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Abstract

Due to the legal and ethical responsibilities of
healthcare providers (HCPs) for accurate doc-
umentation and protection of patient data pri-
vacy, the natural variability in the responses of
large language models (LLMs) presents chal-
lenges for incorporating clinical note genera-
tion (CNG) systems, driven by LLMs, into real-
world clinical processes. The complexity is
further amplified by the detailed nature of texts
in CNG. To enhance the confidence of HCPs
in tools powered by LLMs, this study evalu-
ates the reliability of 12 open-weight and pro-
prietary LLMs from Anthropic, Meta, Mistral,
and OpenAI in CNG in terms of their ability to
generate notes that are string equivalent (consis-
tency rate), have the same meaning (semantic
consistency) and are correct (semantic similar-
ity), across several iterations using the same
prompt. The results show that (1) LLMs from
all model families are stable, such that their
responses are semantically consistent despite
being written in various ways, and (2) most
of the LLMs generated notes close to the cor-
responding notes made by experts. Overall,
Meta’s Llama 70B was the most reliable, fol-
lowed by Mistral’s Small model. With these
findings, we recommend the local deployment
of these relatively smaller open-weight mod-
els for CNG to ensure compliance with data
privacy regulations, as well as to improve the
efficiency of HCPs in clinical documentation.

1 Introduction

The capability of LLMs to produce text similar to
human writing has led to research on their potential
role in aiding clinical documentation. This led to
the development of clinical note generation (CNG)
tools designed to address extended working hours
and healthcare provider (HCP) fatigue (Balloch
et al., 2024; Biswas and Talukdar, 2024; Giorgi
et al., 2023; Heilmeyer et al., 2024; Moramarco
et al., 2022; Tung et al., 2024), issues which have
persisted despite the adoption of electronic health

records (Wu et al., 2024; Zhang et al., 2022; Ghat-
nekar et al., 2021; Maas et al., 2020; Momenipour
and Pennathur, 2019; Quiroz et al., 2019). Consid-
ering the legal and ethical responsibility of HCPs
to write accurate clinical documentation (McCoy
et al., 2024), the reliability of these tools is critical.

LLM reliability is typically assessed using inter-
prompt stability which checks the consistency of
responses when subjected to a variety of prompts
designed to elicit the same response (Azimi et al.,
2025; Cheng et al., 2024; Dentella et al., 2023;
Kozaily et al., 2024; Li et al., 2024; Luo et al.,
2024; Wang et al., 2024c). An alternative is to
evaluate intra-prompt stability by checking the con-
sistency of responses in several iterations using
the same prompt (Atil et al., 2024; Barrie et al.,
2024; Dentella et al., 2023; Savage et al., 2024;
Saxena et al., 2024; Yim et al., 2024; Zhao et al.,
2024). However, assessing LLM reliability is more
challenging for natural language generation tasks,
especially long-form text generation such as CNG.
Evaluation typically requires reference texts so that
comparisons can be made using automatic evalu-
ation metrics, and involves human evaluation as
it remains the gold standard (Giorgi et al., 2023;
Moramarco et al., 2022).

Although there exist studies that evaluated LLM
performance in CNG from transcripts of provider-
patient conversations (Balloch et al., 2024; Chen
and Hirschberg, 2024; Giorgi et al., 2023), only
Kernberg et al. (2024) evaluated LLM reliability
in CNG in terms of intra-prompt stability. While
Kernberg et al. (2024) evaluated only one propri-
etary LLM, their findings show the variability in
LLM responses. This may raise concerns on re-
liability if integrated in the clinical setting (Kern-
berg et al., 2024), similar with incorporating other
healthcare tools developed using LLMs or artificial
intelligence in general (Tucci et al., 2021; Wang
et al., 2024b).

Additionally, no study exploring the reliability
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of open-weight LLMs in CNG was found. Using
open-weight LLMs over proprietary ones is a typ-
ical consideration for healthcare applications due
to data privacy concerns related to protected and
sensitive health information (Giorgi et al., 2023;
Heilmeyer et al., 2024; Wang et al., 2024a).

