent of multimodal
LLMs, recent work has leveraged these models to
build web agents that process user instructions and
reason to generate actions on user interfaces (Zheng
et al., 2024a; He et al., 2024).

Most state-of-the-art methods use pretrained
LLMs, such as GPT-4, to build multimodal web
agents. They provide the LLM with context like
images of the GUI, prior actions, image annota-
tions, and HTML/DOM information when avail-
able. Some works, like Pix2Act (Shaw et al., 2023)
and WebAgent (Gur et al., 2024), train LLMs to
attend to parts of HTML code or generate the
next action step through self-supervision, often
using reinforcement learning techniques like be-
havioral cloning or REINFORCE. However, these
approaches typically require large amounts of train-
ing data and resources, and are often limited to
simpler environments (Lai et al., 2024). They may
not scale well to complex proprietary enterprise
software, and agents requiring exploration during
training may need human supervision to avoid risky
outcomes. Methods that aim to make agents more
adaptable to unseen settings, which is the focus
of this work, could avoid costly retraining pro-
cesses, enhance applicability to proprietary settings,
and allow agents to learn from custom informa-
tion provided by human experts. Related to the
theme of unlocking new agent capabilities, recent
work has investigated giving web agents access
to APIs (Song et al., 2024), mapping large-scale
indirect knowledge to supervision signals for im-
proving agent’s performance (Ou et al., 2024), and
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Figure 1: AdaptAgent for few-shot adaptation of web agents that are based on proprietary and open-weights
multimodal LLMs. Left: For proprietary MLLM-based web agents, we include the multimodal human demonstration
as in-context examples. Right: For web agents based on open-weights MLLMs, we first learn a better prior using
meta-learning and then use few-shot human demonstrations for faster adaptation.

carefully constructing reasoning-based benchmark
of tasks (Boisvert et al., 2024).

Few-Shot Learning with LLMs: Data-efficient
alignment of LLMs to new tasks is an active area of
research (Jin et al., 2023; Liu et al., 2024). While
in-context learning (Brown, 2020) allows models
to adapt using few examples, it can be sensitive
to variations (Khattab et al., 2023; Sclar et al.,
2023). Fine-tuning methods like Group Prefer-
ence Optimization (GPO) (Zhao et al., 2023) and
DITTO (Shaikh et al., 2024) have shown promise
in few-shot tuning of LLMs to align with subjec-
tive preferences. However, these methods are de-
signed for preference tuning and may not directly
translate to tasks requiring precise action predic-
tion. Inspired by the potential of meta-learning, we
adopt model-agnostic meta-learning (Finn et al.,
2017a) to train web agents that can quickly adapt
using few-shot demonstrations. This approach
aims to improve the performance of multimodal
web agents, especially in cross-website and cross-
domain scenarios.

Learning from Demonstrations: Learning from
Demonstration (LfD) involves teaching agents
tasks by observing human or agent demon-
strations (Schaal, 1996; Argall et al., 2009).
Approaches include Imitation Learning (IL),
where agents directly imitate demonstrated behav-
iors (Ross et al., 2011), and Inverse Reinforcement
Learning (IRL), where agents learn the underlying
objectives from demonstrations (Ng et al., 2000).
While LfD has been widely applied in robotics
and autonomous systems (Breazeal and Scassel-

lati, 2002; Ho and Ermon, 2016), its application
to web agents is less explored. Web agents share
similarities with robots in terms of perception, rea-
soning, and execution (Veloso, 2005). This overlap
suggests that techniques from LfD could enhance
the adaptability of web agents to new websites and
domains. Our work explores applying LfD to web
agents to improve their performance on unseen en-
vironments.

3 Few-Shot Adaptation with Human
Demonstrations

Methodological motivation. Learning from human
demonstrations (Schaal, 1996) has played a key
role in many applications, notably helping robots
generalize to new tasks or existing tasks under new
environments and constraints (Argall et al., 2009).
Prior work has highlighted the limited generaliz-
ability of web agents to unseen tasks, websites, and
domains (Zheng et al., 2024a; Hong et al., 2023).
Agents that automate web tasks and robots that
automate real-world tasks share strong analogies
in desired capabilities (i.e., perception, reasoning,
execution (Veloso, 2005)), allowing for transfer of
modeling strategies between these domains. This
inspires us to adopt learning from human demon-
strations for web agents to improve their adapt-
ability to unseen settings. While it’s possible to
fine-tune web agents with a large number of hu-
man demonstrations covering new websites and
domains, such approaches require tedious annota-
tions and are expensive. Therefore, building highly
adaptable web agents requires the ability to adapt
them in a data-efficient manner.
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Despite the success of learning from demonstra-
tion in adapting robots and the strong analogies
between physical robots and web agents, unique
challenges remain for web agents. Traditionally,
robot learning from human demonstrations exhibits
limited generalizability; i.e., when a human demon-
strates task A a few times, the robot learns to do
the same task A or closely related tasks, akin to
imitation learning (Hussein et al., 2017; Ren et al.,
2021). It remains to be seen how well web agents
can generalize to unseen settings with few-shot
human demonstrations, which is the primary fo-
cus of this work. In other words, can a handful
of human demonstrations of specific tasks on cer-
tain websites (e.g., "book a flight...” on delta.com)
lead the web agent to learn related tasks on simi-
lar websites (e.g., "check visa requirements...” on
united.com), or even generalize to unrelated do-
mains (e.g., “book a driving test appointment...”
on dol.wa.gov)? Our work proposes AdaptAgent,
a framework to enable web agents to adapt with
few-shot human demonstrations and evaluates their
generalizability to unseen settings.

Methods for learning with human demonstrations.
Our proposed framework for adapting multimodal
web agents with few-shot human demonstrations
builds on advances in proprietary and open-weights
multimodal LLMs. We use SeeAct (Zheng et al.,
2024a), which employs a carefully crafted prompt-
ing strategy with GPT-4o, as a representative pro-
prietary model baseline and adapt it using multi-
modal in-context examples. As the representative
baseline for SoTA open-weights models, we use
CogAgent (Hong et al., 2023) — an 18B multi-
modal LLM with a dedicated visual backbone to
process GUI images. Given the success of meta-
learning in efficient adaptation, we propose fine-
tuning models like CogAgent with meta-learning
instead of regular fine-tuning. See Figure 1 for
an overview of our proposed AdaptAgent frame-
work. Next, discuss in detail in-context learning
and meta-learning with human demonstrations for
proprietary and open-weights models, respectively.

