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Abstract
Modern digital platforms rely on related search
query recommendations to enhance engage-
ment, yet existing methods fail to reconcile
click-through rate (CTR) optimization with
topic expansion. We propose CMAQ, a
Consistent Multi-Objective Aligned Query
generation framework that harmonizes these
goals through three components: (1) reward
modeling to quantify objectives, (2) style
alignment for format compliance, and (3)
consistency-aware optimization to coordinate
joint improvements. CMAQ employs adaptive
β-scaled DPO with geometric mean rewards,
balancing CTR and expansion while mitigat-
ing objective conflicts. Extensive offline and
online evaluations in a large-scale industrial set-
ting demonstrate CMAQ’s superiority, achiev-
ing significant CTR gains (+2.3%) and higher
human-rated query quality compared to state-
of-the-art methods. Our approach enables high-
quality query generation while sustaining user
engagement and platform ecosystem health.

1 Introduction

Modern digital platforms use related search query
recommendation to enhance user experience. An
example is illustrated in Figure 1. When users in-
teract with content, the system displays a single
related query below it, minimizing disruption. This
design serves three key functions: (1) proactive
discovery, reducing exploration friction via contex-
tual suggestions; (2) interest scaffolding, enabling
gradual topic expansion while avoiding choice over-
load; and (3) feedback enrichment, where user in-
teractions refine search ranking and content recom-
mendations. By improving user satisfaction and
understanding of emerging topics, this mechanism
boosts user retention and ecosystem health.

Despite its industrial significance, academic re-
search on related search query recommendation
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Figure 1: An illustration of the related search query
recommendation scenario. A good query should excel
in both CTR and topic expansion.

remains limited. Existing methods fall into two
categories: retrieval-based and generation-based
approaches. Retrieval-based methods (Wang et al.,
2023c; Huang et al., 2018; Cao et al., 2008) rely
on historical user behavior to retrieve queries from
a pool, aligning with sequential patterns but strug-
gling with cold-start content and seamless integra-
tion with primary content. In contrast, generation-
based methods (Sannigrahi et al., 2024; Wang et al.,
2024b), which directly generate queries by consid-
ering user interests and context, exhibit superior
generalization for cold-start scenarios. Thus, we
focus on the generative approach.

An effective query recommendation system must
balance two key dimensions: relevance to the user’s
immediate interests, measurable via click-through
rate (CTR), and topic expansion, crucial for avoid-
ing filter bubbles (Gao et al., 2023a,b; Bi et al.,
2024) and maintaining diversity (Gao et al., 2025b;
Kang et al., 2025). However, these objectives often
conflict: over-prioritizing relevance leads to narrow
recommendations, while excessive focus on topic
expansion risks deviating from user intent. Existing
methods fail to address this trade-off, motivating
our work to align both objectives consistently.
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We leverage large language models (LLMs) (Li
et al., 2024; Wang et al., 2023b), whose power-
ful capabilities make them well-suited for query
generation. To mitigate LLM inference latency,
we precompute query candidates offline for use
in online scenarios. However, directly deploy-
ing pre-trained LLMs yields suboptimal perfor-
mance due to misalignment with task-specific pref-
erences—relevance and topic expansion. Align-
ing LLMs with these objectives is challenging, as
reliable reward signals are hard to obtain: CTR
requires extensive online exposure, and topic ex-
pansion relies on costly manual annotations. How
to consistently enhance the model to achieve both
objectives is also critical in this task, i.e., generat-
ing queries that offer substantial topic expansion
while maintaining a high CTR.

To address these challenges, we propose
Consistent Multi-Objective Aligned Query Gener-
ation (CMAQ). CMAQ consists of three steps: (1)
precise reward modeling, training reward models
using annotated content-query pairs; (2) query style
alignment, fine-tuning the LLM to produce cor-
rectly formatted queries; and (3) consistent multi-
objective alignment, introducing a novel training
strategy to balance both objectives. The opti-
mization process follows an iterative online DPO
paradigm, where generated queries are evaluated
by reward models and used to refine the policy.
Extensive evaluations demonstrate CMAQ’s effec-
tiveness in generating high-quality search queries.

Our key contributions are:

• Formulating related search query recommenda-
tion as a multi-objective query generation task.

• Proposing CMAQ, a framework for consistent
multi-objective alignment in LLMs, balancing
CTR and topic expansion.

• Demonstrating significant improvements via
comprehensive offline and online evaluations in
a large-scale industrial setting.