In this study, we sought to determine whether
LLMs are reliable in CNG by evaluating how con-
sistent and correct their generated notes are when
using the same prompt in multiple iterations. We fo-
cus our evaluation on the CNG task of producing a
clinical note based on a transcript of a conversation
between a healthcare provider and a patient using
an LLM. Four (4) proprietary models and eight (8)
open-weight models from Anthropic, Meta, Mis-
tral, and OpenAI were evaluated. This is done with
the intention of providing evidence to HCPs on
the reliability of LLMs. By doing so, we aim to
enhance the body of knowledge regarding the de-
sign of reliable tools, crucial for industries such as
healthcare, which would benefit from incorporation
into real clinical workflows.

More concretely, our findings contribute to our
continuous efforts to validate and improve the
LLM-powered CNG component of SINTA (Scal-
able Intelligent Note-taking and Teaching-learning
Assistant), a system that we have developed to al-
leviate the workload of HCPs. Supported by an
innovation grant from a government-run tertiary
training hospital, we are currently evaluating our
system with the goal of integrating it into their
clinical workflows.

2 Related Work

With the ability of LLMs to generate texts, recent
work explored the performance of various Chat-
GPT models (i.e., ChatGPT 3.5 Turbo, ChatGPT
4) in CNG from transcripts of provider-patient con-
versations to assess the potential of using an LLM
in ambient clinical documentation (Balloch et al.,
2024) or to compare the performance of fine-tuned
pretrained encoder-decoder or decoder-only lan-
guage models with at least an LLM (Chen and
Hirschberg, 2024; Giorgi et al., 2023). Kernberg
et al. (2024) assessed not only the correctness of
notes generated from ChatGPT 4, but also the reli-
ability of its responses through three repeated runs
for each input, although they did not alter model
parameters to make the model more deterministic.
In addition, they used standardized assessments
rated by human experts to evaluate the quality of

responses, without using automatic evaluation met-
rics. Aside from ChatGPT, we evaluate various
open-weight and proprietary LLMs in generating
clinical notes from provider-patient dialogues.

Some studies (Atil et al., 2024; Savage et al.,
2024; Yim et al., 2024) that evaluated LLM relia-
bility also set model parameters that influence the
determinism of LLMs, temperature, top_p and
top_k, to a value of or close to 0 to make the model
deterministic. We also set the model parameters to
make them more deterministic.

Assessing LLM performance in CNG usually
requires reference notes against which LLM out-
puts are matched via automated evaluation metrics
that assess string overlap or semantic similarity.
These evaluations are frequently supplemented by
human judgment (Giorgi et al., 2023; Moramarco
et al., 2022). Giorgi et al. (2023); Moramarco et al.
(2022) found BERTScore (Zhang et al., 2020), an
automatic evaluation metric that checks the simi-
larity of two texts in the embedding space, to be
the most appropriate embedding-based metric for
the task of CNG. We use BERTScore to measure
semantic consistency across responses per prompt
and semantic similarity of the responses with the
notes generated by experts.

In addition to semantic consistency and seman-
tic similarity, we also measure consistency rate
to reflect how much of its responses are string
equivalent. Consistency of responses was usually
measured by considering string equivalence (total
agreement rate for raw model response (Atil et al.,
2024)) or by semantic equivalence (consistency
rate (Zhao et al., 2024) or sample consistency (Sav-
age et al., 2024)) in reliability evaluation studies.
String equivalence was noted as a strict measure
of reliability while evaluating whether responses
contextually mean the same is specifically impor-
tant in CNG due to stylistic differences of HCPs
in documenting their sessions (Moramarco et al.,
2022).

3 Method

We evaluate the reliability of LLMs according to
their intra-prompt stability and their correctness
following the process illustrated in Figure 1. Each
transcript was incorporated into a user prompt tem-
plate which instructs the LLM to generate a clinical
note, with specified headings, from the transcript,
for k iterations. Evaluation was then done by using
automatic evaluation metrics to determine consis-
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tency rate (CR) and semantic consistency (SC) as
measures of intra-prompt stability, and correctness
through its semantic similarity (SS).

3.1 Dataset

We use aci-bench (Yim et al., 2023), a benchmark
dataset for automatic visit note generation, licensed
under the Creative Commons Attribution 4.0 Inter-
national Licence (CC BY). We select the aci subset
comprising 112 transcripts of natural conversations
in English between a patient and a doctor taken
during a role-play of a session, as this reflected
the real-world scenario the most. Each data point
contains the consultation session ID, the corrected
transcript of the dialogue (transcript), and the corre-
sponding clinical note (ground truth note). Figure 5
in Appendix A shows an example of said transcript
and ground truth note.