1. In-context learning with SeeAct + GPT-4o: See-
Act uses a carefully constructed prompt (using Re-
Act prompting (Yao et al., 2022)) to guide multi-
modal LLMs like GPT-4o in iteratively determining
the next action based on the current GUI state to
complete the user-assigned task. In-context learn-
ing (ICL) has proven to be an effective approach for
adapting proprietary LLMs (Bertsch et al., 2024).

Consequently, we deconstruct the human demon-
stration of a task on the target website/domain into
a sequence of (visual snapshot, HTML elements
(filtered following (Zheng et al., 2024a)), human
selection) and include them as an ICL example with
the SeeAct prompt; see Appendix A.6 & Figure 1
(left).
2. Meta-learning with CogAgent: To overcome
the limited abilities of general-purpose multimodal
LLMs to process GUI snapshots — which involve
complex layout understanding, OCR, and func-
tional understanding of HTML elements, Hong et
al. (2023) (Hong et al., 2023) pre-trained general-
purpose MLLMs like CogVLM (Wang et al., 2023)
on tasks involving GUI processing. Beyond ex-
tensive pre-training, fine-tuning on task-specific
datasets showed notable performance boosts for
CogAgent over several baselines. In this work,
we consider the pre-trained CogAgent and fur-
ther adapt it using model-agnostic meta-learning
(MAML) (Finn et al., 2017a) with few-shot demon-
strations; refer to Fig. 1 (right) for a depiction.

Meta-learning (Schmidhuber, 1987), often
dubbed “learning to learn”, is a training strategy in
which a model learns to adapt efficiently to unseen
tasks by leveraging knowledge gained from updates
across many related tasks. Model-agnostic meta-
learning (Finn et al., 2017a) is one such approach
applicable to any model. Mathematically, the meta-
learned model θ∗ is obtained via meta-updates θ ←
θ− β · ∇θ

∑N
i LTi(θi) (outer loop update), where

β is the meta-learning step size, and the gradient is
derived from the sum of losses LTi(θi) across all
tasks. Each θi is initialized from θ and fine-tuned
on task Ti, via θi ← θ−α·∇θLTi(θ) (inner loop up-
date), with α being the step size. Thus, each meta-
update involves meta-gradients (gradients through
gradients). However, since our experiments in-
volve LLMs with billions of parameters, comput-
ing meta-gradients is computationally challenging.
Therefore, we consider the first-order approxima-
tion of model-agnostic meta-learning (FOMAML).
FOMAML has demonstrated performance on par
with MAML (Finn et al., 2017a; Nichol, 2018),
potentially due to the predominantly locally linear
nature of neural networks (Goodfellow et al., 2014;
Razzhigaev et al., 2024), making the second-order
gradients negligible. Therefore, our meta-learning
updates are represented as (derivation in Appendix
A.2): θ ← θ−β ·∑N

i=1∇θLTi(θi). In other words,
when adapting multimodal web agents with meta-
learning, the inner loop involves fine-tuning the
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agent (θ → θi) on web tasks Ti from a given web-
site, with the training subset used for this inner loop
denoted as Dtrain

i . Then, for the outer loop update,
we update the parameters of the MLLM agent θ
by backpropagating the gradients of the loss at θi,
where the loss is computed on held-out web tasks
from the same website/domain — denoted asDtest

i .
Importantly, the gradients being backpropagated
are computed at θi (rather than θ), ensuring the
MLLM agent is not trained on bothDtrain

i &Dtest
i .

Essentially, we train the MLLM agent θ on Dtrain
i

to obtain θi and then update its original parameters
θ using penalties based on how well θi performs on
held-out Dtest

i . A better θ∗ serves as a better start-
ing point to arrive at better θi through fine-tuning,
leading to less penalties on held-out Dtest

i . This
ensures quick and data-efficient adaptation of the
agent to unseen websites.

4 Experimental Protocol and Details
Datasets: To evaluate the quick adaptation ca-
pabilities of our agents, we design experiments
that require adaptation to unseen websites and
domains. We consider two widely used bench-
marks: Mind2Web (Deng et al., 2023) and Visual-
WebArena (Koh et al., 2024). Mind2Web provides
standardized train and test sets across various web-
sites and domains. The train set includes 1,009
tasks from 73 websites and 3 domains, while the
test set is categorized into cross-task (174 tasks
from 64 seen websites), cross-website (142 tasks
from 10 unseen websites), and cross-domain (694
tasks from 2 unseen domains) subsets to evaluate
different aspects of generalization. Since the cross-
task evaluation set overlaps with the train set, we
propose minor amendments to ensure proper eval-
uation of adaptability (details in Appendix A.3).
VisualWebArena simulates a live environment with
three different websites (Reddit, Classifieds, and
Shopping) to evaluate task success rates of web
agents. We use the entire VisualWebArena bench-
mark (910 tasks) to test the adaptability of our web
agent to unseen websites. While some tasks have
step-level ground truth, others provide only an over-
all task success signal based on the environment’s
state. More details about the datasets are presented
in Appendix A.3.

Experimental Protocol: Our experimental pro-
tocol for developing and evaluating the adaptabil-
ity of web agents varies based on whether the un-
derlying multimodal LLM is proprietary or open-
weights. For the proprietary model (i.e., GPT-4o),

we use the prompting method proposed in See-
Act and add one ICL example from the website
or domain to which the agent should adapt. This
ICL example acts as the one-shot (n = 1) human
demonstration (denoted as 1-ICMD for 1 in-context
multimodal demonstration). We adopted a one-
shot setting for ICL given the trade-off between
time and incremental accuracy improvements; see
Appendix 5. The selection of the ICL example en-
sures relevance to the cross-task, cross-website, and
cross-domain evaluation setups. Specifically, for
Mind2Web’s cross-task and cross-website evalua-
tion, we randomly sample one task from the same
website (for cross-task) or from each unique web-
site (for cross-website) in the test set and evaluate
on the remaining examples from that website, main-
taining website-level correspondence. For cross-
domain evaluation, we randomly sample one task
from each unique domain in the cross-domain test
set and evaluate on the remaining examples from
that domain. For VisualWebArena evaluation, we
randomly choose one task as the in-context demon-
stration from the website being evaluated. For
the open-weights model (i.e., CogAgent), during
meta-learning, we sample 4 tasks per website from
the 73 websites in the Mind2Web training set: 2
tasks for adaptation (Dtrain

i ) and 2 tasks (Dtest
i )

