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Abstract

Generating high-quality geometry problems is
both an important and challenging task in ed-
ucation. Compared to math word problems,
geometry problems further emphasize multi-
modal formats and the translation between in-
formal and formal languages. In this paper, we
introduce a novel task for geometry problem
generation and propose a new pipeline method:
the Symbolic Deduction Engine-based Geom-
etry Problem Generation framework (SDE-
GPG). The framework leverages a symbolic
deduction engine and contains four main steps:
(1) searching a predefined mapping table from
knowledge points to extended definitions, (2)
sampling extended definitions and performing
symbolic deduction, (3) filtering out unquali-
fied problems, and (4) generating textual prob-
lems and diagrams. Specifically, our method
supports to avoid inherent biases in translat-
ing natural language into formal language by
designing the mapping table, and guarantees
to control the generated problems in terms of
knowledge points and difficulties by an elab-
orate checking function. With obtained for-
mal problems, they are translated to natural
language and the accompanying diagrams are
automatically drew by rule-based methods. We
conduct experiments using real-world combi-
nations of knowledge points from two public
datasets. The results demonstrate that the SDE-
GPG can effectively generate readable, solv-
able and controllable geometry problems.

1 Introduction

In the field of education, developing an automatic
problem generation tool is valuable for both teach-
ers and students. Teachers or problem designers
can use the tool to save time and effort, enhanc-
ing the efficiency of the problem production pro-
cess (Wang et al., 2021; Cao et al., 2022). Mean-
while, students can leverage the tool to generate per-
sonalized problems based on their background and

interests, improving their learning outcomes (Polo-
zov et al., 2015; Bernacki and Walkington, 2018).
In this paper, the research objective is to investi-
gate how to generate geometry problems which are
always less-studied before, to our best knowledge.

Current related studies primarily focus on the
generation of math word problems (Qin et al., 2023;
Christ et al., 2024; Liu et al., 2024; Qin et al.,
2024). Intuitively, different types of mathemati-
cal problems are designed to assess various educa-
tional abilities. For example, math word problems
emphasize language understanding, mathematical
modeling, and equation deduction, while geometry
problems require spatial imagination, calculation
and reasoning skills, as well as mastery of geo-
metric theorems and properties (Liu et al., 2020).
Therefore, although both types of problems prior-
itize readability in natural language and solvabil-
ity, methods for generating math word problems
cannot be directly applied to geometry problems.
Specifically, based on our observation, generating a
geometry problem necessitates supporting a strict,
step-by-step reasoning process based on geometric
theorems, often in formal language, and requires
multi-modal capabilities to present the problem in
both textual and visual forms. These factors make
geometry problem generation more challenging.

To be more specific, as shown in Figure 1, a typ-
ical geometry problem consists of a paragraph of
textual problem and an accompanying geometric
diagram. Within the paragraph of textual prob-
lem, the text is a mixture of mathematical expres-
sions (e.g., [AB ∥ CD]) and natural language (e.g.,
[As shown in the figure...]). Aside from the final
question sentence (e.g., [then what is the degree of
∠AEC?]), all other textual content are clauses. To
solve the problem, appropriate geometric knowl-
edge points1 (e.g., the properties of parallel lines

1Geometric knowledge points, also referred to as geomet-
ric rules, include theorems and properties. We do not distin-
guish between them in the remainder of this paper.
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Figure 1: A typical geometry problem consists of a
paragraph of textual problem and a geometric diagram.
The textual problem is made up of clauses and a ques-
tion, combining mathematical expressions with natural
language. The diagram is sometimes not required.

and triangles in the case of Figure 1) should be
applied during the reasoning process from clauses
to the question. If there exists at least one such
strict and step-by-step reasoning path, we believe
that the geometry problem can be called solvable.

Following the existing studies on controllable
problem generation (Liu et al., 2024), we also con-
sider several analogous control variables as input,
such as the knowledge points and difficulty degree.
In summary, to generate controllable high-quality
geometry problems, several basic elements should
be involved during method design: (1) the textual
problem, including clauses and a question, (2) a
geometric diagram, and (3) an answer presented as
a step-by-step reasoning path. Most importantly,
the generated problems must be rightly solvable.
Thus, the proposed task definition is that to gener-
ate a geometry problem, the knowledge points and
difficulty as control variables are given, and the
above-mentioned three basic elements would be
outputted. In this paper, considering the complex-
ity of the whole geometric domain, we focus on
Euclidean plane geometry, leaving the exploration
of topics such as geometric inequalities and combi-
natorial geometry for future work. The following
Section 3 (Problem Definition) will introduce a
detailed description of the proposed task.

To achieve the task of geometry problem gener-
ation, with a focus on readability, solvability, and
controllability, we propose a pipeline method called
the Symbolic Deduction Engine-based Geometry
Problem Generation framework (SDE-GPG). The
framework consists of four main steps: (1) search-
ing a knowledge point-to-extended definition map-
ping table, (2) sampling extended definitions and
performing symbolic deduction, (3) filtering out
unqualified problems, and (4) generating textual
problems and geometric diagrams. The details of
SDE-GPG is introduced in the Section 4 (Method).

In order to evaluate the effectiveness of our
proposed method, we manually curate two pub-
lic datasets containing real-world combinations of
knowledge points. This approach helps avoid in-
valid combinations, as using arbitrary knowledge
points sometimes results in unsolvable conclusion.
After thorough human evaluation, we find that the
generated problems by our method ensure decent
solvability and good consistency with control vari-
ables, along with precise descriptions in both nat-
ural language and visual diagrams. Due to the
limited space, the part of related work is put into
the Section 6 (Appendix).