2 Related Work

Query Generation. Query generation in content
platform is the process of generating new search
queries that align with a user’s current interests (Li
et al., 2024). Existing techniques primarily address
scenarios where users have already entered a query
prefix, aiming to refine these queries through meth-
ods such as query suggestion (Wang et al., 2020;
Bacciu et al., 2024), query rewrite (Wang et al.,
2023a; Feng et al., 2024; Peng et al., 2024), and

personalized query suggestion (Baek et al., 2024;
Zhong et al., 2020) incorporating user history and
interactions. These approaches assume that users
have already demonstrated active search behavior
and have initiated a search process.

Our work differs by aiming to provide poten-
tial search options to users while they are brows-
ing content, thereby stimulating their interest in
active exploration. In this context, early studies
on seq2seq models were proposed by (Nogueira
et al., 2019; Penha et al., 2023). Recently, some
researchers have explored using LLM prompts to
generate search terms from context (Sannigrahi
et al., 2024), while others have focused on generat-
ing search queries in a multimodal context (Wang
et al., 2024b). However, these methods overlook
the multi-objective alignment problem in query
generation. Our approach addresses this gap by
simultaneously consider both CTR objective and
expansion objective.

Direct Preference Optimization. Learning from
human feedback is essential for aligning LLMs
with human values (Bai et al., 2022; Ouyang et al.,
2022; Ziegler et al., 2019). Recently, DPO-based
methods (Rafailov et al., 2023; Ethayarajh et al.,
2024; Meng et al., 2024; Wu et al., 2024; Gao
et al., 2025a) directly align LLMs with an offline
preference dataset, showcasing enhanced training
stability and reduced training cost in comparison
to traditional RL-based methods (Schulman et al.,
2017). Online DPO (Yuan et al., 2024; Xiong et al.,
2024; Pang et al., 2024) extends fixed offline prefer-
ence dataset by continuously updating model pref-
erences from real-time generated responses, en-
abling dynamic adaptation. Multi-objective DPO
(Ramé et al., 2023; Wang et al., 2024a; Zhou et al.,
2024; Shi et al., 2024) incorporates multiple criteria
for alignment, allowing the model to balance and
optimize different human values simultaneously.
In industrial scenarios, aligning human preference
also attracted attentions, such as query rewrite
(Peng et al., 2024), advertising image generation
(Chen et al., 2025) and advertising text genera-
tion (Wei et al., 2022), however, they primarily fo-
cus on aligning their tasks with the CTR objective,
overlooking the alignment with broader objectives
that impact generation quality, potentially result-
ing in diminished user experience. In contrast, our
method accounts for multi-objective alignment.
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Figure 2: The framework of our proposed CMAQ framework.

3 Methodology

In this section, we introduce our CMAQ frame-
work (cf. Figure 2), which consists of three compo-
nents: reward modeling, query style alignment, and
consistent multi-objective alignment. For multi-
objective alignment, we primarily focus on the
CTR objective and the expansion objective, while
our framework is flexible and can be extended to
accommodate additional objectives.

3.1 Reward Modeling

To align generated queries with online user pref-
erences, we train two reward models (RMs) using
user feedback data, focusing on CTR and topic
expansion. These RMs are integrated into the
query generation pipeline to guide optimization.
Both RMs are based on Qwen2.5-1.5B (Yang et al.,
2025) and fine-tuned using LoRA (Hu et al., 2022).

Reward Model for Topic Expansion This RM
is designed to determine whether a query extends
the context of a given content item, formulated as
a binary classification problem. We utilize 337,291
outsourced labeled samples, split 8:2 for training
and testing. Among these, 48.8% are labeled as
positive (represented by token “1”) and the remain-
der as negative (represented by token “0”). Let x
denote the content and y the query. The expansion
reward rexp(x,y) is computed as: rexp(x,y) =

p(“1”|x,y)
p(“0”|x,y)+p(“1”|x,y) , where p(“1”|x,y) represents
the probability of the RM predicting the positive to-
ken “1”. We use the standard next-token prediction
loss to train this RM. The prompt template used for
fine-tuning is detailed in Appendix A.1. The final
model achieves a classification accuracy of 72.5%.

Reward model for CTR The RM for CTR is
designed to predict which of two queries, given the
same content, is expected to achieve a higher CTR.
This model extends the base architecture with a
regression head. We sampled content-query pairs
(x,y) with more than 100 impressions and per-
formed z-tests on impressions and clicks to iden-
tify pairs with statistically significant CTR differ-
ences (p < 0.01). This process yielded 328,328
(x,y+,y−) pairs, where y+ denotes the query with
higher CTR for the content x and y− denotes the
query with lower CTR for the content x. For the
training of the RM, we use Bayesian Personalized
Ranking (BPR) loss (Rendle et al., 2009), ensuring
reliable distinctions in CTR:

LBPR = − log σ (rctr(x,y+)− rctr(x,y−)) . (1)

The dataset was split 8:2 for training and testing,
achieving a pair accuracy of 91.9%, which mea-
sures whether the query with a higher CTR receives
a higher reward. In practice, the regression output
directly serves as the CTR reward rctr(x,y).