3.2 Clinical Note Generation

Clinical notes were generated based on said tran-
scripts using the same prompt in multiple iterations
using several LLMs configured to maximize deter-
minism.

3.2.1 User Prompt
A user prompt template was used across all iter-
ations to have a consistent format for the input.
This template (Figure B), contains (1) the task, (2)
the list of note headings present in the dataset, (3)
the transcript, and (4) other specific instructions.
When using Llama models, modifications to this
user prompt had to be made to align with the re-
quired format (see Appendix C).

3.2.2 Models & their Configurations
Various versions of open-weight LLMs (i.e, mod-
els from Meta and Mistral) and proprietary LLMs
(i.e., models from Anthropic and OpenAI) were
explored (Table 1). These were accessed using
AWS Bedrock API requests through the AWS SDK
for Python (Boto3), except for OpenAI’s models,
which required the use of its API from its platform.

At the minimum, for each model family, the
smallest and largest models that took in multilin-
gual text as input were included. Smaller models
generally cost less than larger ones. For open-
weight LLMs, smaller models also require less
compute and storage resources than larger ones
when deployed locally. Local deployment is an
important option for CNG as this involves process-
ing sensitive personal information which must be

Developer Model Model Configurations
max output tokens temperature top_p top_k

Anthropic Claude 3.5 Haiku 8192 0 0 1
Claude 3.5 Sonnet v2 8192 0 0 1

Meta Llama 3.1-8B-Instruct 2048 0 0 N/A
Llama 3.1-70B-Instruct 2048 0 0 N/A
Llama 3.1-450B-Instruct 8192 0 0 N/A
Llama 3.2-1B-Instruct 8192 0 0 N/A
Llama 3.2-3B-Instruct 8192 0 0 N/A

Mistral Large-2407 123B 8192 0 0 N/A
Small-2402 22B 8192 0 0 1
Mixtral-8x7B-Instruct 4096 0 0 1

OpenAI ChatGPT-4o 8192 0 0 N/A
ChatGPT-40-mini 8192 0 0 N/A

Table 1: Models used and their parameters. At least
two LLM versions per developer was selected for use in
this study - their smallest and their largest models. Max-
imum output tokens was set to 8192, unless otherwise
specified due to model limitation. Other parameters
were set accordingly to maximize determinism.

kept confidential in accordance with data privacy
laws (Giorgi et al., 2023; Heilmeyer et al., 2024;
Wang et al., 2024a). However, larger models were
still considered, as they were generally reported
to perform better in a variety of tasks than smaller
models.

For Meta’s Llama 3.1 models, its 70B model was
also considered in this study, as its largest model
(405B) may be impractical to deploy in low re-
source settings. Llama 3.2 1B and 3B models were
also included as they can be run locally on edge
devices, which could more conveniently facilitate
compliance with data privacy protection.

Additionally, for the Mistral family, also in-
cluded is their Mixtral model as this showcases
a sparse mixture of experts model, which is said to
improve computational efficiency compared with
its counterpart LLMs. Not included in this study
are the edge models of Mistral - Ministral 3B and
8B - as these were not available in AWS Bedrock
at the time of the study.

To maximize determinism of these models dur-
ing CNG, three parameters known to influence
model determinism, temperature, top_p and
top_k, were configured when relevant as enumer-
ated in Table 1. We also set the maximum output
tokens to the respective maximum capacity of each
model.

3.3 Reliability Evaluation

Reliability was assessed in terms of intra-prompt
stability and correctness on ten (10) iterations
to show how consistent an LLM generates notes
across multiple runs using the same prompt, and
how well an LLM generates notes compared to
those made by experts, respectively.
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Figure 1: Large Language Model (LLM) Reliability Evaluation Framework for the Task of Clinical Note
Generation (CNG). This has two phases, CNG and reliability evaluation, which are executed for each transcript
that has a corresponding clinical note made by an expert (ground truth note). (1) CNG starts with said transcript
being incorporated into a user prompt template, which then serves as an input to an LLM. The LLM response
is the generated note. For each transcript, CNG is executed for k iterations, resulting in k generated notes. (2)
Reliability Evaluation is then done to assess LLM reliability according to its intra-prompt stability and correctness.
Intra-prompt stability is measured by consistency rate (CR) and median semantic consistency (SCmedian), whereas
correctness is evaluated by its median semantic similarity (SSmedian). Once done for all transcripts, model
performance is calculated by taking the median of these scores.