(1 from the same website and 1 from a different
website within the same domain) for computing the
adaptation loss and updating the agent’s parame-
ters as discussed in Section 3. After meta-learning,
the meta-trained model adapts to new websites in
the cross-website test set by fine-tuning on 2 tasks
from each website and then evaluating on the re-
maining tasks. For cross-domain evaluation, we
adapt on 2 tasks from each new domain and eval-
uate on the rest within that domain; see Figure
3 in the Appendix. We do not perform website
adaptation for the cross-task test set, as all web-
sites are seen during meta-learning. For VisualWe-
bArena, we adapt the meta-trained model on the
Mind2Web training set, using 2 tasks from each of
the 3 websites and evaluate on the remaining tasks.
To control for the effect of adaptation tasks, we re-
port average results across 5 independent runs with
different task selections. Overall, our approach in-
volves meta-training the model with 292 tasks from
Mind2Web (73 websites × 4 tasks) and adapting
with 2 demonstrations to new websites/domains.
Implementation details are available in App. A.4.
We denote our meta-learned and adapted agent as
CogAgent-FOMAML.
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Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Proprietary Models

Baseline SeeAct (GPT-4o) 62.21 66.56 56.31 14.37 55.25 58.89 49.90 15.83 57.33 60.74 53.72 19.49

Adapted SeeAct + 1-ICMD 66.29 71.61 60.37 19.69 60.32 64.15 53.91 22.46 60.54 62.97 57.40 23.97

Baseline SeeAct* (GPT-4o) 63.75 67.68 58.60 15.38 57.02 60.01 50.05 15.89 59.30 62.80 54.82 19.88

Adapted SeeAct* + 1-ICMD 67.77 72.52 61.88 22.46 61.67 64.76 53.98 23.10 62.44 65.41 58.33 24.06

Open-weights Models

Baseline
CogAgent-FT 59.46 63.15 54.43 13.36 53.17 57.03 47.14 12.42 61.36 62.79 55.71 15.20
CogAgent-FT (DE) 55.17 59.87 50.25 10.43 49.46 53.17 44.27 10.10 59.51 59.06 52.20 13.28

Adapted CogAgent-FOMAML 59.34 62.82 53.32 11.89 59.49 62.11 55.38 16.96 62.01 63.13 57.29 19.66

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Proprietary Models

Baseline SeeAct (GPT-4o) 56.03 57.17 52.17 18.75 17.56

Adapted SeeAct + 1-ICMD 59.15 63.18 55.27 22.42 21.36

Baseline SeeAct* (GPT-4o) 57.52 59.16 53.16 18.78 18.04

Adapted SeeAct* + 1-ICMD 61.46 64.12 56.72 23.86 23.15

Open-weights Models

Baseline
CogAgent-FT 52.31 55.64 48.70 08.78 06.43
CogAgent-FT (DE) 48.62 51.71 44.81 06.81 05.11

Adapted CogAgent-FOMAML 57.20 59.14 51.29 11.01 08.47

(b) VisualWebArena dataset

Table 1: Effect of few-shot adaptation of web agents; all values are percentages. ICMD denotes the multimodal
in-context demonstration. FT refers to fine-tuning, DE denotes fine-tuning with data equivalence with respect to our
meta-learned models. Adapted models are our proposed methods. Bold indicates best performance, and orange
highlight represents the best overall performance. Model size of GPT-4o: 175B; CogAgent: 18B.

We compare the performance of adapted agents
with existing SoTA agents as baselines. For the pro-
prietary model, zero-shot SeeAct + GPT-4o serves
as a baseline. We also include Set-of-Mark prompt-
ing (SoM) (Yang et al., 2023; Koh et al., 2024) in
the image input, giving us a slightly augmented
baseline that we denote as SeeAct*. For the open-
weights model, we consider the pre-trained Co-
gAgent and another variant—CogAgent-FT—that
uses conventional fine-tuning on the entire train
set of Mind2Web as baselines. Additionally, we
consider CogAgent-FT (DE) as another baseline
that maintains data equivalence (DE) with the pro-
posed CogAgent-FOMAML method by using the
same training subset for conventional fine-tuning.
CogAgent-FOMAML and CogAgent-FT (DE) use
292 examples during meta-learning and fine-tuning,
respectively, while CogAgent-FT uses ∼3.4× as
many examples.

Evaluation metrics: For evaluation on the
Mind2Web test sets, since the ground-truth human
trajectories are available for each task, we com-
pute granular metrics: the accuracy of predicting
the correct HTML element (Ele. Acc.) to act on;
the F1 score of predicting the correct operation

(Op. F1) such as click, select, type; the percentage
of successful steps (Step SR) — requiring correct
prediction of the element, the operation, and the
optional type/selection text; and the percentage of
successful tasks (Overall SR), where task-level suc-
cess is achieved only if the entire sequence of steps
predicted by the agent aligns with the ground-truth
human trajectories. For VisualWebArena, since the
ground-truth human trajectories are available only
for a subset of the data (233 tasks corresponding
to the unique templates) and the rest of the tasks
have only a task-level success signal within the live
environment, we use the overall success rate as the
primary metric while also quantifying the granu-
lar metrics specifically for the subset of tasks with
human trajectories.

5 Results

Few-shot human demonstrations unlock comple-
mentary gains in agent’s performance: Table 1
compares the baseline and few-shot adapted ver-
sions of proprietary (SeeAct, SeeAct*) and open-
weights (CogAgent) models on (a) the Mind2Web
dataset across cross-task, cross-website, and cross-
domain evaluation settings, and (b) the Visual-
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Figure 2: Additional analyses. Left: Ablation study on demonstration modality in SeeAct*. Center: Comparison of
overall SR across meta-learning adaptation strategies in CogAgent. Right: Variation in performance with different
numbers of in-context demonstrations; numbers are inset in the bars.

Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Baseline SeeAct (GPT-4o) 62.21 66.56 56.31 14.37 55.25 58.89 49.90 15.83 57.33 60.74 53.72 19.49

Adapted
SeeAct + 1-ICTD 65.71 70.82 58.19 15.91 58.94 62.87 51.11 19.56 59.31 61.69 55.23 22.16
SeeAct + 1-ICMD 66.29 71.61 60.37 19.69 60.32 64.15 53.91 22.46 60.54 62.97 57.40 23.97

Baseline SeeAct* (GPT-4o) 63.75 67.68 58.60 15.38 57.02 60.01 50.05 15.89 59.30 62.80 54.82 19.88

Adapted
SeeAct* + 1-ICTD 66.31 70.29 60.24 19.27 59.41 62.48 52.64 22.15 61.01 64.00 56.50 22.87
SeeAct* + 1-ICMD 67.77 72.52 61.88 22.46 61.67 64.76 53.98 23.10 62.44 65.41 58.33 24.06

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Baseline SeeAct (GPT-4o) 56.03 57.17 52.17 18.75 17.56

Adapted
SeeAct + 1-ICTD 57.16 60.74 53.92 20.56 19.12
SeeAct + 1-ICMD 59.15 63.18 55.27 22.42 21.36

Baseline SeeAct* (GPT-4o) 57.52 59.16 53.16 18.78 18.04

Adapted
SeeAct* + 1-ICTD 58.98 62.93 54.54 21.82 20.87
SeeAct* + 1-ICMD 61.46 64.12 56.72 23.86 23.15

(b) VisualWebArena dataset

Table 2: Ablation study on multimodal vs. text-only demonstrations. IC[-]D denotes the type of in-context
demonstration, where T and M refer to textual and multimodal demonstrations, respectively. Bold indicates the best
performance.

Type Model
Cross-Task Cross-Website Cross-Domain

Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR Ele. Acc. Op. F1 Step SR Overall SR

Baseline
CogAgent 30.63 47.67 25.11 02.80 31.50 51.52 21.29 02.11 32.17 49.94 23.32 02.59
CogAgent-FT 59.46 63.15 54.43 13.36 53.17 57.03 47.14 12.42 61.36 62.79 55.71 15.20
CogAgent-FT (DE with FOMAML) 55.17 59.87 50.25 10.43 49.46 53.17 44.27 10.10 59.51 59.06 52.20 13.28

Adapted
CogAgent-FOMAML (intra-website) 60.74 62.44 53.14 13.24 60.16 63.47 55.88 17.28 61.36 62.79 55.71 18.20
CogAgent-FOMAML (inter-website) 58.77 62.16 53.01 11.46 59.02 62.84 54.13 16.50 63.88 65.01 58.42 20.22
CogAgent-FOMAML (hybrid) 59.34 62.82 53.32 11.89 59.49 62.11 55.38 16.96 62.01 63.13 57.29 19.66

(a) Mind2Web dataset

Type Model
Human Trajectories Live Environment

Ele. Acc. Op. F1 Step SR Overall SR Overall SR

Baseline
CogAgent 25.27 38.64 19.61 01.31 0.46
CogAgent-FT 52.31 55.64 48.70 08.78 6.43
CogAgent-FT (DE with FOMAML) 48.62 51.71 44.81 06.81 5.11

Adapted
CogAgent-FOMAML (intra-website) 57.36 60.07 52.61 11.36 9.17
CogAgent-FOMAML (inter-website) 56.11 58.44 53.81 10.24 8.29
CogAgent-FOMAML (hybrid) 57.20 59.14 51.29 11.01 8.47

(b) VisualWebArena dataset

Table 3: Analysis of the three meta-learning adaptation strategies used with the CogAgent model. FT refers to
fine-tuning, while DE denotes fine-tuning with data equivalence to the meta-learned models, i.e., using less than
one-third of the training data. Bold text indicates the best performance in each evaluation setting.

WebArena dataset across human trajectories and
live environment settings. The proprietary mod-
els adapt through multimodal in-context demon-
stration, while CogAgent adapts via meta-learning.

Recall that for CogAgent, we tested two baseline
versions: one fine-tuned on the entire Mind2Web
train set and another to ensure date-equivalence
with CogAgent-FOMAML.
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We observe that few-shot adaptation improved the
performance of both proprietary and open-weights
models across the two datasets and all settings in-
volving adaptation to unseen websites or domains.
Specifically, for Mind2Web’s cross-website and
cross-domain sets, few-shot adaptation using the
AdaptAgent framework resulted in an absolute in-
crease in overall success rate ranging from 4.18%
to 7.21% over the corresponding unadapted coun-
terparts, which corresponds to a relative increase
of 21.03% to 45.40% over the current state-of-
the-art. The trends are consistent across all the
models, demonstrating the effectiveness of using
only 1 or 2 human demonstrations via AdaptAgent.
Similarly, on VisualWebArena, AdaptAgent led to
an absolute increase in overall success rate rang-
ing from 3.36% to 5.11%, which corresponds to
28.32% to 65.75% relative increase over the SoTA
approaches.2 In the following sections, we further
investigate the advantage of multimodal in-context
demonstrations compared to text-only demonstra-
tions, the role of different data selection strategies
during meta-learning, and the role of the number
of in-context demonstrations used.

Multimodal demonstrations are more effective
than text-only demonstrations: In our ablation
study, we examined the impact of in-context
demonstration modalities—specifically text-only
versus multimodal—on our top-performing models,
SeeAct and SeeAct*; Fig. 2 (left) & Table 2.

We observe performance improvements with
multimodal in-context demonstrations compared to
text-only versions. Specifically, across all the set-
tings in the two benchmarks, there was an absolute
gain ranging from 0.95% to 3.78%, corresponding
to a relative increase of 4.29% and 23.76%. These
results demonstrate the advantage of incorporating
richer multimodal in-context demonstrations, in-
cluding visual snapshots of webpages, compared
to relying solely on text.

Data selection strategies for meta-learning influ-
ence adaptability in different settings: Recall that
our implementation of meta-learning uses 2 tasks
for the θ to θi adaptation and 2 other tasks for
meta-updates to θ, which eventually leads to θ∗.

2CogAgent-FOMAML outperformed CogAgent-FT
(trained on ∼3.4× examples than CogAgent-FOMAML)
across all tests except for Mind2Web cross-task, where
it outperformed CogAgent-FT (DE) trained with data
equivalence. This highlights that with an equal amount
of training data, our meta-learned agent outperforms the
conventionally fine-tuned model as well as demonstrates
greater generalizability to unseen tasks.