The contributions of this paper include:

• We propose a new, simplified task definition
for generating geometry problems. Controlled
by knowledge points and difficulty degree,
this task outputs readable and solvable prob-
lems. Each problem consists of three compo-
nents: (1) a paragraph of textual clauses and
question, (2) a geometric diagram, and (3) a
step-by-step reasoning path as the answer.

• We leverage a symbolic deduction engine
and propose a pipeline framework to accom-
plish the task, called the Symbolic Deduction
Engine-based Geometry Problem Gener-
ation framework (SDE-GPG). The frame-
work consists of four steps: (1) searching a
knowledge point-to-exDefinition mapping ta-
ble, (2) sampling exDefinitions and perform-
ing symbolic deduction, (3) filtering out un-
qualified problems, and (4) generating textual
problems and diagrams.

• We collect two datasets and conduct thorough
experiments to evaluate the readability, solv-
ability and controllability of the generated
problems. The experimental results demon-
strate the effectiveness of our method in terms
of all the aspects. The code, data, templates
and other resources are public to facilitate the
successive researches2.

2 Related Work

2.1 Educational Question Generation

Educational problem generation is a broad topic, as
different subjects and problem types may focus on
specific pedagogical objectives (Gorgun and Bulut,
2024). In the field of mathematics, current studies

2https://github.com/tianyangzhang123/
SDE-GPG-ACL25
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primarily focus on generating math word problems,
with two main research lines: controllable gen-
eration and analogy generation (Liu et al., 2024).
In controllable generation, problems are created
based on parameters such as knowledge points (Wu
et al., 2022a), grade (Qin et al., 2024), difficulty
level (Jiao et al., 2023; Hwang and Utami, 2024),
and more (Wang et al., 2021; Cao et al., 2022).
In analogy generation, problems are generated by
starting with a seed problem (Zhou et al., 2023;
Norberg et al., 2023). Additionally, some research
has focused on generating multi-modal math word
problems (Liu et al., 2024). Recently, the educa-
tional value of generated math problems has gained
significant attention, with studies examining fac-
tors like ‘age-appropriateness’ (Christ et al., 2024)
and ‘cone of experience’ (Liu et al., 2024). How-
ever, despite these advancements, to the best of
our knowledge, the generation of geometry prob-
lems remains unexplored. This paper presents a
pioneering study on generating such problems.

2.2 Geometric Synthetic Data Augmentation

Our task is related to the field of geometry synthetic
data augmentation, which is a promising direction
for generating large amounts of high-quality data
to train theorem provers and verifiers (Firoiu et al.,
2021; Wang et al., 2023; Azerbayev et al., 2023;
Yang et al., 2024). Early studies primarily focused
on generating synthetic proofs for existing, human-
curated problems (Polu et al., 2022; Lample et al.,
2022). Recently, AlphaGeometry has made a no-
table contribution on end-to-end generating vast
amounts of geometric reasoning data by using a
symbolic deduction engine (SDE) and uses the data
to train an LLM for problem solving (Trinh et al.,
2024). Inspired by AlphaGeometry, we leverage
the SDE framework to generate solvable geometry
problems. The largest difference between these
works and ours is that they are for data augmenta-
tion to train LLMs, while we should focus more
on the problem quality and controllability for the
purpose of educational significance.

2.3 Formal Language for Geometry

In the field of mathematics, various formal lan-
guages have been proposed for automated geo-
metric theorem proving, such as Lean (De Moura
et al., 2015; Moura and Ullrich, 2021), and sev-
eral provers and reasoners have been developed
using the languages like JGEX (Ida and Fleuriot,
2013), GEX (Chou et al., 2000) and LeanRea-

soner (Raffel et al., 2020). When using formal
languages, theorems and proofs are typically en-
coded in a machine-verifiable format, and rigorous
logical rules are applied to ensure the correctness of
reasoning. However, fully automated provers still
face challenges in autoformalization, which refers
to the automatic conversion of informal language
into machine-readable formal statements. Early
approaches use neural machine translation to map
LaTeX-formatted texts to formal languages (Wang
et al., 2018; Bansal and Szegedy, 2020; Cunning-
ham et al., 2023). Recently, LLMs and in-context
learning (Brown et al., 2020) have expanded the
possibilities in this area (Wu et al., 2022b; Agrawal
et al., 2022; Gadgil et al., 2022; Murphy et al.,
2024). Beyond translation-based methods, some
structured frameworks have been introduced (Patel
et al., 2023; Ying et al., 2024; Poiroux et al., 2024),
while DSP (Jiang et al., 2022) and its variant (Zhao
et al., 2024) leverage Minerva (Lewkowycz et al.,
2022) to generate informal proofs that are later con-
verted into formal proof sketches. Despite these
advancements, autoformalization still struggles to
achieve fully correct translation from natural lan-
guage to formal language. It is notable that the
translation from formal language to natural lan-
guage and diagrams is generally error-tolerant and
deterministic (Trinh et al., 2024), and we leverage
the characteristics for our task.

3 Problem Definition

In this section, we present the problem definition.
The terms and notations can be referred to Table 3
of the Appendix.

DEFINITION 1: Knowledge Point and Difficulty
Degree. The geometric knowledge points refer
to geometric theorems and properties, denoted
as K = {K1,K2, . . . ,KNk

}. For example, K1,
which is [perp a b c d, perp c d e f, ncoll a b e ⇒
para a b e f ], means the parallel line determination
theorem. The difficulty degree is set as three levels,
i.e., Easy, Moderate and Difficult, in this paper.

