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Abstract

Human evaluation is crucial for assessing
rapidly evolving language models but is influ-
enced by annotator proficiency and task design.
This study explores the integration of compar-
ative judgment into human annotation for ma-
chine translation (MT) and evaluates three an-
notation setups—point-wise Multidimensional
Quality Metrics (MQM), side-by-side (S×S)
MQM, and its simplified version S×S relative
ranking (RR). In MQM, annotators mark error
spans with categories and severity levels. S×S
MQM extends MQM to pairwise error anno-
tation for two translations of the same input,
while S×S RR focuses on selecting the better
output without labeling errors.

Key findings are: (1) the S×S settings achieve
higher inter-annotator agreement than MQM;
(2) S×S MQM enhances inter-translation er-
ror marking consistency compared to MQM
by, on average, 38.5% for explicitly compared
MT systems and 19.5% for others; (3) all an-
notation settings return stable system rankings,
with S×S RR offering a more efficient alterna-
tive to (S×S) MQM; (4) the S×S settings high-
light subtle errors overlooked in MQM without
altering absolute system evaluations.

To spur further research, we release the triply
annotated datasets comprising 377 ZhEn and
104 EnDe annotation examples, each covering
10 systems.1

1 Introduction

With the rapid improvement of large language mod-
els’ capabilities, automatic evaluation metrics have
struggled to reliably measure their quality (Karpin-
ska and Iyyer, 2023; Pham et al., 2024). As a result,
human evaluation continues to play a vital role in
assessing models’ performance.

*Work done during an internship at Google.
1Data will be available at https://github.com/google/

wmt-mqm-human-evaluation/tree/main/generalMT2023.
In EnDe, one system is annotated twice (see Section 3.2).

Human annotations can be influenced by several
difficult-to-control factors, such as annotators’ pro-
ficiency and their relative leniency or stringency
(Lu et al., 2025). Annotator proficiency can be
managed by hiring experts (Karpinska et al., 2021;
Krishna et al., 2023). Varying degrees of leniency
or stringency can be mitigated by carefully assign-
ing tasks to annotators in a structured manner (Ri-
ley et al., 2024). However, other factors can affect
rater behavior, such as the specific annotation task
used to measure quality (Belz and Kow, 2010).

This work investigates the influence of anno-
tation settings on annotator behavior and results
by using Chinese to English (ZhEn) and English
to German (EnDe) machine translation (MT) as a
case study. It examines three annotation settings:
(1) the state-of-the-art point-wise MT annotation
setup MQM (Lommel et al., 2014b; Freitag et al.,
2021a) where annotators see one translation at a
time and identify errors with category and severity
assignment of each, (2) side-by-side (S×S) MQM,
where annotators see two translations of the same
input at a time and give fine-grained error anno-
tations as MQM, (3) S×S relative ranking (RR),
where annotators see two translations and decide
which one is better, without error annotation. The
latter two settings incorporate comparative judg-
ment (Thustone, 1927), a pair-wise setting that al-
lows annotators to make relative assessments be-
tween system outputs; in S×S RR, it assists annota-
tors in making comparisons, while in S×S MQM it
helps them detect errors more easily, particularly
those appearing in only one output. Compara-
tive judgment has been shown to reduce subjectiv-
ity and enhance consistency in quality judgments
(Karpinska et al., 2021; de Moira et al., 2022; Jones
and Davies, 2024). The three settings are illustrated
in Figure 1.

This work meta-evaluates human annotation re-
sults from the studied annotation settings across
five aspects: inter-annotator agreement, inter-
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Translation 1:
The latest statistics released by the Singapore Tourism Board 
show that [...]. From January to September 2022, Singapore's 
tourism revenue totaled 8.96 billion Singapore dollars. It is 
estimated that the annual tourism revenue in 2022 will reach 
13.8 billion to 14.3 billion Singapore dollars, an increase of 6 to 7 
times compared with 1.89 billion Singapore dollars in 2021. 
Return to the level of about 50% to 52% before the new crown 
epidemic in 2019. The Singapore government has taken a 
number of steps to accelerate the recovery of tourism.

Translation 2:
The latest statistics released by the Singapore Tourism Board 
show that [...]. Singapore's tourism revenue totaled $8.96 billion 
in January-September 2022, and is expected to reach $13.8 
billion to $14.3 billion in full-year 2022, up six to seven times 
from $1.89 billion in 2021, and has recovered to levels of about 
50 to 52 percent of pre-coronavirus levels in 2019. The 
Singapore government has taken multiple measures to accelerate 
the recovery of the tourism industry.

Source:
新加坡旅游局最新发布的统计数据
显示，[...]。2022年1月至9月，新加
坡旅游收入共计89.6亿新元，预计
2022年全年旅游收入可达138亿至
143亿新元，比2021年的18.9亿新
元增长6倍至7倍，已经恢复到2019
年新冠疫情前约50%至52%的水
平。新加坡政府多措并举，加速旅游
业复苏。

Error 1: new crown major accuracy/mistranslation

Error 2: Return to minor fluency/grammar

Error 1: full-year minor style/unnatural

Error 2: up minor style/unnatural

Error 3: pre-coronavirus minor accuracy/mistranslation

Single-sided MQM Side-by-side MQM

Side-by-side Relative Ranking     Much better        Better        About the same        Better        Much better   .