The selection strategies for these tasks could in-
fluence the kind of generalization that the meta-
learning encourages after adaptation. For instance,
consider the setting where the selection of the 2
tasks for inner-loop adaptation and the 2 tasks for
meta-updates is done from the same website. In this
intra-website setup, meta-updates to θ encourage
generalization to within-website tasks after adapta-
tion to few tasks from the same website. However,
in an alternate setup, the selection could involve 2
tasks for inner-loop adaptation from website wi but
2 tasks taken from a different website wj : i ̸= j
within the same domain. In this inter-website strat-
egy, meta-updates to θ would encourage general-
ization to other websites within the domain after
adaptation to website wi. A hybrid approach on
the other hand, would involve inner-loop adapta-
tion with 2 tasks from website wi and meta-updates
using 2 tasks, of which one is taken from website
wi and the other is taken from a different website
wj : i ̸= j within the same domain. Below, our ab-
lations assess how the three data selection strategies
influence the agent’s performance under different
evaluation settings.

We trained a different variant of CogAgent-
FOMAML using each of these three different data
selection strategies. Table 3 and Figure 2 (center)
contrasts the performance of the resulting variants.
It is clear that that while the intra-website selections
strategy benefits cross-website generalization of the
adapted agent, the inter-website strategy is more ef-
fective for cross-domain generalization. This trend
is consistent across the two benchmarks and aligns
with our intuition above. Furthermore, we observe
that the hybrid strategy strikes the right balance
between generalization across cross-website and
cross-domain settings. Therefore, for our main
results, we considered the hybrid data selection
strategy. Nonetheless, depending on the desired
scope of the adapted agent, future research and
practitioners could employ a data selection strategy
that would be more effective in their setting.

More multimodal demonstrations help boost
agent’s performance: Next, we analyze the im-
pact of increasing the number of in-context multi-
modal demonstrations on the performance of See-
Act*. Figure 2 (right) shows the impact of 1, 3, 5,
and 10 in-context multimodal demonstrations on
a subset of 30 tasks sampled from the cross-task,
cross-website, and cross-domain sets in Mind2Web.
Across all the settings, we notice that the perfor-
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mance does improve slightly with more demon-
strations. However, the gains are minimal as we
add more and more demonstrations. Given the
higher computational costs associated with longer
prompts and incremental accuracy improvements,
it is preferable to utilize a limited number of in-
context multimodal demonstrations.

6 Discussion and Conclusion

We propose the AdaptAgent framework, which
uses few-shot human demonstrations for efficient
adaptation of web agents to unseen websites and
domains, and demonstrated its efficacy for both
proprietary and open-weights MLLM-based agents.
More broadly, our results indicate that AdaptAgent
provides a notable boost in the success rate of cur-
rent SoTA web agents on unseen websites and do-
mains in a cost-effective way, complementing the
gains obtained by building larger pre-trained mod-
els or fine-tuning on larger datasets. Beyond the
main result, we also demonstrate the benefits of
using multimodal in-context demonstrations over
text-only demonstrations. Furthermore, our abla-
tions provide actionable recommendations for fu-
ture research and practitioners to build efficiently
adaptable web agents — (i) the trade-offs in data
selection strategies for meta-learning can influence
the generalizability of the adapted web agent, and
(ii) while more in-context multimodal demonstra-
tions boost the performance of agents, the gains
tend to saturate with a higher number of examples.

7 Limitations and Broader Perspective

Limitations and future work: Despite the state-of-
the-art performance achieved by AdaptAgent, the
best-performing agent attained an overall task suc-
cess rate of less than 25% on both Mind2Web and
VisualWebArena. There remains significant room
for improvement, particularly for tasks requiring
long action sequences and websites with complex
visual layouts (see Appendix A.5 for more details),
underscoring the potential for future advancements
in this area. Future work will also include (i) inves-
tigating the types of new tasks/websites/domains
where the proposed adaptation framework is prone
to failure and (ii) evaluating the sensitivity of the
adapted agent’s performance to the selected few-
shot demonstrations, with the goal of identifying
and collecting more effective demonstrations.

Broader perspective: Prior work has highlighted
the new and unpredictable risks associated with us-

ing automated agents in sensitive contexts (Wright,
2024). We advise against using this framework
or MLLM agents to automate critical web tasks
without human oversight. Additionally, in line with
prior research (Zheng et al., 2024b), we will re-
sponsibly release the resources accompanying this
study for research purposes only.

Datasets and code: The benchmarks used in this
study are publicly available and were curated by
previous research. We abide by their terms of use.
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A Appendix

A.1 Detailed Related Work

A.1.1 UI/Web agents

AI-enabled digital device control (Shi et al., 2017;
Humphreys et al., 2022) — i.e., controlling digi-
tal devices using AI with natural language as in-
put — has been a long-standing ambition for large-
scale automation of inherently useful tasks. The
underlying problem involves mapping a language
instruction from the user to a sequence of digital
actions that AI agents can execute to successfully
complete the task. Before LLMs, approaches to
the problem involved using reinforcement learn-
ing on top of (often pre-trained) language models
like LSTM and BERT for processing language in-
put and HTML/DOM along with ResNet-like mod-
els for processing GUI states (Humphreys et al.,
2022; Liu et al., 2018; Iki and Aizawa, 2022).
More recently, as multimodal LLMs have demon-
strated success in modeling vision-and-language,
they have lent themselves as strong backbones for
building web agents that can process tasks spec-
ified by the user and engage in reasoning to out-
put the best possible actions to be executed on a
user interface such as a web browser. A major-
ity of SoTA work (Zheng et al., 2024a; He et al.,
2024) use a pretrained, off-the-shelf LLM such as
GPT-4(V/o) to build such multimodal web agents.
The input information being provided as context
to the LLM can include an image of the GUI, a
series of prior actions, additional overlaid image
annotations, as well as the HTML/DOM informa-
tion assuming that the task is web interaction and
access to HTML/DOM is possible. Work such
as Pix2Act (Shaw et al., 2023) and WebAgent
(Gur et al., 2024) train LLMs to attend to parts
of HTML code or generate the next action step
through self-supervision, or combine the effective-
ness of MLLMs with the promise of reinforce-
ment learning train agents via Behavioral cloning
or REINFORCE. However, these works were usu-
ally trained on simpler sandboxed environments
and would require significant training resources
as well as tedious curation of data samples (Lai
et al., 2024). A disadvantage of such an approach
is that it cannot scale to tasks that are complex
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or that use proprietary enterprise software. Addi-
tionally, agents that require exploration as part of
the training process would need constant human
supervision to avoid risky outcomes. While there
has been considerable progress in the success rate
of agents on tasks that are encountered as part of
their training, their performance in unseen settings
has been lacking. To the best of our knowledge,
prior work has not explicitly focused on methods
that could make Web/GUI agents more adaptable
to unseen settings.