DEFINITION 2: Premise, Conclusion and Def-
inition. Each knowledge point Ki consists of a
set of premises Pi and a conclusion Ci, denoted
as Ki = {Pi, Ci}. For example, for K1, we
have P1 = {perp a b c d, perp c d e f, ncoll a b e}
and C1 = {para a b e f}. To start a symbolic de-
duction engine, the definitions, denoted as D =
{D1, D2, . . . , DNd

}, are essential to provide a
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complete description of a geometry, while the K
are selectively used for reasoning. The premises,
conclusions, and definitions are all expressed in
formal language.

DEFINITION 3: Knowledge Point-to-
exDefinition Mapping Table (K2exD-MT).
We define the combination of any definitions
as extended definitions (exDefinition), denoted
as exD = {fminimal({Di|∀Di ∈ D})} where
fminimal performs pruning and union operations on
multiple sets of definitions to obtain a minimal
set. Since any exDefinition can serve as input for a
symbolic deduction engine to potentially reach a
conclusion, a one-to-many mapping table, called
the Knowledge Point-to-exDefinition Mapping
Table (K2exD-MT), can be constructed. Therefore,
given any knowledge point, the exDefinitions
can be obtained through a sampling function:
exDi = fsample(Ki,K2exD-MT).

DEFINITION 4: Deduced Conclusion. Given
several knowledge points and a set of sampled
exDefinitions exD, different conclusions can be
derived by an SDE through step-by-step reasoning.
It is not guaranteed that a valid conclusion will al-
ways be reached, meaning that some combinations
of knowledge points may not lead to a valid conclu-
sion. We treat the deduced conclusions DC as the
questions of the generated problem in formal lan-
guage, which are obtained through two functions:
exd = fminimal(exD) and DC = fengine(exd).

DEFINITION 5: Generated Textual Problem
and Diagram. Given a set of exDefinitions exd,
if a set of deduced conclusions DC is obtained
through an SDE, the generated problems in nat-
ural language and their corresponding diagram
can be derived using two translation functions:
GP

(text)
i = ftext(exd,DCi) = {CLi, Qi} and

GP (diagram) = fdiagram(exd), where CLi and Qi

represent the clauses and the question of the ith
generated textual problem, respectively.

DEFINITION 6: Geometry Problem Generation
Task. Based on the above-mentioned Definitions
1-5, the task of geometry problem generation in
this paper is formally defined as follows:

GP (text), GP (diagram) = f(K,h,K2exD-MT, SDE), (1)

where K is the set of knowledge points, h is the dif-
ficulty degree, K2exD-MT is the predefined knowl-
edge point-to-exDefinition mapping table, and SDE
refers to a symbolic deduction engine.

4 Method

In this section, we introduce the pipeline of pro-
posed Symbolic Deduction Engine-based Geome-
try Problem Generation Framework (SDE-GPG),
as shown in Figure 2.

4.1 Offline Construction of Knowledge
Point-to-exDefinition Mapping Table

As shown in Figure 2, our framework relies on a
Knowledge Point-to-exDefinition Mapping Table
(K2exD-MT), which establishes the relationships
between each knowledge point and multiple sets of
formal exDefinitions. This way can help to avoid
inherent biases in translation between natural and
formal languages, which is often faced in solving
geometry problems. Algorithm 1 (see Appendix)
outlines the process for constructing the table.

In Algorithm 1, two repositories—definitions D3

and knowledge points K4—are leveraged, where
Nd = 68 and Nk = 43 are their quantities respec-
tively. Given a symbolic deduction engine (SDE)
and iteration times T , in each iteration, we first
sample n definitions from D to obtain a new set
D̂. After performing pruning and union operations
(fminimal) on D̂, a minimal set of definitions, d̂, is
obtained. Then, the reasoning function (fengine)
based on the SDE is executed to generate a set of
conclusions DC. All knowledge points Ki used
in the reasoning process are recorded, and a new
mapping entry between Ki and d̂ is added to the
K2exD-MT iteratively. In our primary experiment,
we set n = 2 and T = 100, 000, and the distri-
bution numbers of obtained exDefinition sets cor-
responding to each knowledge point are shown in
Table 4 of the Appendix.

4.2 K2exD-MT Lookup, exDefinitions
Sampling and Symbolic Deduction

Since the K2exD-MT has been constructed before-
hand, during online process, the exDefinitions can
be efficiently looked up on the table for each knowl-
edge point. Then, the retrieved exDefinitions can
be used to initiate the deduction. In contrast, ran-
domly collecting input definitions from the original
repository D would be inefficient, as the they may
be completely unrelated to the given knowledge
points. As a result, this method can ensure the

3https://github.com/google-deepmind/
alphageometry/blob/main/defs.txt

4https://github.com/google-deepmind/
alphageometry/blob/main/rules.txt
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Figure 2: Pipeline of proposed Symbolic Deduction Engine-based Geometry Problem Generation Framework
(SDE-PGP) with an example case.

proper correlation of the to-be-generated problems
with each given knowledge point.

Lines 2-5 of Algorithm 2 (see Appendix) show
the process of exDefinitions sampling by using
K2exD-MT, while Line 7 represents the deduction
process with an SDE. After obtaining the exDef-
initions, the fminimal operation is also performed
(Line 6 of Algorithm 2) to obtain a minimal set
of exDefinitions before deduction begins. For de-
duction, we leverage the symbolic engine proposed
by AlphaGeometry, retaining all core components
of deductive database, algebraic rules, traceback
algorithms, and proof pruning (Trinh et al., 2024).