3.2 Query Style Alignment
Initially, we attempted zero-shot or few-shot
prompting without fine-tuning the backbone LLM.
However, this approach often produced queries
that were either non-compliant with instructions,
stylistically mismatched with the platform, or con-
tained hallucinated information. To address this,
we focused on aligning the query style of the LLM.
We constructed a large-scale offline training set
DSFT = {(xi,yi)} containing 1,292,031 samples
extracted from online logs, leveraging exposure
and CTR data to guide this alignment. Supervised
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Fine-Tuning (SFT) was then applied to preliminar-
ily align the LLM with the platform’s query style,
ensuring that generated queries adhere to the ex-
pected format and tone:

LSFT = −E(x,y)∼DSFT

1

|y|

|y|∑

i=1

log πθ(yi|x,y<i),

(2)
where πθ denotes the model’s predicted probability
for token yi given prior tokens and the content.

3.3 Consistent Multi-Objective Alignment

While query style alignment enables the model to
mimic real query styles, it does not guarantee high-
quality query generation. High-quality queries
should not only attract user clicks (high CTR) but
also stimulate new search demands (high topic ex-
pansion). Therefore, further alignment of these
dual objectives is crucial. To minimize reliance on
extensive online logs and manual labeling, we em-
ployed an online DPO approach. Additionally, we
introduced a consistency-aware strategy to mitigate
conflicts between the two objectives during both
data sampling and training stages.

3.3.1 Consistent Data Sampling

In each iteration t, we sample N content from
the offline dataset DSFT. For each content x,
the model from the previous iteration samples
k queries (y1, . . .yk) ∼ πθt−1(·|x), each eval-
uated on both objectives. To ensure the same
scaling of both rewards, we normalize rctr into
[0, 1]. To ensure consistency across both objec-
tives, we used the geometric weighted average

r(x,yi) =
√
rexp(x,yi)2αrctr(x,yi)2(1−α) as the

consistency criterion for the queries. By setting
two thresholds τ1 and τ2 we sample a positive sam-
ple yc from those with the reward r > τ1, and a
negative sample yl with r < τ2, forming the prefer-
ence datasetDt = {(x,yc,yl, rc, rl)} for the DPO
training in the iteration t.

Remark: We use the geometric average instead
of the arithmetic average as the overall reward
r(x,yi) since it enforces stricter consistency be-
tween the two objectives. As illustrated in Figure
3, when one reward approaches zero, the geomet-
ric average collapses toward zero regardless of the
other reward, ensuring consistent optimization on
both rewards.
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Figure 3: Illustration of the arithmetic average: (r1 +
r2)/2 and geometric average

√
r1r2 over the domain

[0, 1]× [0, 1], demonstrating that the geometric average
is more suitable for reflecting consistent multi-objective
improvement.

3.3.2 Consistent Training

We adapt and extend DPO (Rafailov et al., 2023)
in CMAQ. In DPO, the hyperparameter β controls
the strength of KL-divergence regularization be-
tween the policy model πθt and the reference model
πθt−1 . The optimal value of β depends on the qual-
ity of pairwise preference data (Wu et al., 2024).
In our task, the consistency criterion r serves as a
proxy for data quality: high-quality pairs exhibit
a significantly higher rc (positive sample) and a
substantially lower rl (negative sample), while low-
quality pairs lack this distinction. To account for
this variability, we propose a sample-level adap-
tive β, which dynamically scales β based on the
consistency of each training pair. This approach
amplifies the influence of high-consistency samples
while reducing the impact of low-consistency ones.

For a sample (x,yc,yl, rc, rl), we compute the
sample-level β̃ as: β̃ = 1 + γ (rc(1− rl)−M) ,
where M = 1

|Dt|
∑

(rc,rl)∈Dt
rc(1− rl) represents

the average consistency across the dataset. Follow-
ing (Pang et al., 2024), we incorporate an NLL loss
term, weighted by λ, to prevent over-suppression
when the chosen query closely resembles the re-
jected query. The final loss is given by:

Lθt = −E(x,yc,yl)∼Dt

[
ℓ(πθ,x,yc,yl) + λ

log πθt(yc|x)
|yc|

]
,

with ℓ(·) = log σ

(
β̃

πθt(yc|x)
πθt−1(yc|x)

− β̃
πθt(yl|x)
πθt−1(yl|x)

)
.