3.3.1 Intra-Prompt Stability
Intra-prompt stability is measured using the follow-
ing metrics:

• Consistency Rate (CR) is measured by calcu-
lating the percentage of the number of pairs
across the total number of iterations where
a pair of generated notes are identical (i.e.,
string equivalent) over all possible combina-
tions of pairs regardless of whether the out-
puts are correct. This strict measure of intra-
prompt stability was first calculated per tran-
script (CRh) as follows:

CRh =

∑
i,j∈(k2)

1i=j

(
k
2

) ∗ 100 (1)

where k is the number of iterations and h ∈
[1, N ]. Model performance was then cal-
culated taking the median consistency rate
(CRmedian) from all CR scores.

• Semantic Consistency (SC) denotes whether
the generated notes contextually mean the
same regardless of how they were written
across all iterations per transcript. This
was measured by calculating the BERTScore
which is an automatic text generation evalua-
tion metric that calculates the cosine similarity
between a pair of notes in the contextual em-
bedding space (Zhang et al., 2020), using the
implementation in Hugging Face. The pairs of
notes refer to all combinations of the ten (10)

generated notes per transcript. To determine
model performance, the median semantic con-
sistency SCmedian was then calculated by get-
ting the median of all semantic consistency
scores calculated per transcript.

3.3.2 Correctness
Correctness is measured by semantic similarity,
which is similar to semantic consistency but the
pair of notes compared here were the (1) gener-
ated note and (2) ground truth note made by an
expert. The model performance (SSmedian) was
then calculated by taking the median of the seman-
tic similarity scores calculated per transcript.

4 Results and Discussion

It took about 36 hours to generate the notes. Gen-
erally, we note that having perfect semantic consis-
tency does not require having perfect consistency
rate, and having perfect consistency rate and se-
mantic consistency do not correspond to perfect
semantic similarity as shown in Table 2.

4.1 Intra-prompt Stability
Figure 2 shows the intra-prompt stability of LLMs
in CNG. Meta’s Llama 1B and 3B models, as well
as Anthropic’s Claude Haiku model, demonstrated
perfect intra-prompt stability, which means that all
outputs from all iterations were exactly the same
and thus have the same meaning. Such perfor-
mances seemed inconsistent with prior work on
LLM intra-prompt stability evaluation for multiple
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Developer Model
LLM Reliability ↑

Intra-prompt Stability Correctness
CRmedian ± IQR SCmedian ± IQR SSmedian ± IQR

Anthropic Claude Haiku 3.5 100.00 ± 00.00 100.00 ± 00.00 85.61± 0.97
Claude Sonnet 3.5 v2 0.00± 00.00 96.86± 1.44 86.52± 1.21

Meta Llama 3.1-8B 35.56± 41.11 98.39± 6.06 83.71± 3.17
Llama 3.1-70B 80.00± 37.78 100.00 ± 0.00 85.90± 1.29
Llama 3.1-450B 22.22± 20.00 96.34± 6.30 86.72± 1.95
Llama 3.2-1B 100.00 ± 00.00 100.00 ± 0.00 80.49± 2.53
Llama 3.2-3B 100.00 ± 00.00 100.00 ± 0.00 83.85± 1.39

Mistral Large-2407 123B 8.89± 20.00 97.75± 2.83 84.36± 1.49
Small-2402 22B 62.22± 33.33 100.00 ± 0.00 85.72± 1.71
Mixtral-8x7B 4.44± 11.11 96.14± 4.64 85.55± 1.55

OpenAI ChatGPT-4o 0.00± 00.00 97.52± 1.42 87.01± 1.33
ChatGPT-4o-mini 0.00± 00.00 97.40± 1.91 87.26 ± 1.24

Table 2: Summary of Model Performances based on
Intra-Prompt Stability and Correctness. In boldface
are the best scores across all models while underlined
are the best scores per model family. Three LLMs (25%)
demonstrated perfect consistency rate, 41.67% (n=5)
had perfect semantic consistency, and no model had
perfect semantic similarity.
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Figure 2: Intra-prompt stability of LLMs in CNG.
Despite LLMs generating notes written in varied ways,
the meaning of these notes were relatively consistent
across multiple iterations, implying that these LLMs
performed well in terms of intra-prompt stability.

choice question-answering tasks. Although the out-
puts of such tasks were linguistically controllable
and are short-form texts, none of the LLMs studied
by Atil et al. (2024) had string equivalent responses
in multiple executions using the same prompt in
all questions, and no LLM had perfect semantic
consistency in the study of Zhao et al. (2024).