6 pts
3 pts

Figure 1: Illustration of the three annotation settings studied in this work (Section 2.4). The grey-highlighted text
is the segment to be annotated within their context. In single-sided and side-by-side MQM, annotators mark error
spans and assign error category with severity. The score of a segment/document is determined by the category and
severity of its error(s). In side-by-side relative ranking, annotators read two translations and choose the (much)
better side or decide if they tie, without labelling errors. The scoring scheme of each setting is in Section 2.5.

translation error marking consistency, segment- and
system-level quality rankings, and error distribu-
tion in MQM and S×S MQM. Overall, our hu-
man annotation results reveal the following relative
strength/weakness of each protocol. Compara-
tive judgment improves inter-annotator agree-
ment, especially in S×S MQM, compared to point-
wise MQM. Comparative judgment boosts inter-
translation error marking consistency, with
average increases of 38.05% for systems that
were shown side-by-side, and 19.5% for system
pairs that were not. For MT system ranking,
S×S MQM proved more reliable in identifying
equal-quality translations while S×S RR offered
a cost-effective alternative with limited ability in
capturing subtle quality differences due to the lack
of error annotation.2 In terms of error distribution,
S×S MQM can affect the distribution of error
categories and severities, as seen in the higher de-
tection rate of accuracy errors in ZhEn compared to
MQM. Overall, the contributions of this paper are:

(1) It examines the point-wise MQM, S×S MQM,
and the simplified S×S RR, offering a system-
atic investigation of comparative judgment in
human annotation tasks in MT;

(2) It offers insights that S×S MQM provides
more reliable and fine-grained annotations
while S×S RR provides an efficient alternative
when detailed error annotation is not required.

2We analyzed annotation time per output and found that,
compared to MQM, S×S MQM takes approximately 20%
more time, while S×S RR requires about 60% less. The
slight increase for S×S MQM may stem from the added effort
of comparing two translations while providing fine-grained
annotations.

2 Annotation settings

This section introduces the core concepts and
methodologies used in this study. It begins with
key terminology in Section 2.1, followed by the
rationale for integrating comparative judgment into
annotation tasks (Section 2.2) and an overview of
the MQM framework in Section 2.3. The three
annotation settings analyzed in this work—MQM,
S×S MQM, and S×S RR—are then described in
detail in Section 2.4. Finally, Section 2.5 explains
how annotations are converted into numeric scores.

2.1 Terminology

Two terms in the current work are defined here
following Riley et al. (2024). A segment is a unit
of one or multiple sentences that is highlighted at a
time for annotators to focus on for annotation (i.e.,
the grey-highlighted text in Figure 1); a document
is a sequence of input segments (e.g., an excerpt
from an article).

2.2 Side-by-side annotation

Comparative judgment (Thustone, 1927) is a psy-
chometric method that presents two items side by
side, asking which better satisfies a given criterion.
It assumes that people are more reliable when com-
paring two items than evaluating them individually.
Studies show that comparative judgment improves
the consistency and accuracy of teachers’ assess-
ment of students’ writing (Pollitt, 2012; de Moira
et al., 2022; Jones and Davies, 2024).

In natural language generation, the S×S annota-
tion (more commonly called pair-wise annotation)
has been used for tasks like open-ended text gen-
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eration (Wang et al., 2023; Krishna et al., 2023),
machine translation (Karpinska and Iyyer, 2023),
and long-form question answering (Xu et al., 2023).
However, there lacks systematic study that com-
pares this approach with point-wise approaches in
terms of annotator behavior and annotation results.

2.3 Multidimensional quality metrics

MQM is an annotation framework proposed by
Lommel et al. (2014b) and refined by Freitag et al.
(2021a). It is the state-of-the-art annotation set-
ting currently used by WMT (Freitag et al., 2023).
It involves marking error spans and assigning er-
ror severity and category. In this work, annotators
use the error hierarchy in Table 8 (Appendix A)
for error categorization. All categories can be ei-
ther major or minor, except for Non-translation
which is always major.3 Annotators are instructed
that the more precise the error spans, the more in-
formative the annotation.

2.4 Studied annotation settings

Three annotation settings, illustrated in Figure 1,
are studied and compared to each other: MQM,
S×S MQM, and S×S RR. Annotators evaluate sys-
tem outputs segment by segment, with full access
to the surrounding context.

Single-sided MQM (i.e., point-wise MQM;
henceforth, MQM), as in Section 2.3, involves an-
notators evaluating one translation at a time.

S×S MQM is the same as MQM with one dif-
ference: two translations (each from a different
system) are shown side-by-side instead of just one.
The core annotation task is otherwise unchanged.

S×S RR does not require detailed error anno-
tation. Annotators view two translations of the
same input text side-by-side and rate them on a
five-point scale as (much) better on one side or
about the same (see Figure 1).4 This setting
evaluates whether side-by-side annotation can pro-
vide reliable system rankings without detailed error
annotation.

2.5 Score calculation

Expert annotations are converted into numeric
scores for system and annotation setting compari-

3Major errors significantly alter the meaning of the source
text; minor errors are noticeable but do not significantly alter
the source meaning.

4Unlike the relative ranking used in, for example, WMT13
(Macháček and Bojar, 2013), S×S RR provides document
context to help translation quality assessment. See Section 6
for further comparison.

son. For MQM and S×S MQM, the segment score
is the average of the scores assigned by each annota-
tor, with each score determined by the error severity
and category (Table 9 in Appendix B). The system
score is obtained by averaging the segment scores.
For MQM, lower scores are better, with an error-
free segment receiving a score of 0. The scores are
z-normalized following Riley et al. (2024).

The scoring of S×S RR follows MQM in that a
lower score is better. In each rated pair, the much
worse translation segment is penalized by 2 points,
and the worse segment by 1 point. If both transla-
tions are of similar quality, no penalty is applied.
As the MQM settings, the segment score is the av-
erage of the scores assigned by each annotator. The
system score is averaged over the segment scores.5

3 Experimental setup

This section details the setup of human experi-
ments, including the dataset, the criteria for se-
lecting systems to be evaluated, and the process for
assigning tasks among annotators.

3.1 Dataset and language pairs

The human annotation experiments are performed
on the system outputs from the news domain in
WMT2023 (Freitag et al., 2023), covering two lan-
guage pairs: Chinese to English (ZhEn) and English
to German (EnDe). Basic statistics are in Table 1.

ZhEn EnDe

Documents 38 30
Segments 377 104
Avg. English tokens/seg 32.02 71.91

Table 1: Basic dataset statistics. For ZhEn, average to-
kens per segment are based on the English reference
translation, and for EnDe, on the English source. To-
kens are counted using whitespace in both cases.

3.2 System pairs

Due to the time and cost involved in human evalu-
ation, pairwise comparisons of all MT systems in
the S×S settings are impractical. Therefore, 5 sys-
tem pairs are selected per language pair (Table 2),
which are drawn from the systems in the WMT
2023 General Machine Translation Task (Kocmi
et al., 2023).