4.3 Problem Qualification Checking

Although the AlphaGeometry SDE supports the
proof pruning, our task is to generate controllable
and qualified problems, instead of just data aug-
mentation without caring for the problem’s quality.
Therefore, an additional function for qualification
checking should be developed. After obtaining
candidate problems, based on control variables, un-
qualified problems would be filtered out, which
means that the qualified reasoning paths should
(1) be shortest paths, (2) involve all the required
knowledge points (i.e., completeness of knowledge
points), (3) involve all the exDefinitions to reach
conclusions (i.e., completeness of clauses), and (4)
be consistent with the given difficulty degree (i.e.,
consistency of difficulty) in terms of the length of
paths. The checking function5 is important to en-
sure the quality of generated problems by filtering
out those reasoning paths that are not shortest or
incomplete on required control variables.

5This is an engineering implementation to filter out quali-
fied problems which meet the above four constraints.

4.4 Textual Problem and Diagram Generation

After obtaining qualified reasoning paths from the
previous step, our framework can translate the
formal exDefinitions and conclusions into textual
problems and diagrams using functions ftext and
fdiagram, respectively. Lines 8-14 in Algorithm 2
(see Appendix) describe the translation process.

For the translation of textual part, we use a se-
ries of predefined templates that can map formal
expressions to their corresponding natural language
representations, as the grammar of formal language
is finite6. An example is shown in Figure 2. While
the variety of language expressions can be further
refined by any LLM, we leave it as a future work.

For the generation of diagrams, due to the speci-
ficity of geometry, we implement fdiagram as an it-
erative process that successively maps each exDefi-
nition ˆexd to a geometric diagram using a drawing
tool7. These operations are executed sequentially to
ensure geometric consistency with the given exDef-
initions. For example, point constructions must pre-
cede line drawings, and angle markings can only
be added once the relevant lines are drawn. The
process continues until all geometric statements
in ˆexd are properly represented in the diagram.
Admittedly, sometimes the generated diagrams do
not totally align with human conventions, e.g., im-
proper position of a point. A visual interface can be
developed to support manual adjustment for users.

5 Experiment

In this section, we present the experimental results
of our proposed method. Since there are few ex-

6All the templates can be published in a code repository.
7https://github.com/google-deepmind/

alphageometry/blob/main/graph.py
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Method Readability Solvability Controllability
GF (1-5) LC (1-5) DC (1-5) NS (0-1) CS (1-5) CC (0-1) CKP (0-1) CD (0-1)

GPT-4o 3.05 3.60 - 0.51 2.31 0.32 0.45 0.39
SDE-PGP w/o checking 3.44 3.61 2.61 0.72 2.51 0.53 0.53 0.40
SDE-PGP w/ checking 4.25 4.65 2.55 1.00 3.55 1.00 0.62 0.63

Table 1: Average scores for evaluating readability and solvability on JGEX-AG-231 dataset.

isting counterparts to serve as baselines and no
ground truth available for evaluation, we perform
human evaluations focusing on the aspects of read-
ability, solvability and controllability.

5.1 Dataset
To address the above questions, we first prepare
datasets where each sample should consist of real-
world combinations of knowledge points. We cu-
rate two datasets of geometry problems in different
languages manually. As known, random combina-
tions of knowledge points may not deduce a conclu-
sion. In real-world applications, problem designers
are typically experts who are familiar with how to
meaningfully combine the knowledge points.

• JGEX-AG-2318: The dataset consists of 231
plane geometry problems, offering a diverse
range that includes textbook exercises, re-
gional olympiads, and famous geometry the-
orems. Each problem in the dataset is associ-
ated with a set of knowledge points, with an
average of 9.19 points per problem. For our
experiment, we randomly sample fewer than
five knowledge points from each problem to
reduce complexity.

• GeoQA9: The dataset is sourced from authen-
tic middle school exams in China, containing
5,010 geometric problems with detailed anno-
tated solution programs. For our experiment,
we randomly select 100 problems from the
plane geometry subset, as the SDE we use sup-
ports only this topic. We annotate the knowl-
edge points for each problem, with an average
of 1.45 knowledge points per problem, indi-
cating that the overall problem’s complexity
is lower than that in JGEX-AG-231.

5.2 Experimental Design
5.2.1 Measurement Metrics
Readability. The generated geometry problems
should be humanly-readable, and the evaluation

8https://www.scribd.com/document/742181523/
jgex-ag-231

9https://github.com/chen-judge/GeoQA

dimensions are as follows:

• Grammatical Fluency (GF): It assesses how
grammatically clear and concise the language
is, and whether there are any ambiguous or
confusing expressions.

• Logical Correctness (LC): It evaluates the log-
ical structure of the problem, ensuring infor-
mation is presented in a coherent and orderly
manner (e.g., a point should be introduced
only after the corresponding line is drawn).

• Diagram Correctness (DC): It examines the
logical consistency between the textual de-
scription and the diagram, and whether the
diagram is easily interpretable by humans.

Solvability. The generated geometry problems
and diagrams should be solvable, and all the rele-
vant clauses should be incorporated. The evaluation
dimensions include:

• Native Solvability (NS): Whether the gener-
ated problem can be solved.

• Consistent Solvability (CS): How well the tex-
tual content, the reference answer, and the dia-
gram align to solve the problem, and whether
the reasoning path is shortest.

• Completeness of Clauses (CC): Whether all
clauses are utilized in solving the problem.

Controllability. The generated problems should
support that all the required control variables, i.e.,
knowledge points and difficulty degree in this pa-
per, are satisfied. The dimensions include:

• Completeness of Knowledge Points (CKP):
Whether all the required knowledge points are
involved in solving the problem.

• Consistency of Difficulty (CD): Whether the
length of reasoning path is consistent with
the required difficulty degree. We empirically
set Easy for less than 10 steps, Moderate for
between 10 and 20 steps, and Difficult for
larger than 20 steps.