On the opposite side of the spectrum, at least
in terms of consistency rate alone, the models
from OpenAI consistently never produced string
equivalent responses. Meta’s LLama 3.1 8B model
was unstable with the inter-quartile range greater
than the median. Interesting to note as well are
Meta’s Llama 70B model and Mistral’s Small
model, which had likewise wide variances in their

outputs, denoting that there are instances that these
models can produce exactly the same results but
can also produce responses that are written differ-
ently.

Nevertheless, considering both measures of intra-
prompt stability, models from the Meta family gen-
erally performed better in terms of both consistency
rate and semantic consistency than those from the
other model families, whereas the models from the
OpenAI family generally performed worse. Inter-
estingly, for Anthropic, Meta and Mistral families,
their smaller models performed remarkably better
than their larger models. Also worth noting are
the performance of Meta’s Llama 70B model and
Mistral’s Small model, which both had perfect se-
mantic consistency despite having an imperfect,
but notably high, consistency rate.

In general, all models had a semantic consistency
greater than 96% regardless of the consistency rate,
which varied greatly between models from 0% to
100%. This implies that despite the models gen-
erating clinical notes written in a variety of ways,
the meaning of the content of these notes was rela-
tively consistent across multiple iterations. Thus,
all models performed well in terms of intra-prompt
stability. This implies that intra-prompt stability
may be measured using semantic consistency alone
than with consistency rate.

4.2 Correctness
Figure 3 shows how close the generated notes were
to the ground truth notes, indicating correctness.
Generally, all LLMs had a median semantic sim-
ilarity between 80 and 88. For Anthropic, Meta
and OpenAI, their larger models performed better
than their smaller models. For Mistral, its Small
model performed better than its Large model and
its mixture-of-experts model.

A BERTScore of 80 is higher than the reported
best performing LLM in the study of Giorgi et al.
(2023), which has a BERTScore of 60.8, as val-
idated by senior resident physicians. Although
they also used aci-bench, they incorporated in-
context learning in their implementation with the
temperature parameter set to 0.2.

4.3 Overall LLM Reliability
Shown in Figure 4 is the performance of the LLMs
in CNG in terms of intra-prompt stability measured
by semantic consistency and correctness measured
by semantic similarity. Meta’s Llama 70B model
performed the best considering both semantic con-
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Figure 3: Correctness of LLMs in CNG. Except for
Mistral, the larger models per model family performed
better than their smaller models.
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Figure 4: Comparison of intra-prompt stability and
correctness of LLMs in CNG. Meta’s Llama 70B
model and Mistral’s Small model appear to be among
the most reliable models.

sistency and semantic similarity, followed by Mis-
tral’s Small model.These two open-weight models
outperformed all proprietary models. For propri-
etary models, Anthropic’s Claude Haiku had per-
fect semantic consistency but outperformed Ope-
nAI’s ChatGPT models in terms of semantic simi-
larity.

Using proprietary models through their respec-
tive platforms is more accessible to HCPs but may
result in a breach of data privacy regulations as the
prompts submitted may get added to their database
and subsequently used for training. Furthermore,
the parameters that maximize determinism cannot
be configured in these platforms. With Meta’s
Llama 70B and Mistral Small outperforming the

proprietary models, we can develop CNG tools that
use these and make these more accessible to HCPs
without data privacy issues.

In addition, the choice of the final model would
also depend on the practice setting considering that
clinical conversations can vary in length, i.e., from
as short as 5 minutes to at least an hour depending
on the profession and area of practice. This is of
particular concern for settings that deal with longer
conversations such as in psychiatry, psychology,
and occupational therapy where evaluations can
take about an hour because of model limitations
in terms of the number of tokens it can process.
For such settings, we recommend Mistral’s Small
model over Meta’s Llama 70B model.

5 Conclusion

The potential of LLMs for text generation has led to
investigations into their ability to produce clinical
notes, with the aim of improving the efficiency of
documentation of HCPs. As part of our efforts
to incorporate LLM-powered CNG tools into real
clinical workflows, we have focused on building
trust on these tools by assessing the reliability of
LLMs in performing CNG.