5We z-normalized the (S×S) MQM scores to account for
variations in score ranges across different annotators, ensuring
comparability and mitigating individual annotator biases. In
contrast, the S×S RR scores were not z-normalized since they
are inherently constrained within the range of -2 to 0.
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System Pairs Rank p Cross-
BLEU

Criteria
Zh

En

GPT4-5shot 1 0.05 62.2 Top 2 systemsLan-BridgeMT 2
HW-TSC 4 0.27 57.3

High text similarityONLINE-A 5
IOL-Research 6 0.17 52.2ONLINE-B 8
ONLINE-W 10 0.10 31.2

Lower text similarityNLLB_Greedy 12
NLLB_BLEU 14 0.40 35.7ONLINE-M 15

En
De

ONLINE-W 1 0.09 53.1 Top 2 SystemsGPT4-5shot 2
ONLINE-Y 5 0.48 62.0

High text similarityONLINE-A 6
ONLINE-M 7 0.22 56.3ONLINE-G 8
GPT4-5shot 2 0.11 39.3

Lower text similarityrefA 3
NLLB_BLEU 10 0.24 44.3Lan-BridgeMT 11

Table 2: Systems annotated in the human experiments.
The ranks are determined by XCOMET. The p val-
ues are calculated by a random permutation test with
10000 trials to determine quality similarity. Cross-
BLEU quantifies the text similarity of system outputs.

Two features are considered when forming sys-
tem pairs: text similarity and quality similarity. For
text similarity, cross-BLEU (Papineni et al., 2002)
is applied. For quality similarity, XCOMET-QE-
Ensemble (XCOMET) (Guerreiro et al., 2024; Fre-
itag et al., 2023) is used in tandem with a random
permutation test.6 XCOMET provides segment
scores for each system. Two systems are consid-
ered similar in quality if the permutation test of
their segment scores returns p > 0.05.

For each language pair, the top two systems iden-
tified by XCOMET form a pair; two pairs have
high text similarity (cross-BLEU); and two have
low text similarity. In all cases, systems with sim-
ilar quality were selected, as distinguishing small
quality differences presents a greater challenge in
practical scenarios. The system pairs are listed in
Table 2.7 Applying these criteria resulted in GPT4-
5shot appearing twice in EnDe. This has the benefit
of allowing comparison between each instance of
this system’s evaluation in the side-by-side settings.

3.3 Task assignment

The annotation experiments are conducted by pro-
fessional translators who regularly perform MQM
annotation. Tasks are distributed approximately
evenly among 8 annotators for ZhEn and 10 for

6permutation_test from scipy.stats.
7For brevity, NLLB_MBR_BLEU is referred to as

NLLB_BLEU in this work.

EnDe. To mitigate rater bias, we use the within-
subject setup of Riley et al. (2024): for each input
document, all system translations for that docu-
ment are evaluated by the same set of 3 annotators.
Additionally, each translation is evaluated by the
same 3 annotators in all 3 annotation settings.

4 Meta evaluation of human evaluations

This section outlines five criteria for analyzing the
human annotation results: (1) inter-annotator agree-
ment, (2) inter-translation consistency, (3) system-
level ranking, (4) segment-level ranking, and (5)
error distribution. Results are in Section 5.
Inter-annotator agreement (IAA) Each segment
pair is annotated by three annotators, allowing for
calculating the IAA. For each segment translated
by system a and b, each annotator’s annotation is
categorized as a > b, a = b, or a < b. Krippen-
dorff’s α (Krippendorff, 2018) quantifies the IAA.8

Inter-translation consistency When the same er-
ror occurs in translations from multiple systems
of the same source input, annotators should mark
it consistently with the same span, category, and
severity. This consistency is crucial for fair sys-
tem comparisons and training MQM-style auto-
matic metrics (Juraska et al., 2023; Fernandes et al.,
2023). Inter-translation consistency quantifies the
degree to which annotators achieve this uniformity
across translations. The detailed process for calcu-
lating this consistency is provided in Appendix C.2.
Agreement in segment-level rankings Pairwise
ranking agreement (PRA) (Deutsch et al., 2023),
defined in Equation 1 and Table 10 (Appendix C.1),
measures the consistency between two annotation
settings in ranking translation pairs by considering
agreements, disagreements, and ties to evaluate
alignment between evaluation methods.9

Agreement in system-level rankings Systems in
each pair in Table 2 are ranked pairwise based on
scores calculated as detailed in Section 2.5. A
random permutation test is applied to the segment-
level scores of the paired systems to evaluate the
statistical significance of observed differences.
Error distribution For the two MQM settings, one
possibility is that they identify more/fewer errors of
particular kinds. To explore this, the total number

8In the MQM settings, two segments tie if they have the
same score.

9The metric is termed pairwise accuracy in Deutsch et al.
(2023). However, since there is no gold reference in this work,
the metric is referred to as agreement. The word ranking is to
emphasize that the metric pertains to rankings.
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of target-side errors annotated across all 3 ratings
was counted for each language pair and MQM set-
ting by category and severity.

5 Results and discussion

This section presents the meta-evaluation of the hu-
man experiments using the metrics outlined in Sec-
tion 4, with results reported based on z-normalized
scores following Riley et al. (2024). Segments an-
notated by a ZhEn outlier annotator are excluded.10

The findings show that comparative judgment im-
proves annotator agreement and consistency, main-
tains a reliable quality ranking, and facilitates ac-
curacy error finding in ZhEn.

5.1 Inter-annotator agreement
S×S settings consistently yield higher agree-
ment, particularly in S×S MQM, in both
ZhEn and EnDe. Table 3 presents the Krippen-
dorff’s α, indicating fair agreement among anno-
tators in the three annotation protocols. The IAA
does not exhibit a clear correlation with textual
similarity between systems, as detailed in Table 13
(Appendix E), an expanded version of Table 3.

MQM S×S MQM ↑ S×S RR ↑
ZhEn 0.2178 0.2510 0.2380
EnDe 0.2345 0.3594 0.2402

Table 3: Krippendorff’s α in three annotation settings.
The annotators in each setting achieve a fair agreement.