(3)
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4 Experiments

4.1 Experiment Setting
Datasets To the best of our knowledge, no public
dataset exists for related search query generation.
Therefore, we collected data from a leading content
platform. The statistics of the training data are pre-
sented in §3. For the test dataset, we randomly sam-
pled 3,124 content items from the training dataset
DSFT. To prevent data leakage, any samples with
identical content in the test dataset were excluded
from DSFT. More detailed information on data pre-
processing and filtering is provided in A.4.

Baselines We selected two types of comparative
approaches. The first type includes non-multi-
objective approaches: (1) Zero-shot, where queries
are generated directly by LLM without fine-tuning.
(2) QSA (Query Style Alignment), as discussed in
§3.2, aligns the query style using SFT within DSFT.
(3) DPO (Rafailov et al., 2023), We employ pair-
wise preference data for CTR reward modeling to
fine-tune the QSA model directly using DPO loss.

The second type includes multi-objective align-
ment approaches, which use the RMs described
in §3.1 to obtain two scores for their generated
responses, and further fine-tuned on the QSA
model: (1) DPO-LW (Zhou et al., 2024), which
uses weighted arithmetic average to combines the
DPO losses for each objective to form the final loss.
(2) DPO-Soup (Ramé et al., 2023), which involves
training two models that align with each objec-
tive separately, followed by a weighted parameter
merge to derive the final model. (3) MORL (Wu
et al., 2023), which performs a weighted arithmetic
average of the two rewards and then selects the
highest and lowest ones to form preference pairs.

Implementation Details All baselines are based
on Qwen-2.5-7B-Instruct and fine-tuned using
LoRA to ensure a fair comparison. For all DPO-
based baselines, we fine-tuned the model for 3
epochs. In the case of multi-objective alignment
baselines, the preference dataset is generated at the
start of training and remains fixed throughout the
training process. For CMAQ, we trained it for 3
iterations, with each iteration comprising 1 epoch.
We set the number of training samples per epoch
to N = 20, 000, the number of generated query
candidates k = 8, the weight for the NLL loss
λ = 0.5, and γ = 0.2. The trade-off weight in data
sampling α is tuned in [0.2, 0.4, 0.6, 0.8] for all
multi-objective baselines, larger α indicates more
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Figure 4: Pareto Fronts of all compared methods.

attention on expansion objective. More experimen-
tal details can be found in A.4.

Evaluation Our framework prioritizes CTR and
expansion of generated query: in offline experi-
ments, we directly adopt rctr and rexp as evalua-
tion metrics, bypassing traditional NLG metrics
like BLEU or ROUGE. For online validation, we
measure actual CTR on content platforms and in-
corporate human-annotated quality assessments to
holistically evaluate both the practical impact and
creative coherence of the outputs.

4.2 Offline Experiments

The performance comparison on the Pareto Fronts
of all compared methods is presented in Figure 4.
It is important to note that for non-multi-objective
baselines, only a single run is conducted as no trade-
off is required. From the results, we can observe the
following: (1) The Pareto Front of CMAQ signifi-
cantly exceeds all baseline methods, demonstrating
its effectiveness in achieving consistent improve-
ments in both CTR and expansion objectives. (2)
Multi-objective methods exhibit superior Pareto
Fronts compared to non-multi-objective baselines,
highlighting the effectiveness of considering both
objectives along with the guidance provided by
reward signals. (3) DPO achieves higher CTR re-
wards while showing a decline in expansion com-
pared to QSA, indicating the presence of conflicts
between the two objectives. Therefore, it is cru-
cial to consider consistent optimization for multiple
objectives in query generation.

4.3 In-depth Analysis

Ablation Study To validate the effectiveness of
each component within our framework, we con-

1369



0.4 0.5 0.6 0.7 0.8 0.9 1.0
Expansion Reward

2

3

4

5

6

7

8

CT
R 

Re
wa

rd

Iter 1 Iter 2 Iter 3

Figure 5: Pareto Fronts of different iterations.

duct ablation studies on three variants of CMAQ:
(1) Removing the online query generation at the
start of each iteration by utilizing a fixed prefer-
ence dataset for each iteration, denoted as w/o OT;
(2) Removing consistent data sampling by using a
weighted arithmetic average instead of a geomet-
ric average, denoted as w/o CDS; (3) Removing
consistent training by employing a static β in DPO
training, denoted as w/o CT.