Our work proposes a framework where GUI/web
agents are trained to efficiently adapt to unseen
settings using few-shot human demonstrations.
Data-efficient adaptation of web agents via human
demonstrations will (a) avoid costly retraining pro-
cesses/updates for unseen settings, (b) boost the
generalizability of web agents to complex work-
flows and proprietary settings, and (c) enable web
agents to learn from custom information provided
by human experts as a part of the demonstrations.

A.1.2 Few-shot learning with LLMs
Data-efficient alignment of LLMs to preferences
and new tasks is an active area of research (Jin et al.,
2023; Liu et al., 2024). In contrast to relatively
data-hungry approaches like RLHF (Ouyang et al.,
2022) and DPO (Rafailov et al., 2024) that often
require hundreds of thousands paired comparisons,
few-shot alignment and adaptation aims to use a
limited number of examples. While in-context
learning (Brown, 2020) is one of the approaches to
enable few-shot adaptation of LLMs, it is known
to be tedious (Khattab et al., 2023) and is sensi-
tive to variations (Sclar et al., 2023). Fine-tuning
alternatives, like GPO (Zhao et al., 2023) and
DITTO (Shaikh et al., 2024) have shown promises
in few-shot tuning an LLM to align to subjective
preferences demonstrated in tasks like email writ-
ing and opinion-based question-answering. Most
notably, (Zhao et al., 2023) proposes Group Prefer-
ence Optimization (GPO), which is a meta-learning
framework to update LLM parameters based on
few-shot in-context demonstrations. However, it is
unclear if few-shot alignment approaches like GPO
and DITTO, designed for subjective preference tun-
ing, translate to more concrete predictive tasks like
ours. Nonetheless, the broader motivation behind
methods like GPO – i.e., meta-learning, is a promis-
ing opportunity to improve the performance of mul-
timodal web agents, especially cross-website and
cross-domains scenarios. Inspired by the promise

of meta learning and learning from demonstrations,
we adopt model-agnostic meta-learning (Finn et al.,
2017a) to train web agents to adapt quickly.

A.1.3 Learning from demonstrations
Learning from Demonstration (LfD) (Schaal, 1996;
Breazeal and Scassellati, 2002; Argall et al., 2009;
Ravichandar et al., 2020) involves teaching agents
tasks by observing human or agent demonstrations,
enabling them to acquire skills by either directly im-
itating actions in supervised learning settings (Ross
et al., 2011) or using demonstrations as guidance
in reinforcement learning settings (Abbeel and Ng,
2004). This approach helps agents master complex
tasks that are difficult to explicitly program.

The two main approaches to LfD are Imitation
Learning (IL) and Inverse Reinforcement Learning
(IRL). Imitation Learning (IL) centers on the direct
imitation of demonstrated expert behaviors, where
agents replicate observed actions using methods
like Behavioral Cloning (Pomerleau, 1988), and
DAgger (Dataset Aggregation) (Ross et al., 2011).
IL typically involves mapping human demonstra-
tions to agent actions through supervised learn-
ing. Early techniques such as Dynamic Movement
Primitives (DMPs) (Schaal, 2006) encoded move-
ment trajectories, while probabilistic models like
Gaussian Mixture Models (GMMs) (Calinon et al.,
2007) and Hidden Markov Models (HMMs) (Cali-
non et al., 2010) captured variability and intent
in demonstrations. However, IL has limitations
when learning from suboptimal demonstrations, as
it focuses on mimicking behavior rather than under-
standing the underlying objectives. Inverse Rein-
forcement Learning (IRL), in contrast, seeks to un-
cover the underlying objective of the task by learn-
ing a reward function from demonstrations (En-
glert et al., 2017; Brown et al., 2019; Chen et al.,
2021; Das et al., 2021). Instead of merely imitating
behavior, IRL infers the goal the demonstrator is
optimizing. Once the reward function is learned,
Reinforcement Learning (RL) can be used to au-
tonomously derive a policy that achieves the task’s
goal, allowing the agent to explore and optimize its
actions beyond the initial demonstrations (Ng et al.,
2000). Some notable extensions of IRL include ap-
prenticeship learning (Abbeel and Ng, 2004), maxi-
mum entropy IRL (Ziebart et al., 2008), and genera-
tive adversarial imitation learning (GAIL) (Ho and
Ermon, 2016). Applications of LfD span robotics,
enabling adaptation to various environments and
objects (Breazeal and Scassellati, 2002; Rybski
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et al., 2007; Argall et al., 2009); autonomous driv-
ing, where vehicles learn navigation and decision-
making from human driving data (Kuderer et al.,
2015; Zhang et al., 2022); and game playing, in-
cluding chess and Go, where agents replicate hu-
man gameplay (Silver et al., 2016).

Agents that automate web tasks share significant
similarities with robots that perform real-world
tasks, as both rely on core capabilities like per-
ception, reasoning, and execution (Veloso, 2005).
This overlap enables the transfer of modeling tech-
niques between the two areas. Drawing on this
analogy, our work explores applying learning from
human demonstrations to web agents to enhance
their adaptability on unseen websites and domains.

A.2 First-order approximation of
model-agnostic meta-learning for
multimodal web agents

We present a derivation of the first-order approxi-
mation of MAML proposed by (Finn et al., 2017a),
while contextualizing it to our setting of updating
multimodal LLMs. We begin with the original ex-
pression for updates using the MAML algorithm in
Equation 1:

θ ← θ − β · ∇θ

N∑

i=1

LTi(θi). (1)

Using the chain rule, the derivative term can be
expressed as

∑N
i=1(∇θθi ×∇θiLTi(θi)). The first

component within the summation could be broken
down further as,

∇θθi = ∇θ(θ − α · ∇θLtrain(θ)),

where Ltrain denotes the loss on the examples used
for training θi from task Ti and α denotes the step-
size in the inner loop of meta-training. The above
equation further simplifies to

∇θθi = I− α · ∇2
θLtrain(θ).

Now, assuming the second-order derivatives in the
expression to zero, provides ∇θθi = I. Plugging
that in the original MAML expression gives,

θ ← θ − β ·
N∑

i=1

∇θiLTi(θi).