The results suggest that comparative judgment
improves alignment among human annotators in
evaluations. This is likely because MQM, as a
pointwise approach, introduces more noise by pre-
venting direct comparisons between translations. In
contrast, the S×S settings allow for direct compar-
isons, reducing noise by minimizing inconsistent
error marking (Section 5.2) and instances where
shared mistakes are flagged for one system but
overlooked for the other.

We hypothesize two reasons for S×S MQM’s
higher agreement compared to S×S RR.

First, S×S MQM enables explicit error mark-
ing, reducing ambiguity and enhances the clarity
of the decision-making process. In contrast, S×S

RR requires annotators to simultaneously evaluate
and weigh multiple aspects of two segments (e.g.,

10The rationale for excluding the outlier annotator is pro-
vided in Appendix D. After excluding the segments annotated
by the outlier annotator, ZhEn has 16 documents with 220
segments and an average token count of 31.48 per segment.

accuracy and style). This increases cognitive load
and introduces greater variability in their decisions.

Second, the increased cognitive load may cause
annotators to be influenced by longer segments
during comparative judgments. To test this, we
ranked the segments by length, divided them into
three equally sized groups, and computed Krippen-
dorff’s α for each group. The results in Table 12
(Appendix E) show that, in the S×S settings, the
shortest segments achieve the highest agreement.

Overall, the improvement in segment-level
agreement introduced by comparative judgment
is valuable because segment-level evaluation is sus-
ceptible to noise (Freitag et al., 2023), so mitigating
that noise can improve reliability.

5.2 Inter-translation consistency

S×S MQM demonstrates remarkable increases
in inter-translation error marking consistency,
as shown in Table 4.11 The upper half of Table 4
shows a substantial consistency increase, averaging
40.4% for ZhEn and 35.7% for EnDe, when evalu-
ating two systems together in S×S MQM (i.e., the
pairs in Table 2). This improvement persists, av-
eraging 20.4% for ZhEn and 18.6% for EnDe, even
when two systems are not evaluated side-by-side,
as shown in the lower table.12 All increases ex-
tends beyond error spans into categories and sever-
ity. The improvement in non-compared systems
in S×S MQM may result from exposure to side-
by-side comparisons, which potentially refine an-
notators’ internal error detection standards as well
as increase error awareness and cognitive anchor-
ing. Lastly, the consistency gains are smaller for
systems with lower text similarity (Table 15 in Ap-
pendix F), likely due to less surface overlap.

The findings demonstrate that comparative judg-
ment significantly enhances annotators’ consis-
tency in identifying error spans and assigning error
severity and categories. The improvement is valu-
able for both gaining insights from annotations and
training MQM-style automated metrics.

11The results without removing the ZhEn outlier annotator
are in Table 14, which remains similar to Table 4, meaning that,
while the outlier annotator identified significantly more errors,
they also exhibited improved inter-translation consistency.

12The ZhEn results are the average of 40 system pairs. For
EnDe, because GPT4-5shot is annotated twice in S×S MQM,
one of the annotated GPT4-5shot is excluded. Hence, the last
two rows in Table 14 are the averages of 31 pairs.
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Setting Span ↑ Span + Cat. ↑ Span + Sev. ↑ Span + Cat. + Sev. ↑
Inter-translation consistency from explicitly compared systems (5 pairs)

ZhEn
MQM 26.78% 24.66% 26.18% 24.25%
S×S MQM 67.50% 67.03% 67.26% 66.85%

EnDe
MQM 45.07% 41.61% 42.81% 40.25%
S×S MQM 78.7% 77.84% 78.48% 77.67%

Inter-translation consistency from not explicitly compared systems (ZhEn: 40 pairs; EnDe: 31 pairs)

ZhEn
MQM 26.77% 24.63% 26.06% 24.15%
S×S MQM 46.90% 45.77% 46.00% 45.12%

EnDe
MQM 45.60% 42.87% 43.81% 41.60%
S×S MQM 63.53% 62.39% 61.67% 60.69%

Table 4: Inter-translation consistency, averaged over 7 (ZhEn) and 10 (EnDe) annotators, in MQM and S×S MQM.
Cat. = category, Sev. = severity. Inter-translation consistency is calculated for four criteria of what counts as
common errors in two systems, for example, Span + Cat. = errors with the same span and category. For EnDe,
the annotation of GPT4-5shot in pair with ONLINE-W is not included in the calculation of the lower table results.
The green color highlights the higher values between MQM and S×S MQM.

α setting β setting ZhEn PRA ↑ EnDe PRA ↑ Avg.

MQM S×S RR 0.568 0.540 0.554
S×S MQM S×S RR 0.626 0.629 0.628

MQM S×S MQM 0.623 0.646 0.635

Table 5: Segment pairwise ranking agreement between
every two annotation settings. Results are based on z-
scores with the ZhEn outlier annotator being excluded.

5.3 Segment-level ranking agreement

S×S MQM and S×S RR show solid agreement
with each other and are better at identifying
equal-quality segments. Table 5 presents the PRA
results for every pair of settings in ZhEn and EnDe.
Table 6 reports the tie rates for each pair of settings.
The results provide three important insights.

First, MQM and S×S RR have the lowest agree-
ment in both language pairs, largely due to the
fundamental differences in their features: point-
wise vs. pairwise and detailed error annotation vs.
preference only. This shows that methodological
divergence indeed impacts annotation outcomes.

Second, S×S MQM and S×S RR show solid
agreement (Table 5). With better IAA than MQM
(Table 3) and lower cost than S×S MQM, S×S

RR is an appealing and efficient choice when de-
tailed error annotation is not required.

Third, the MQM setting has the lowest tie rate
(Table 6). This can be attributed to the fact that
MQM lacks explicit comparisons between paired
segments, which results in its low inter-translation
consistency (Table 4). As a result, MQM may mis-
judge segment pairs of equal quality, compromising
the reliability of its annotation outcomes.