5.2.2 Measurement Method
For evaluating the metrics of readability, solvability
and controllability, human annotation is conducted.
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Method Readability Solvability Controllability
GF (1-5) LC (1-5) DC (1-5) NS (0-1) CS (1-5) CC (0-1) CKP (0-1) CD (0-1)

GPT-4o 4.31 4.15 - 0.90 3.71 0.61 0.75 0.29
SDE-PGP w/o checking 4.18 4.43 2.75 0.89 3.50 0.75 0.82 0.36
SDE-PGP w/ checking 4.53 4.54 3.50 0.96 3.96 0.82 0.94 0.47

Table 2: Average scores for evaluating readability and solvability on GeoQA dataset.

We invite three experts with substantial experience
in geometry problem design, two of whom serve
as the initial judges and another one as the arbiter.
When the results from the judges are inconsistent,
the arbiter makes the final decision. We use two
types of scoring: a discrete grading score ranging
from 1 to 5 (orderly corresponding to poor, wrong,
fair, good, perfect), and a binary score of 0 or 1 (0
is negative and 1 is positive). The grading score is
used to measure GF, LC, DC, and CS, while the
binary score is for NS, CC, CKP and CD. We report
the average scores for both datasets, respectively.

We use GPT-4o10 and SDE-PGP without check-
ing as baselines, and write a prompt for the LLM
to generate geometry problems (see Table 5 in Ap-
pendix). Note that current LLMs mostly cannot
draw geometric diagrams. For each given input
test sample, we generate only one problem and use
it for evaluation, rather than generating multiple
times to select the best one.

5.3 Results and Analysis

Results for Readability. From Table 1 and Ta-
ble 2, we can see that the generated problems re-
main generally readable across both datasets. In
particular, SDE-PGP w/ checking achieves the
highest GF (General Fluency) and LC (Linguistic
Clarity) on both datasets, indicating that introduc-
ing the checking function leads to more coherent
and fluent texts. The DC scores may suggest that
SDE-PGP w/o checking may generate easier prob-
lems, leading to drawing better diagrams.

Results for Solvability. From Table 1 and Ta-
ble 2, several observations can be made regarding
the metric of solvability: (1) SDE-PGP w/ check-
ing achieves near-perfect Native Solvability (NS),
with 1.00 on JGEX-AG-231 and 0.96 on GeoQA,
indicating that almost all generated problems are
solvable. (2) The Consistent Solvability (CS) score
tends to be higher on GeoQA, possibly because the
reduced number of knowledge points makes dia-
gram construction and text–diagram consistency
easier. (3) The completeness of clauses (CC) is suf-

10https://chatgpt.com/

ficiently high for SDE-PGP w/ checking (1.00 on
JGEX-AG-231 and 0.82 on GeoQA), though there
remains room for enhancing clause generation in
future improvement.

Results for Controllability. From Table 1 and
Table 2, SDE-PGP w/ checking consistently
achieves higher completeness of knowledge points
(CKP) and consistency of difficulty (CD) than the
baselines on both datasets, validating the effective-
ness of the proposed checking function.

5.4 Case Study

We provide several representative examples to illus-
trate the strengths and limitations of our SDE-GPG
framework. These examples highlight the frame-
work’s effectiveness in generating geometry prob-
lems that are readable, solvable, and controllable,
as well as identifying areas where further improve-
ment is needed. For detailed discussions and visual
examples, please refer to Appendix A.

6 Conclusion

In this paper, we introduce a novel task of generat-
ing readable and solvable geometry problems under
the constraint of control variables. To achieve this,
we leverage a symbolic deduction engine and pro-
pose a new framework called the Symbolic Deduc-
tion Engine-based Geometry Problem Generation
Framework (SDE-GPG). By creating a mapping
table between knowledge points and definitions,
our framework eliminates inherent biases in trans-
lating natural language into formal language. Our
method highlights a checking function to guarantee
the problem quality and controllability, as well as
enabling the generation of multi-modal geometry
problems. The thorough experiments demonstrate
the effectiveness of our method on all the readabil-
ity, solvability and controllability. In the future,
situations that involve more control variables, such
as context and problem type, and geometric topics,
such as geometric inequalities and combinatorial
geometry, could be further explored.
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Appendix

A Case Study

As shown in Example 1, it demonstrates a geometry problem generated with our complete SDE-GPG
framework, incorporating the checking function. From the perspective of readability, the textual descrip-
tion is clear, grammatically fluent, and logically coherent. The clauses introduce each geometric element
sequentially, ensuring logical correctness and clarity. Regarding solvability, the reasoning path is explicit,
shortest, and fully utilizes all clauses.

As presented in Example 2, it is generated without using our checking function. Although this problem
still maintains decent readability and solvability, the textual description remains fluent, and the diagram
clearly corresponds to the textual information, it notably lacks in controllability. Specifically, the generated
problem is overly simplified, resulting in a very short reasoning path. Consequently, the actual difficulty is
significantly lower than the predefined control variable. This highlights the essential role of our checking
function in controlling and ensuring the complexity and completeness of generated geometry problems.

As shown in Example 3, it represents one of the occasional problematic outputs of our method.
Despite having high readability in terms of grammar and logical structure, the generated problem suffers
significantly from solvability issues. The main reason for this issue is the absence of certain intermediate
theorems within the symbolic deduction engine. As a result, the system performs unnecessarily lengthy
deductions for a conclusion that could ideally be derived in just a single step. This leads to a non-shortest
reasoning path. To address this issue in future work, we plan to enrich our symbolic deduction engine with
additional intermediate geometric theorems, further optimizing the efficiency of our geometry problem
generation framework.