In our context, this essentially means that the
inner loop of meta-learning involves fine-tuning
the MLLM agent (i.e., θ → θi) on web tasks Ti

from a given website. Let’s denote this subset of
tasks used for the inner loop of training as Dtrain

i .
Following this, we update the parameters of the
MLLM agent θ by back-propagating the gradients
of the loss at θi, where the loss is computed on
held-out web tasks from the same website — de-
noted as Dtest

i . It is worth emphasizing that the
gradients being back-propagated are computed at
θi (as opposed to θ, which would have resulted
in training the MLLM agent on Dtrain

i and Dtest
i ).

In other words, we train the MLLM agent θ on
Dtrain

i to obtain θi and then update its original pa-
rameters θ using penalties computed by evaluating
how far θi is from the “ideal answers” on held-out
Dtest

i . If exposed to enough updates over varying-
but-related websites i ∈ {1, . . . , N}, the updates
to the MLLM agent θ would position it such that it
would learn to adapt to unseen websites quickly in
a data-efficient manner.

A.3 Benchmark Details

A.3.1 Mind2Web
Training Set: The training set of the Mind2Web
benchmark comprises 1,009 task instances span-
ning 73 websites from three domains: travel, en-
tertainment, and shopping. These tasks involve
various user goals such as booking flights, purchas-
ing tickets, and shopping for products. Each task is
accompanied by detailed annotations, including the
user instruction, the sequence of actions required
to complete the task, and the corresponding HTML
and visual states of the web pages.

Test Set: The test set is divided into three subsets
to facilitate the evaluation of models in different
generalization scenarios:
Cross-Task Subset: This subset contains 174 tasks
from the 64 websites that are present in the training
set. The tasks are different from those in the train-
ing set but occur on familiar websites and within
the same domains.
Cross-Website Subset: This subset includes 142
tasks from 10 websites that are entirely unseen
during training. The websites belong to the same
domains as those in the training set.
Cross-Domain Subset: This subset consists of 694
tasks spanning 53 websites from two new domains:
information and service. These domains are not
present in the training set, and the websites are
entirely new to the agent.

Fixing overlaps between the train and cross-task
evaluation sets of Mind2Web: It is important to
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Figure 3: Visual depiction of the protocol used for meta-learning using the Mind2Web train set (left), and the
meta-adaptation done on cross-domain and cross-website evaluation sets (top-right). For completeness, we also
show the conventional fine-tuning strategy (bottom-right).

Type Model

Mind2Web VisualWebArena

Cross-Task Cross-Website Cross-Domain Human Trajectories Live Environment
Overall SR Overall SR Overall SR Overall SR Overall SR

Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard Easy | Medium | Hard

Baseline
SeeAct* (GPT-4o) 15.38 15.89 19.88 18.78 18.04
↪→ Sequence complexity 56.7% | 13.7% | 0.0% 57.5% | 14.1% | 0.6% 58.2% | 16.5% | 2.9% 57.5% | 15.2% | 1.7% 56.3% | 14.6% | 0.9%
↪→ Visual difficulty 26.8% | 11.2% | 0.0% 27.1% | 11.7% | 0.9% 31.6% | 13.6% | 2.6% 30.5% | 12.7% | 1.6% 29.4% | 11.7% | 0.8%

Adapted
SeeAct* + 1-ICMD 22.46 23.10 24.06 23.86 23.15
↪→ Sequence complexity 61.3% | 18.8% | 1.7% 62.6% | 19.2% | 2.5% 63.6% | 21.7% | 5.8% 62.6% | 20.4% | 5.2% 61.6% | 19.3% | 5.9%
↪→ Visual difficulty 33.1% | 16.2% | 0.3% 33.8% | 16.6% | 1.4% 36.2% | 18.4% | 4.2% 35.3% | 16.9% | 4.8% 34.8% | 14.9% | 4.1%

Baseline
CogAgent-FT (DE) 10.43 10.10 13.28 06.81 5.11
↪→ Sequence complexity 38.5% | 9.3% | 0.0% 36.5% | 9.0% | 0.4% 39.7% | 11.2% | 2.0% 20.9% | 5.5% | 0.6% 15.9% | 4.1% | 0.3%
↪→ Visual difficulty 18.2% | 7.6% | 0.0% 17.2% | 7.4% | 0.6% 21.5% | 09.3% | 1.8% 11.1% | 4.6% | 0.6% 08.3% | 3.3% | 0.2%

Adapted
CogAgent-FOMAML 11.89 16.96 19.66 11.01 8.47
↪→ Sequence complexity 43.9% | 10.6% | 0.6% 43.8% | 10.8% | 0.7% 50.4% | 14.2% | 2.5% 26.0% | 6.8% | 0.8% 19.3% | 5.0% | 0.4%
↪→ Visual difficulty 20.7% | 08.7% | 0.3% 20.6% | 08.9% | 0.7% 27.3% | 11.8% | 2.3% 13.8% | 5.7% | 0.7% 11.5% | 3.9% | 0.3%

Table 4: Adaptation results stratified by sequence complexity and visual difficulty levels.

note that the standardized cross-task evaluation set
of Mind2Web exhibits substantial overlap with the
tasks in the training set, which could potentially
inflate the evaluation results by testing on tasks
that are not truly unseen. For instance, when we
computed Jaccard similarity (i.e., intersection-over-
union of unique unigrams) between all the tasks in
the standardized Mind2Web train set and the cross-
task test set, we found pairs of highly similar tasks

spread across the two sets. E.g., “add Prometheus
movie to watchlist.” (train set) and “add The Wire
to the watchlist.” (cross-task set); “find a cheap-
est flight from London to New York on 9th May.”
(train set) and “find cheapest flight from New York
to Toronto, Canada on 29 April.” (cross-task set).
To address this issue, we first combined all the
tasks within the existing train and cross-task sub-
sets of the Mind2Web benchmark and computed
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pair-wise Jaccard similarity between all tasks be-
longing to the same website. For each website, we
then moved K tasks that exhibited least maximum
similarity with any other task from the website to
construct the amended cross-task evaluation set,
while keeping the rest of the tasks from the web-
site in the amended train set. The value of K was
determined so as to ensure that the amended train
and cross-task sets had the same number of data
points as the original train and cross-task sets. We
also qualitatively inspected the overlap between the
amended train cross-task sets and found that even
the most similar tasks (based on unigram Jaccard
similarity) across the two sets were now consider-
able different. For e.g., “show me all the events
at any six flags park in Texas” (amended train)
and “show me all the artists with smith in their
name” (amended cross-task); “add to my cart a
women’s T-shirt priced under 10 dollars” (amended
train) and “list Batman collectible figures priced
under 10 dollars and a customer rating above 4
with a same-day delivery option” (amended cross-
task). This simple-but-important amendment to the
Mind2Web’s train and cross-task set ensures mini-
mal overlap between tasks seen during training of
the web agents and tasks that they are evaluated on
in the cross-task setting.