Language pair MQM S×S MQM S×S RR

ZhEn 7.36% 16.55% 18.55%
EnDe 6.92% 11.54% 16.15%

Table 6: Tie rate in three annotation settings. S×S
RR has the highest tie rate in both language pairs.

5.4 System-level ranking agreement

MQM, S×S MQM, and S×S RR demonstrate
strong agreement in system-level rankings; S×S
RR’s high tie rate may impact its reliability. Ta-
ble 7 presents the system ranking results.

For ZhEn, all three settings yield identical system
rankings. For EnDe, GPT4-5shot was annotated
twice in S×S MQM, once with ONLINE-W and
once with refA, and obtained stable scores. This
suggests that S×S MQM does not compromise the
absolute evaluation of individual systems. S×S

RR on ONLINE-A and ONLINE-Y show a dis-
crepancy with MQM and S×S MQM; however, the
difference is not statistically significant, indicated
by the p-value.

Further investigation into the discrepancy in
EnDe S×S RR reveals that the high tie rate in S×S

RR (Table 6) plays a key role. In three rounds of
S×S RR annotations, ONLINE-Y and ONLINE-A
tied in two. Across all annotations from three anno-
tators, the tie outcome occurred 116 times (37.18%)
in S×S MQM, compared to 17.31% in MQM and
29.48% with S×S MQM.

These findings suggest several insights: (1) the
coarse rating scale of S×S RR makes it difficult
to detect nuanced quality differences; (2) while an-
notating error in MQM facilitates fine-grained dis-
tinctions, it also increases the risk of spurious dif-
ferences due to rater noise; and (3) S×S MQM bal-
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Setting Better System Worse System p value
To

p
2 MQM Lan-BridgeMT (-0.33) GPT4-5shot (-0.28) 0.013

S×S MQM Lan-BridgeMT (-0.26) GPT4-5shot (-0.21) 0.025
S×S RR Lan-BridgeMT (0.36) GPT4-5shot (0.47) 0.013

H
ig

h
te

xt
si

m MQM HW-TSC (-0.20) ONLINE-A (-0.18) 0.277
S×S MQM HW-TSC (-0.17) ONLINE-A (-0.14) 0.234

S×S RR HW-TSC (0.33) ONLINE-A (0.52) 0.000
MQM ONLINE-B (-0.13) IOL_Research (-0.11) 0.213

S×S MQM ONLINE-B (-0.17) IOL_Research (-0.10) 0.014
S×S RR ONLINE-B (0.35) IOL_Research (0.54) 0.000

L
ow

te
xt

si
m

MQM ONLINE-W (0.02) NLLB_Greedy (0.48) 0.000
S×S MQM ONLINE-W (0.02) NLLB_Greedy (0.41) 0.000

S×S RR ONLINE-W (0.29) NLLB_Greedy (0.75) 0.000
MQM ONLINE-M (0.20) NLLB_BLEU (0.50) 0.000

S×S MQM ONLINE-M (0.19) NLLB_BLEU (0.40) 0.000
S×S RR ONLINE-M (0.31) NLLB_BLEU (0.61) 0.000

(a) Chinese→ English

Setting Better System Worse System p value

To
p

2 MQM ONLINE-W (-0.32) GPT4-5shot (-0.27) 0.075
S×S MQM ONLINE-W (-0.35) GPT4-5shot (-0.29) 0.070

S×S RR ONLINE-W (0.33) GPT4-5shot (0.45) 0.046

H
ig

h
te

xt
si

m MQM ONLINE-A (-0.16) ONLINE-Y (-0.08) 0.029
S×S MQM ONLINE-A (-0.18) ONLINE-Y (-0.10) 0.014

S×S RR ONLINE-Y (0.38) ONLINE-A (0.43) 0.258

MQM ONLINE-M (0.02) ONLINE-G (0.13) 0.058
S×S MQM ONLINE-M (0.08) ONLINE-G (0.16) 0.15

S×S RR ONLINE-M (0.43) ONLINE-G (0.44) 0.448

L
ow

te
xt

si
m

MQM refA (-0.35) GPT4-5shot (-0.27) 0.037
S×S MQM refA (-0.32) GPT4-5shot (-0.31) 0.412

S×S RR refA (0.36) GPT4-5shot (0.50) 0.027
MQM Lan-BridgeMT (0.39) NLLB_BLEU (0.63) 0.005

S×S MQM Lan-BridgeMT (0.44) NLLB_BLEU (0.87) 0.000
S×S RR Lan-BridgeMT (0.22) NLLB_BLEU (0.86) 0.000

(b) English→ German
Table 7: Pairwise system rankings and statistical significance of system quality differences for ZhEn and EnDe under
three annotation settings. The results are based on the z-normalized scores with the ZhEn outlier annotator being
excluded. The red highlight points out a system ranking discrepancy. The p values indicate statistical significance
in system quality differences, determined by a random permutation test with 10000 trials.

ances these trade-offs more effectively, as reflected
in its higher inter-translation consistency.

5.5 MQM error distribution

S×S MQM highlights more major accuracy er-
rors in ZhEn, reflecting its ability in finding ac-
curacy errors that may be neglected in MQM.
Figure 2 illustrates the distribution of error cate-
gory percentages for MQM and S×S MQM.13

While EnDe S×S MQM shows similar propor-
tions to MQM, ZhEn S×S MQM shows a higher
prevalence of major accuracy errors, further sup-
ported by the detailed counts in Figure 3. To un-
derstand the source of major accuracy errors in
ZhEn S×S MQM, we examined whether annotators
altered their category assignment of the same errors
across the two annotation settings. The heatmaps
in Figure 5 (Appendix G) reveal category conver-
sions, notably from Terminology and Style errors in
MQM to Accuracy errors in S×S MQM for ZhEn.

The conversions only partially explain the in-
crease in major accuracy errors in ZhEn. A re-
view of 50 randomly sampled segments from the
ZhEn ONLINE-A system14 revealed that many ac-
curacy errors identified in S×S MQM were not
annotated in MQM.

Overall, EnDe has more fluency errors in both
MQM settings while ZhEn has a significant increase
in accuracy errors in S×S MQM. This may stem
from English and German belonging to the same

13Because GPT4-5shot is annotated twice in EnDe S×S
MQM, when counting error numbers, the GPT4-5shot er-
rors in MQM are duplicated for a fair comparison between
EnDe MQM and S×S MQM.