Example 4 illustrates an incorrect geometry problem generated by GPT-4o. This example highlights
typical errors encountered when relying solely on LLMs for geometry problem generation, such as logical
errors in the problem formulation, incorrect or impossible-to-solve scenarios, and the improper application
of geometric theorems. Such issues underscore the importance of integrating symbolic deduction engines
and rigorous checking mechanisms, as proposed by our SDE-GPG framework.
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Example 1: An ideal geometry problem generated by SDE-GPG with checking.

Problem: Let points A,B define segment AB. Let point C be the midpoint of segment BA.
Construct point D as the reflection of C about point B. Let point E lie on both the circle centered
at C with radius CA, and the circle centered at B with radius BC. Construct point F such that
BF ⊥ AB and point F lies on line AE. Construct point G such that G lies on both line BF and
line DE.
The following conditions hold:

• Points B,C,A are collinear, and CB = CA.

• Points B,C,D are collinear, and BC = BD.

• CE = CA, BE = BC.

• Points E,F,A are collinear.

• BF ⊥ AB.

• Points E,G,D are collinear, and points F,B,G are collinear.

Prove: The angle formed between lines AE and BF equals the angle formed between lines DE
and CG.

Proof Steps:

(1) CE = CA, CB = CA =⇒ C is the circumcenter of △BEA.

(2) C is circumcenter of △BEA, B,C,A collinear =⇒ BE ⊥ AE.

(3) BC = BD, ∠DBG = ∠GBC =⇒ ∠BDG = ∠GCB.

(4) BC = BD, BE = BC =⇒ BE = BD.

(5) BE = BD =⇒ ∠BED = ∠EDB.

(6) G,D,E collinear, B,C,D collinear, B,C,A collinear, ∠BDG = ∠GCB, ∠BED = ∠EDB

=⇒ ∠BEG = ∠(line BD, line GC).

(7) ∠FEB = ∠FBD, ∠BEG = ∠(line BD, line GC) =⇒ ∠FEG = ∠(line FB, line GC).

(8) ∠FEG = ∠(line FB, line GC), E, F,A collinear, E,G,D collinear
=⇒ ∠(AE,BF ) = ∠(DE,CG).

Thus, the proof is completed:

∠(AE,BF ) = ∠(DE,CG)

1388



Example 2: A geometry problem generated by SDE-GPG without checking.

Problem: Construct a triangle △ABC. Let points D,E, F be the midpoints of segments
CB,AB,AC, respectively. Point G is positioned such that distances from G to points D,E, F
are all equal. Prove that the angle formed by line DG and side AB is equal to the angle formed by
side AB and line FG.

Proof Steps:

(1) GD = GF =⇒ ∠GDF = ∠DFG.

(2) F is the midpoint of AC, D is the midpoint of BC =⇒ FD ∥ AB.

(3) ∠GDF = ∠DFG, FD ∥ AB =⇒ ∠(DG,AB) = ∠(AB,FG).

Thus, the proof is completed:

∠(DG,AB) = ∠(AB,FG)
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Example 3: A problematic geometry problem generated due to missing intermediate theorems.

Problem:
Construct a square ABCD. Let point E be the intersection point of diagonals CA and BD. Prove:

BE

BD
=

CE

BD

Proof Steps:

(1) AD ∥ BC, B,D,E are collinear, C,A,E are collinear =⇒ BE

BD
=

CE

CA
.

(2) AB ⊥ BC, AB ∥ CD =⇒ BC ⊥ CD.

(3) AB ⊥ BC, BC ∥ AD =⇒ DA ⊥ AB.

(4) AB ⊥ BC, BC ⊥ CD, DA ⊥ AB =⇒ AC = BD.

(5)
BE

BD
=

CE

CA
, AC = BD =⇒ BE

BD
=

CE

BD
.

Thus, the proof is completed:
BE

BD
=

CE

BD
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Example 4: A geometry problem generated by GPT-4o demonstrating inaccuracies.

Problem:
Given triangles △ABC and △DEF , with AB = DE, AC = DF , and ∠BAC = ∠EDF :
(1) Prove that △ABC ∼= △DEF .
(2) If BC = 8, AB = 6, and ∠EDF = 60◦, find the perimeter of △DEF .

Proof Steps:
(1) Proving △ABC ∼= △DEF :
According to the given conditions:

• AB = DE (corresponding sides are equal),

• AC = DF (corresponding sides are equal),

• ∠BAC = ∠EDF (included angles are equal).

By the congruence criterion (SAS Criterion), triangles having two corresponding sides and their
included angles equal are congruent. Thus, we have:

△ABC ∼= △DEF.

(2) Finding the perimeter of △DEF :
Since △ABC ∼= △DEF , the corresponding sides of these two triangles are equal, thus BC =
EF .
Given:

BC = 8, AB = 6, DE = AB = 6.

Also, by congruence properties:
AC = DF = 6.

Therefore, the side lengths of △DEF are:

DE = 6, DF = 6, EF = 8.

The perimeter of △DEF is:

DE +DF + EF = 6 + 6 + 8 = 20.

Answer:
(1) △ABC ∼= △DEF ;
(2) The perimeter of △DEF is 20.
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B Detailed Information about SDE-GPG

Algorithm 1: Constructing the knowledge point-to-exDefinition mapping table (K2exD-MT)
Input: The repository of definitions D, the repository of knowledge points K, the SDE, the

iteration times T
Output: K2exD-MT

1 K2exD-MT={}, t=1;
2 while t < T do
3 Sample an integer n ∈ {1, Nd} and sample n definitions from D to construct a new set D̂;
4 d̂ = fminimal(D̂);
5 DC = fengine(d̂);
6 Record all the knowledge points {Ki} used along with the reasoning paths from d̂ to any DCi;
7 foreach Ki ∈ {Ki} do
8 Insert one mapping of [Ki → d̂] into K2exD-MT;
9 end

10 t=t+1;
11 end
12 return K2exD-MT.