Our observations indicate that LLMs do not con-
sistently produce string-identical responses when
aiming for semantically alike outputs, which are
also aligned with annotations crafted by human ex-
perts. On multiple runs using the same prompt, we
found that Meta’s Llama 3.1 70B model was the
most reliable, followed by Mistral’s small model.
Anthropic’s Claude Haiku model outperformed
OpenAI’s ChatGPT 4o and 4o-mini models in
terms of semantic consistency while the opposite
was true for semantic similarity, but both propri-
etary models are subpar to Llama 3.1 70B and Mis-
tral Small. With these findings, we recommend
local deployment of these relatively smaller open-
weight models for CNG to ensure compliance with
data privacy regulations. We likewise consider us-
ing these models for SINTA as we validate its per-
formance in the real world setting at the tertiary
training hospital we are working with.

These findings provide support for the eventual
integration of CNG tools powered by LLMs whilst
protecting the health information of patients in com-
pliance with data privacy regulations (Giorgi et al.,
2023; Heilmeyer et al., 2024; Wang et al., 2024a).
In this way, we can contribute to easing the bur-
den of HCPs by providing them with tools that
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can help them comply with their documentation
requirements more efficiently.

6 Limitations

As this study did not include prompt optimization,
future work could involve comparing the same mea-
sures across various prompts to check for robust-
ness and, at the same time, identify the prompt most
suitable for the task. Metrics that utilize knowledge
graphs and sentence parsers can also be used, along
with an evaluation by human experts.

Furthermore, our work only used one publicly
available dataset that includes data gathered from
simulations in English. We believe that it is neces-
sary to conduct clinical validation and utility stud-
ies to capture and address contextual nuances be-
fore such tools can be fully adopted.

7 Ethical Considerations

The data used includes transcripts of dialogues be-
tween HCPs and patients, taken from a publicly
available dataset. Protected health information was
not used.

Although we used proprietary models in our ex-
periments such that the prompts we submitted may
get added to their database and subsequently used
for training, caution must be exercised when con-
sidering the use of these models in real clinical
workflows to avoid any potential breach of data
privacy regulations.

Since clinical note generation tools are being
developed with the intent of being integrated in
real clinical workflows, we recommend conducting
clinical validation and clinical utility studies prior
to integration to ensure that the tools meet health
standards and comply with regulations.
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A Sample Data from aci-bench

Each data point of the aci subset of aci-bench con-
tains a corrected transcript of a natural conversation
between a patient and a doctor (clinical conversa-
tion transcript), together with its corresponding
clinical note which serves as the ground truth note
for this study.

B User Prompt Template

Figure 6 shows the user prompt template used as
input to the evaluated LLMs, except for Llama
models. This template contains (1) the task, (2) the
list of note headings present in the dataset, (3) the
transcript, and (4) other specific instructions.

C Formatted Prompt Template for Llama
Models

Llama models expect a certain format for the
prompt, as shown in Figure 7.
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Figure 5: Sample data from the aci-bench dataset. An example of the corrected transcript of a natural conversation
between a patient and a doctor (clinical conversation transcript), together with its corresponding clinical note which
serves as the ground truth note for this study.

User Prompt Template
Your task is to generate an accurate clinical note based on the conversation between a doctor and a patient below.
For the clinical note, use any or all of the following headings as relevant to the case: ALLERGIES, ASSESSMENT,
PLAN, ASSESSMENT AND PLAN, CHIEF COMPLAINT, FAMILY HISTORY, HISTORY OF PRESENT ILLNESS,
INSTRUCTIONS or ORDERS, MEDICAL HISTORY, MEDICATIONS, PHYSICAL EXAM, RESULTS, REVIEW OF
SYSTEMS, SOCIAL HISTORY, SUBJECTIVE, SURGICAL HISTORY, VITALS
Conversation:
< clinical conversation transcript >
Start the response with the first relevant heading of the clinical note, and do not include headings that are not applicable.

Figure 6: User Prompt Template. This was used to keep the format consistent across all models.

<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>
user_prompt
<|eot_id|>

Figure 7: Formatted Prompt Template. This was used to keep the format consistent across all Llama models.
user_prompt here refers to the input which contains the transcript included in the User Prompt Template (Figure
6).
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