14ONLINE-A shows the largest increase in accuracy errors
when comparing S×S MQM to MQM.

language family, making fluency the key challenge
in translation, whereas the linguistic differences be-
tween Chinese and English make accuracy a greater
challenge in ZhEn. S×S MQM may further high-
light accuracy errors in ZhEn, especially when only
one translation contains such an error.

6 Related work

Human evaluation has long been the gold standard
for assessing both MT performance and automatic
MT evaluation metrics in the WMT conferences
and numerous MT studies. Over the years, it has
evolved through efforts to establish more reliable
and replicable methods (Stanchev et al., 2020).

Human evaluation in the WMT metrics shared
task transitioned from the 5-point scale on fluency
and adequacy (Koehn and Monz, 2006) to relative
ranking (RR) of 5 translation sentences or phrases
(Callison-Burch et al., 2007) for a better inter-/intra-
annotator agreement (Callison-Burch et al., 2007,
2008). WMT16 (Bojar et al., 2016) used direct as-
sessment (DA) (Graham et al., 2013, 2016, 2017),
where annotators scored translations between 0 and
100. It returns reliable evaluation when each item
receives 15 or more judgments. As MT systems
advance, DA struggles and mistakenly ranks high-
quality human translations below machine outputs
(Freitag et al., 2021b). To improve human evalua-
tion quality, MQM (Lommel et al., 2014b; Freitag
et al., 2021a) was introduced into WMT21 (Freitag
et al., 2021b). It emphasizes the inclusion of con-
text (Mathur et al., 2020) and the use of experts to
better capture subtle differences (Goto et al., 2014;
Toral et al., 2018; Läubli et al., 2020).
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0 20 40 60 80 100
Percentage

ZhEn MQM

ZhEn SxS MQM

EnDe MQM

EnDe SxS MQM

27.9% 35.1% 29.1% 6.7% 1.2%

43.2% 35.5% 17.7% 1.8%1.8%

32.5% 46.2% 17.0% 2.4% 2.0%

34.5% 48.2% 14.4% 2.3%0.6%

Accuracy Fluency Style Terminology Others (non-translation, locale, other)

Figure 2: Percentages of error categories in the MQM settings in ZhEn and EnDe. The GPT4-5shot errors in
EnDe MQM are doubled for a fair comparison with EnDe S×S MQM. While the percentages in EnDe stay relatively
stable, in ZhEn, accuracy errors have a higher percentage in S×S MQM than in MQM.

MQM is the state-of-the-art MT evaluation
method, but it has shortcomings—disagreement
in marking error span boundaries, category, and
severity (Lommel et al., 2014a). By introducing
S×S MQM, the current work aims to address those
issues. Kocmi et al. (2024) aim to mitigate the im-
pact of these issues through Error Span Annotation
(ESA), a point-wise annotation setting where anno-
tators first identify error spans (with severity) in a
segment before assigning it an overall score. The
segment-level scores are different from MQM in
two ways: first, the scores are assigned to measure
the amount of meaning preserved in translations
(as in their Figure 1); second, the scores are not
automatically calculated from errors, which may
introduce subjectivity and latency. For direct sys-
tem comparisons, S×S RR and S×S MQM may be
more effective, as comparative judgments are cog-
nitively easier and more consistent than absolute
ratings (Thustone, 1927), with differences between
outputs naturally highlighted. A promising future
direction is adapting ESA to a pairwise format, al-
though this requires careful design, for instance, en-
suring score comparability and consistency within
and across pairs.

Pairwise evaluation offers a simpler and more
intuitive approach to MT evaluation. Previous
WMT workshops ranked system outputs using 5-
way relative ranking, which was then converted into
pairwise comparisons (Bojar et al., 2013, 2014). Vi-
lar et al. (2007) advocate for using binary instead
of n-ary RR, as it is more intuitive and straightfor-
ward for annotators. Unlike S×S RR, their method
does not provide context and requires annotators to
rank segments based on only adequacy and fluency.

All possible system pairs are considered, with a
full system ranking being obtained either by treat-
ing the task as a sorting problem or by applying
the Bradley-Terry model (Bradley and Terry, 1952;
Dras, 2015). Pairwise evaluation is also imple-
mented in automatic MT evaluation, for example,
by Guzmán et al. (2015) and Liu et al. (2024).

7 Conclusion

This study uses machine translation as a case study
and examines the impact of MQM, S×S MQM, and
S×S RR on the annotation results from five aspects:
inter-annotator agreement, inter-translation error
annotation consistency, quality ranking at segment-
and system-levels, and error distributions.

Incorporating comparative judgment, S×S

MQM and S×S RR achieved higher inter-
annotator agreement. S×S MQM enhanced error
marking consistency both for explicitly compared
system pairs and across others. Concerning S×S

RR, although it does not provide detailed error
annotations, it offers an efficient and reliable alter-
native for system ranking provided by S×S MQM,
with a trade-off in differentiating subtle quality dif-
ferences due to higher tie rates.

The findings in the paper demonstrate the value
of comparative judgment in improving annotation
quality and efficiency, with S×S MQM and S×S

RR serving as practical alternatives to MQM, tai-
lored to different evaluation needs.

Limitations

Practical considerations make it difficult to con-
trol all variables in human evaluation experiments.
As an example, the single-sided MQM annotations
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Figure 3: Number of errors in five categories in the MQM settings in ZhEn and EnDe of all three rounds of annota-
tions. Others includes non-translation, locale convention, and other.

were collected in 2023 with a different original
goal, while the S×S MQM and S×S RR annota-
tions were collected in 2024 for this project. Addi-
tionally, our annotators were engaged in multiple
projects throughout 2024 and thus may have per-
formed other annotation tasks in between items
collected for this project.