Algorithm 2: Generating geometry problems

Input: A set of knowledge points K̂, a difficulty degree h, the K2exD-MT, the SDE
Output: GP (text), GP (diagram)

1 GP (text) = {}, GP (diagram) = {}, ˆexD = {};
2 foreach Ki ∈ K̂ do
3 exDi = fsample(Ki,K2exD-MT);
4 ˆexD = ˆexD + {exDi};
5 end
6 ˆexd = fminimal( ˆexD);
7 ˆQRP = fcheck(fengine( ˆexd));
8 if ˆQRP ̸= {} then
9 GP (diagram) = {fdiagram{ ˆexd}};

10 foreach QRPi ∈ ˆQRP do
11 GP

(text)
i = ftext{ ˆexd,QRPi};

12 GP (text) = GP (text) + {GP
(text)
i };

13 end
14 end
15 return GP (text) and GP (diagram).
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Term Notation Description
Clauses CL The clauses of a textual problem.
Question Q The question of a textual problem.
Textual Problem {CL,Q} A paragraph of problem description including clauses and a

question.
Diagram - A corresponding geometric diagram for a textual problem.
Knowledge points K A control variable that corresponds to geometric rules, includ-

ing theorems and properties. The scope is finite.
The number of
knowledge points

Nk The number of knowledge points in an existing repository.

Difficulty Degree h A control variable where its scope is empirically set as Easy
for less than 10 reasoning steps, Moderate for 10 to 20 steps,
and Difficulty for larger than 20 steps.

Premises P The part of clauses of a knowledge point in formal language.
Conclusion C The part of conclusion of a knowledge point in formal lan-

guage.
Definitions D A set of complete formal descriptions of geometry to start

deduction on a symbolic deduction engine.
The number of defi-
nitions

Nd The number of definitions in an existing repository.

Extended Definitions
(exDefinitions)

exD A repository including all the combination of any definitions.

Knowledge Point-
to-exDefinition
Mapping Table

K2exD-MT A mapping table between knowledge points to exDefinitions.

Deduced Conclusion DC A conclusion deduced by using a symbolic deduction engine
given a set of extended definitions.

Qualified Reasoning
Path

QRP Qualified reasoning paths by using a checking function to
ensure the quality and controllability.

Symbolic Deduction
Engine

SDE An engine which can automatically deduce by inputting some
definitions in specific formal language.

Generated Textual
Problem

GP (text) A set of textual problems generated by SDE-GPG.

Generated Diagram GP (diagram) A geometric diagram generated by SDE-GPG.
Sample Function fsample A function to sample a set of exDefinitions from K2exD-MT

by given a knowledge point.
Minimal Function fminimal A function to perform pruning and union operations on mul-

tiple sets of definitions or exDefinitions to obtain a minimal
set.

Engine Function fengine A function to deduce reasoning paths from given definitions
or exDefinitions to a set of deduced conclusions, including
core components of Deductive Database (DD), Algebraic
Rules (AR), traceback algorithms, and proof pruning.

Checking Function fcheck A function to filter out unqualified reasoning paths based on
given control variables.

Text Function ftext A function to translate exDefinitions and deduced conclusions
from formal language to natural language.

Diagram Function fdiagram A function to translate geometric exDefinitions to a diagram.

Table 3: Description of terms and notations used in this paper.

1393



ID Knowledge Point Code Description No. of
exDef-
inition
Sets

K1 eqangle6_eqangle6_ncoll_cong_contri2 If two triangles have two angles and
the corresponding non-included side
equal, then the two triangles are con-
gruent.

10,435

K2 eqratio6_eqratio6_ncoll_simtri* If two triangles have their corre-
sponding sides in proportion and the
included angle equal, then the two
triangles are similar.

13,232

K3 cong_cong_eqangle6_ncoll_contri* If two triangles have two sides and
the included angle equal, then the
two triangles are congruent.

12,108

K4 eqratio6_eqratio6_ncoll_cong_contri* If the segments BA : BC = QP :
QR and CA : CB = RP : RQ, and
points A, B, and C are not collinear,
and AB = PQ, then ∠ABC and
∠PQR are congruent.

12,108

K5 eqratio6_eqangle6_ncoll_simtri* If two triangles have their corre-
sponding sides in proportion and the
included angle equal, then the two
triangles are similar.

13,232

K6 eqangle6_eqangle6_ncoll_simtri2 If two triangles have their corre-
sponding angles equal, then the two
triangles are similar.

10,948

K7 eqangle6_ncoll_cong If two angles of a triangle are equal,
then the triangle is an isosceles trian-
gle.

8,681

K8 cong_ncoll_eqangle In an isosceles triangle, the base an-
gles are equal.

8,681

K9 cong_cong_cong_ncoll_contri* If two triangles have their corre-
sponding three sides equal, then the
two triangles are congruent.

12,108

K10 eqangle6_eqangle6_ncoll_simtri If two triangles have their corre-
sponding two angles equal, then the
two triangles are similar.

10,205

K11 eqangle6_eqangle6_ncoll_cong_contri If two triangles have their corre-
sponding two angles and the included
side equal, then the two triangles are
congruent.

8,613

K12 eqangle_eqangle_eqangle If the angles between two pairs of
lines are equal, then the angles be-
tween these two pairs of lines are
transitive.

20,644

K13 eqangle_perp_perp If the angle between AB and PQ is
equal to the angle between CD and
UV , and PQ is perpendicular to UV ,
then AB is perpendicular to CD.