A.3.2 VisualWebArena
The VisualWebArena benchmark comprises 910
tasks representing 233 unique task templates spread
across the three websites. Out of the 910 tasks, 233
tasks (one for each task template) have step-level
ground truth available in the form of human trajec-
tories. These trajectories provide detailed action
sequences that a human would take to accomplish
the task, serving as a reference for evaluating the
agent’s performance at each step. The remaining
tasks do not have step-level ground truth but pro-
vide an overall task success signal based on the live
environment’s state after the agent’s interaction.

A.4 Implementation Details

The specific prompts used for experimenting with
SeeAct variants, including the modifications to in-
clude (text-only/multimodal) in-context demonstra-
tions are presented in Appendix A.6. We filtered
the top-50 HTML elements to be included in the
prompt using the methods adopted by Deng et
al. (Deng et al., 2023) and Zeng et al. (Zheng
et al., 2024a). For experiments with CogAgent,
we use the THUDM/cogagent-chat-hf model on

HuggingFace (Wolf et al., 2020) as the pre-trained
version. For updating the model parameters dur-
ing fine-tuning, meta-learning, and adaptation, we
adopted Low-Rank Adaptation (LoRA) with fol-
lowing hyper-parameters: rank α of 20 and learn-
ing rate of 1e-5. For fine-tuning, we trained the
model for 2 epochs, with other hyper-parameters
set to default/the values used by Hong et al. (Hong
et al., 2023). For meta-learning, we used a meta-
batch size of 1, meaning that we trained the agent
to adapt to 1 website during the inner-loop, and
used one gradient optimization step for each step
of the 2 tasks used for loss computation within the
inner-loop. For adaptation to new websites and
domains, we use the same strategy to adopt one
gradient step optimization per step of the 2 sam-
pled tasks to maintain consistency with the training
regime. All the experiments were performed on
an AWS virtual server with 8 NVIDIA L4 GPUs
(24GiB each).

A.5 Results on Mind2Web and
VisualWebArena, stratified by sequence
and visual difficulty levels

Next, we study the variation of overall SR across
difficulty levels, stratified based on (1) sequence
complexity; and (2) visual difficulty. The three
levels of difficulty in both cases and datasets are
easy, medium, and hard, following the protocol
established in VisualWebArena.
• Sequence difficulty is determined by the length of
the ground-truth action sequence (i.e., ≤ 3: easy;
4− 9: medium; ≥ 10: hard).
• To assign visual difficulty labels in Mind2Web
based on the required visual processing, we used
in-context learning with GPT-4o, utilizing labeled
VisualWebArena samples as in-context examples.
Snapshots of webpages were evaluated as action se-
quences and categorized as easy, medium, or hard.
Three rounds of annotation were conducted to esti-
mate the self-consistency of GPT annotations, em-
ploying chain-of-thought (CoT) reasoning in each
round. Finally, human validation was performed
to thoroughly assess the consistency, accuracy, and
reasoning of the annotations, with less than 5%
of the total examples having their labels adjusted
based on the findings from human review.

Table 4 compares the baseline and adapted over-
all SR of SeeAct* and CogAgent, stratified by
difficulty (easy, medium, hard) across sequence
complexity and visual difficulty in Mind2Web and
VisualWebArena settings.
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We observe that the improvements in adaptation
persist when stratified by different difficulty levels,
with adaptation enhancing performance across all
sequence and visual difficulty levels. SeeAct*, with
1-shot multimodal demonstration, performs best
across all difficulty levels. Overall SR decreases
as difficulty increases across all model variations,
aligning with expectations. The adapted SeeAct*
performed better overall, particularly on hard tasks
(in terms of both visual and sequence difficulty)
in the Mind2Web cross-website and cross-domain
evaluation settings, as well as in both VisualWe-
bArena evaluation settings. It showed even greater
improvement on tasks with high sequence difficulty
compared to those with high visual difficulty. For
example, in VisualWebArena, for tasks with hard
sequence complexity, overall SR increased from
1.7% to 5.2% in human trajectory evaluation and
from 0.9% to 5.9% in live environment evaluation.
In contrast, the gains with the adapted version of
CogAgent were minimal on hard tasks, especially
in the VisualWebArena evaluation settings.

A.6 1-ICMD Prompt for SeeAct and SeeAct*

In our approach, we extend the prompt design from
(Zheng et al., 2024a) by adding an in-context mul-
timodal demonstration (ICMD). The prompt pro-
vided to the GPT-4o model is as follows:

In-Context Multimodal Demonstration

(... preceded by the SeeAct prompt...)
To begin with, here is a quick example of one of the many tasks you could
be performing on the website <website_name>.
Example task’s description: <task_description>
To do this task, you could take the steps shown below.

<Image depicting the GUI snapshot at this stage>
ELEMENT: <element_name_1>
ACTION: <action_type_1>
VALUE: <value_if_applicable_1>

<Image depicting the GUI snapshot at this stage>
ELEMENT: <element_name_2>
ACTION: <action_type_2>
VALUE: <value_if_applicable_2>

· · ·

This marks the end of an example task and its steps. Now, let’s move on
to the task at hand.
(... followed by the SeeAct prompt...)

Type Model Ele. Acc. Op. F1 Step SR Overall SR

Baseline CogAgent 31.50 51.52 21.29 02.11
Adapted CogAgent + 1-ICTD 34.68 54.69 24.82 05.21
Adapted CogAgent + 1-ICMD 38.05 58.47 28.48 09.14

Table 5: Effectiveness of using in-context learning
for demonstrations with CogAgent; Mind2Web cross-
website subset.

A.7 ICL for open-weights models
We used in-context learning with CogAgent to
capture demonstrations on the Mind2Web cross-
website subset; see Table 5. As with GPT-4o, we
observed a boost in performance on including a
single demonstration as an ICL example, with mul-
timodal demonstrations outperforming text-only
ones. This reinforces the effectiveness of our ap-
proach for ICL in open-weights models.
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