Due to the time and cost involved in human eval-
uation, the current work is not able to test MQM,
S×S MQM, and S×S RR on a larger set of lan-
guage pairs besides ZhEn and EnDe. It is also im-
practical to exhaustively test all possible system
pairs in the two tested language pairs. However,
the current study still provides a strong foundation
for understanding the trade-offs between detailed
error detection and overall system ranking. Future
work could expand this work to include more lan-
guage pairs and a broader range of systems, further
validating the generalizability of the results.

We focus on pairwise side-by-side annotation,
as its simplicity helps annotators more easily com-
pare translation quality. While comparing more
than two outputs is possible (Macháček and Bojar,
2013), it increases cognitive load and may reduce
agreement, especially in setups without explicit
error marking. We believe this is an important
direction that warrants dedicated study.

Beyond MT, future work can test the pairwise

annotation setups in other domains to see how anno-
tation settings influence evaluations in diverse NLP
tasks. Additionally, researchers can investigate the
impact of different annotation settings on annota-
tor backgrounds. Although S×S MQM and S×S

RR do not significantly increase the inter-annotator
agreement of expert annotators, they might do so
for crowd-sourced workers.
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A MQM error categories

Table 8 lists all the error categories and their subcat-
egories mentioned in Section 2.3. The annotators
used the (sub)categories to label errors in the MQM
and S×S MQM settings.

Category Subcategory

Accuracy

Reinterpretation
Mistranslation
Gender Mismatch
Untranslated
Addition
Omission

Fluency

Inconsistency
Grammar
Register
Spelling
Text-Breaking
Punctuation
Character Encoding

Style
Unnatural or Awkward
Bad Sentence Structure
Archaic or Obscure Word Choice

Terminology
Inappropriate for Context
Inconsistent

Locale Convention

Address Format
Date Format
Currency Format
Telephone Format
Time Format
Name Format

Non-Translation —

Other —

Source Issue —

Table 8: MQM error hierarchy. Error spans are catego-
rized into categories and subcategories.

B Annotation scoring scheme

Table 9 gives the scoring scheme in Section 2.5 of
the MQM settings.

Severity Category Weight

major
Non-translation 25
Others 5

minor
Fluency/Punctuation 0.1
Others 1

Table 9: MQM error span weighting scheme. Gibber-
ish segments score 25 points, major errors 5 points, and
minor errors 1 point, except for minor punctuation er-
rors, which are weighted at 0.1 point each.
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C More details to metrics of meta
evaluation

C.1 Pairwise ranking agreement
Equation 1 is used to calcualate agreement in
segment-level rankings between the annotation set-
tings and Table 10 defines its terms. The ranking
of two translations of the same source segment de-
pends on the segment scores: segments with iden-
tical scores are tied, while differing scores dictate
their ranking. PRA quantifies the frequency with
which two evaluation settings agree on the ranking
of each pair of segments from two systems.

PRA =
C+Tαβ

C+D+Tα+Tβ+Tαβ
(1)

Symbol Description
α One of the annotation settings
β One of the annotation settings that is not α
C The number of concordant pairs
D The number of discordant pairs
Tα The number of pairs tied only in α
Tβ The number of pairs tied only in β
Tαβ The number of pairs tied in both α and β

Table 10: Terms in Equation 1. The annotation settings
are MQM, S×S MQM, and S×S RR.

C.2 Inter-translation consistency
Using the example below, inter-translation consis-
tency is meant to be the following: if an annotator
labels “arabica” as a minor fluency error in (a), they
should do the same in (b).15 For reasons of practi-
cality and clarity, two systems are considered at a
time for calculating the consistency.

(a) Brazil is the world’s largest producer of
arabica beans, a coffee variety commonly
used by baristas to make coffee.

(b) Brazil is the world’s largest producer of
arabica beans, which are the coffee beans
commonly used by baristas in making coffee.

Inter-translation consistency is calculated as
follows: Alignment of Tokens the translations
from two systems are tokenized, and the align-
ment between their tokens is computed using
get_opcodes() from difflib. This generates a
list of operations (replace, delete, insert, equal) that

15The two translations share common spans highlighted
in green, identified using the get_opcodes() function from
Python’s difflib module.

align the tokens of the two translations; Identifi-
cation of Potential Common Errors Errors an-
notated in each translation are compared based on
their spans. If an error in one translation aligns with
an “equal” operation in the token alignment, it is
considered as a potential common error of the two
compared translations. These errors are stored for
further analysis; Matching Errors Using a Cri-
terion A specified criterion (e.g., matching spans,
categories, severities, or combinations thereof) is
applied to the potential common errors. This de-
termines how many errors are consistently marked
across the two translations; Calculation of Con-
sistency the consistency value is calculated as the
percentage of errors that satisfy the criterion out of
the total potential errors.

The final inter-translation consistency is aver-
aged over all raters per criterion.

D Identifying and Addressing Outlier
Annotators

One annotator is excluded from the ZhEn annota-
tion results due to significant deviations in annota-
tion behavior compared to their peers, which could
skew the results and compromise the reliability.
This decision was based on two key observations.

First, this annotator identified an exceptionally
high number of errors compared to their peers.
Given the mean and the standard deviation of
the error counts in Table 11, the outlier annota-
tor’s z-score for ZhEn S×S MQM is 2.28, placing
them more than two standard deviations above the
mean. In contrast, all other annotators, regardless
of whether they contributed to ZhEn or EnDe, re-
main within two standard deviations of the mean.

MQM Mean MQM Std S×S MQM Mean S×S MQM Std

Chinese→ English
2936.1 1021.1 2642.3 1874.1

English→ German
900.2 413.0 945.7 475.2

Table 11: Mean and standard deviation of the error
counts from 8 ZhEn and 10 EnDe annotators.

Second, visualizing the segment scores con-
tributed by each annotator using violin plots re-
vealed that the outlier annotator from ZhEn was the
only one with a distinctly unimodal distribution in
ZhEn S×S MQM, as illustrated in Figure 4. This
is stark contrast to the more varied distributions
observed among other annotators.

Based on the two key observations of the outlier
annotator’s behavior in S×S MQM, we opted to ex-
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Figure 4: Violin plots of the original segment scores contributed by each annotator (without z-normalization).
Annotator identities are omitted for anonymity. The dots indicate the mean, while the crosses represent the median
of each distribution.

clude their annotated data from the analyses. After
removing the segments annotated by the outlier an-
notator, there are 16 documents with 220 segments
in ZhEn with an average token count of 31.45 per
segment.