26,733
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K14 circle_eqangle_perp If O is the circumcenter of triangle
ABC and ∠BAX = ∠BCA, then
OA is perpendicular to AX .

2,705

K15 cong_cong_cyclic_perp If AP = BP , AQ = BQ, and
quadrilateral ABPQ is cyclic, then
PA is perpendicular to AQ.

3,170

K16 cyclic_eqangle_cong In the same circle, if two inscribed
angles are equal, then the chords sub-
tended by these angles are equal.

8,289

K17 perp_perp_npara_eqangle If two lines are perpendicular to two
other lines, and these two lines are
not parallel, then the angles between
them are equal.

19,540

K18 cong_cong_perp If a point is equidistant from the two
endpoints of a line segment, then the
point lies on the perpendicular bisec-
tor of the line segment.

5,372

K19 circle_perp_eqangle If O is the circumcenter of triangle
ABC and OA is perpendicular to
AX , then ∠BAX = ∠BCA.

2,705

K20 cyclic_eqangle In the same circle, inscribed angles
subtended by the same arc or equal
arcs are equal.

8,289

K21 eqangle6_ncoll_cyclic If two angles are equal and their ver-
tices lie on the same straight line,
then the vertices of these angles and
the intersection points of their sides
lie on a common circle.

8,289

K22 eqratio_coll_coll_ncoll_sameside_para If OA : AC = OB : BD, and
O,A,C are collinear, O,B,D are
collinear, A,B,C are not collinear,
and A,O,C and B,O,D are on the
same side, then AB is parallel to
CD.

913

K23 para_coll If two lines are parallel, they have no
common points unless they are the
same line.

7,421

K24 para_coll_coll_eqratio3 If two parallel lines are intersected
by two transversal lines, then the cor-
responding line segments formed are
proportional.

1,013

K25 midp_midp_para_1 The midline of a triangle is parallel
to the third side.

570

K26 eqratio_eqratio_eqratio If two proportions are equal and their
middle terms are also equal, then
other proportional relationships can
be proved by the transitivity of pro-
portions.

2,728

1395



K27 eqangle_para If two lines are intersected by a third
line and the alternate interior angles
are equal, then the two lines are par-
allel.

2,682

K28 cyclic_para_eqangle If quadrilateral ABCD is cyclic
and AB is parallel to CD, then
∠ADC = ∠BCD.

6,216

K29 eqratio6_coll_ncoll_eqangle6 If the ratio of the distances from a
point to two sides of a triangle is
equal to the ratio of those two sides,
then the point lies on the angle bisec-
tor.

2,170

K30 eqangle6_coll_ncoll_eqratio6 If a point lies on the angle bisector
of a triangle, then the ratio of its dis-
tances to the two sides of the trian-
gle is equal to the ratio of those two
sides.

2,169

K31 circle_coll_perp In a circle, the inscribed angle sub-
tended by the diameter is a right an-
gle.

1,453

K32 perp_midp_cong In a right-angled triangle, the median
to the hypotenuse is half the length
of the hypotenuse.

1,451

K33 eqratio_cong_cong If two proportions are equal, and one
pair of corresponding line segments
are equal, then the other pair of cor-
responding line segments are also
equal.

464

K34 para_coll_coll_para_eqratio6 If AB is parallel to CD, M,A,D are
collinear, N,B,C are collinear, and
MN is parallel to AB, then MA :
MD = NB : NC.

233

K35 midp_midp_eqratio If a point is the midpoint of a line
segment, then it divides the segment
into two equal parts.

257

K36 midp_perp_cong Any point on the perpendicular bisec-
tor of a line segment is equidistant
from the two endpoints of the seg-
ment.

1,805

K37 perp_perp_ncoll_para If two lines are both perpendicular to
the same line, then these two lines
are parallel.

278

K38 para_coll_coll_eqratio6_sameside_para If AB is parallel to CD, M,A,D
are collinear, N,B,C are collinear,
MA : MD = NB : NC, and
M,A,D and N,B,C are on the
same side, then MN is parallel to
AB.

234
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K39 cong_cong_cong_cyclic If a point is equidistant from the four
vertices of a quadrilateral, then the
four vertices of the quadrilateral lie
on a common circle.

466

K40 circle_coll_eqangle_midp If O is the circumcenter of triangle
ABC, M,B,C are collinear, and
∠BAC = ∠BOM , then M is the
midpoint of BC.

190

K41 circle_midp_eqangle If O is the circumcenter of triangle
ABC and M is the midpoint of BC,
then ∠BAC = ∠BOM .

192

K42 midp_midp_para_2 If M is the midpoint of AB and also
the midpoint of CD, then AC is par-
allel to BD.

329

K43 midp_para_para_midp In a parallelogram, the diagonals bi-
sect each other.

327

Table 4: Statistics of the knowledge point-to-definition mapping table (K2exD-MT). The knowledge point codes
(or rule codes) follow the settings of AlphaGeometry. The detailed table data including the expressions in formal
language will be published in a public code repository.
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Please generate a high-quality question based on the following knowledge point:
Knowledge Point: <content>
Make sure the generated question meets the following requirements:
1. Accurately reflects the specified knowledge point and assesses the student’s understanding and ability
to apply it
2. The wording of the question should be clear and unambiguous, conforming to academic standards
3. The difficulty level should be moderate, with a certain degree of thinking value and differentiation
4. The question should include a clear problem-solving approach and a standard answer
The content should be original and avoid using common examples or exercises
Please output in the following format:
Question
(Provide the full description of the question here)
Explanation
(Provide a detailed solution process and answer explanation here)

Table 5: Prompt template used for geometry problem generation with LLMs.
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