E Inter-annotator agreement by pair
characteristics

Table 12 supports the findings made in Section 5.1
that the annotators have a higher agreement on the
shortest segments in the S×S setting but the corre-
lation between agreement levels and the segment
length is not proportional. The longest segment
buckets do not necessarily have the lowest α.

Chinese→ English
Avg. toks (# seg) 12.95 (73) 27.84 (73) 53.36 (74)

MQM 0.2183 0.1739 0.2021
S×S MQM 0.3154 0.2187 0.1708

S×S RR 0.2970 0.1790 0.2084

English→ German
Avg. toks (# seg) 10.62 (34) 72.94 (34) 128.83 (36)

MQM 0.1930 0.0956 0.2307
S×S MQM 0.3608 0.2763 0.2849

S×S RR 0.3136 0.2330 0.1645

Table 12: Krippendorff’s α values for annotators’
agreement across three equally sized segment groups
of different average token lengths. Shorter segments
elicit higher agreement in the S×S settings.

Table 13 expands Table 3 and presents the Krip-
pendorff’s α of each type of pairs (i.e., top-two,
high textual similarity, and low textual similarity).

In both language pairs, when evaluating the top 2
systems, the side-by-side settings achieve higher
α than MQM, with S×S MQMachieving the high-
est. The ranking pattern for the 3 settings on the
high and low text similarity system pairs is incon-
sistent between language pairs. For EnDe, S×S

MQMachieves the highest average α in each group
of system pairs.

All Top 2 High text sim Low text sim

Chinese→ English
MQM 0.2178 0.1560 0.2118 0.2359

S×S MQM 0.2510 0.2406 0.2290 0.2345
S×S RR 0.2380 0.2056 0.2481 0.2336

English→ Chinese
MQM 0.2345 0.1152 0.2819 0.2213

S×S MQM 0.3594 0.2644 0.4244 0.2947
S×S RR 0.2402 0.1604 0.2189 0.2636

Table 13: Krippendorff’s α of annotators’ agreement in
three annotation settings based on all system pairs and
system pairs of three characteristics.

F Inter-translation consistency

Table 14 presents the inter-translation consistency
results for ZhEn without removing the outlier an-
notator. The findings remain consistent with those
in Table 14, showing that the outlier annotator also
has a higher inter-translation consistency when do-
ing the task using S×S MQM.

Table 15 shows that system pairs that have lower
text similarity have lower consistency gains in inter-
translation error marking. This is likely due to their
less overlap in surface forms.

20549



Setting Span ↑ Span + Cat. ↑ Span + Sev. ↑ Span + Cat. + Sev. ↑
Inter-translation consistency from explicitly compared systems (5 pairs)

ZhEn
MQM 28.65% 26.51% 27.95% 25.99%
S×S MQM 68.01% 67.54% 67.78% 67.35%

EnDe
MQM 45.07% 41.61% 42.81% 40.25%
S×S MQM 78.7% 77.84% 78.48% 77.67%

Inter-translation consistency from not explicitly compared systems (ZhEn: 40 pairs; EnDe: 31 pairs)

ZhEn
MQM 27.84% 25.68% 27.05% 25.11%
S×S MQM 47.81% 46.70% 46.92% 46.04%

EnDe
MQM 45.60% 42.87% 43.81% 41.60%
S×S MQM 63.53% 62.39% 61.67% 60.69%

Table 14: Inter-translation consistency, averaged over 8 (ZhEn) and 10 (EnDe) annotators, in MQM and S×S MQM.
No annotator’s annotation is removed. Cat. = category, Sev. = severity. Inter-translation consistency is calculated
for four criteria of what counts as common errors in two systems, for example, Span + Cat. = errors with the
same span and category. For EnDe, the annotation of GPT4-5shot in pair with ONLINE-W is not included in the
calculation of the lower table results. The green color highlights the higher values between MQM and S×S MQM.

(a) ZhEn
Pair Type Category Span Span+Cat. Span+Sev. Span+Cat.+Sev.

All systems MQM 26.78 24.66 26.18 24.25
SxS MQM 67.50 67.03 67.26 66.85

Top 2 MQM 26.55 24.62 26.48 24.55
SxS MQM 76.46 76.46 76.46 76.46

High sim MQM 28.56 26.45 27.97 26.08
SxS MQM 69.13 68.35 68.72 68.06

Low sim MQM 24.11 21.73 23.12 21.04
SxS MQM 55.47 55.12 55.31 54.97

(b) EnDe
Pair Type Category Span Span+Cat. Span+Sev. Span+Cat.+Sev.

All systems MQM 45.07 41.61 42.81 40.25
SxS MQM 78.70 77.84 78.48 77.67

Top 2 MQM 58.48 57.37 58.11 57.17
SxS MQM 87.24 86.12 87.24 86.12

High sim MQM 32.54 27.22 28.95 25.07
SxS MQM 72.90 71.69 72.79 71.69

Low sim MQM 45.73 42.61 43.38 41.02
SxS MQM 72.92 72.28 72.47 71.83

Table 15: Inter-translation consistency on (a) ZhEn and (b) EnDe grouped by system pair types (see Table 2).

G Error distribution and category
conversion

The heatmaps in Figure 5 demonstrate that there are
some error category conversion between MQM and
S×S MQM, which is more prominent in ZhEn than
in EnDe.
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(a) ZhEn error category conversion

Accuracy Fluency Style Terminology Others

Error Type in MQM

Accuracy

Fluency

Style

Terminology

Others
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ro
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e 
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xS
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QM

769 171 93 25 44

64 2364 18 2 18

102 13 235 13 3

35 5 6 36 1

0 2 0 0 3

(b) EnDe error category conversion

Figure 5: Error category conversion from MQM to S×S MQM in (a) ZhEn and (b) EnDe of the same errors anno-
tated by the annotators in both MQM and S×S MQM. MQM EnDe GPT4-5shot is duplicated for the comparison.
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