Table 1 displays the performance of CMAQ
and its three variants under two distinct settings,
α = 0.4 and α = 0.6. From the results we can see
that (1) removing each component in our frame-
work decreases the performance, validating their
effectiveness. (2) The removal of online training
leads to a significant deterioration in rctr, primar-
ily attributed to the absence of iterative on-policy
training sample updates. This deficiency substan-
tially diminishes the capacity of training samples to
provide effective optimization guidance for model
enhancement as the model has already aligned well
with the original dataset. (3) The elimination of
CDS results in heightened sensitivity to the param-
eter α, exhibiting a “seesaw effect” where small
changes in α lead to sudden shifts in optimiza-
tion, disproportionately favoring either the CTR
or expansion objectives. This issue arises from
the limitations of arithmetic mean-based optimiza-
tion, as discussed in §3, which fails to effectively
consistent improvements between dual objectives.

The Impact of Training Iterations To further
illustrate the impact of online training, Figure 5
displays the Pareto Front of CMAQ at each itera-
tion. As iterations progress, we observe improved
performance, demonstrating the effectiveness of
the online training paradigm.

Table 1: Ablation studies on CMAQ. Here, OT, CDS,
CT stand for Online Training, Consistent Data Sam-
pling, and Consistent Training, respectively.

Setting α = 0.4 α = 0.6
rctr rexp rctr rexp

CMAQ 6.730 0.817 5.918 0.912
w/o OT 4.055 0.812 3.032 0.906
w/o CDS 6.958 0.481 3.260 0.959
w/o CT 6.672 0.792 5.348 0.910

4.4 Online Experiments

Online Deployment To evaluate the effective-
ness of our proposed method in real-world in-
dustrial settings, we deployed CMAQ on a local
lifestyle information app Dianping, and conducted
an online A/B test over a one-week period. We
propose to leverage LLMs for query generation
as an additional recall pathway in related search
scenario. Specifically, we conducted a week-long
A/B test involving approximately 3,000,000 con-
tents, where each method employed beam search to
sample 5 queries per content. Upon completion of
query generation, we further filtered all generated
queries through a series of criteria, including lex-
ical quality, relevance, and harmfulness, resulting
in the removal of less than 10% of the generated
queries. The retained queries were then associated
with their respective content and cached in the re-
call pool. During online service, a fine-grained
ranking model determines whether to expose these
queries to users. The entire inference process can
be executed in offline or nearline modes, allowing
for pre-computation and caching of new content,
thereby eliminating the need for real-time inference
upon user requests and ensuring service efficiency
and latency requirements are met.

Online Results The results are presented in Ta-
ble 2. For data security reasons, CTR results are
reported in relative terms, with QSA serving as the
baseline model in the A/B test. This experiment
gathered over 20 million impressions to ensure the
reliability and statistical significance of the CTR re-
sults. More detailed online settings can be found in
A.4. From the results, we observe the following: (1)
DPO demonstrates significant improvement over
QSA, highlighting the effectiveness of CTR objec-
tive alignment. (2) Multi-objective based methods
consistently outperform DPO, suggesting that opti-
mizing for expansion may also contribute positively
to CTR. (3) CMAQ achieves the best online CTR
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Table 2: The performance of different methods in online
A/B test. ∆CTR stands for the relative CTR improve-
ment over QSA: CTRmethod−CTRQSA

CTRQSA
.

Method ∆CTR

DPO +0.985%
MORL +1.401%
CMAQ +2.305%

26% 54% 20%
28% 58% 14%
34% 57% 9%

DPO
MORL
CMAQ

Good Same Bad

Figure 6: Human Evaluation.

performance, indicating its capability to minimize
conflicts between the two objectives.

4.5 Human Evaluation

To validate the quality of queries generated by the
model, we conducted a manual GSB (Good-Same-
Bad) test on the online methods. Specifically, we
randomly selected 200 contents and had human
evaluators compare the query quality generated
by the online models and QSA. The evaluation
criteria included relevance, expansion, and spelling
errors. As shown in Figure 6, our proposed CMAQ
achieved the best results in comparison with QSA,
demonstrating the improvement in query quality
offered by our method.

5 Conclusion

In this paper, we introduce CMAQ, a query gen-
eration method that formulates related search
query generation as a multi-objective alignment
task, aligning both CTR and expansion objectives
through the online DPO paradigm. We employ
consistent data sampling and training strategies to
enhance the effectiveness of this multi-objective
alignment. Both offline and online experiments
demonstrate that CMAQ yields significant improve-
ments in key industrial metrics.

In the future, we aim to take personalization into
LLM-based query generation and expand the range
of objectives considered in the alignment. We also
plan to improve the diversity of the LLM-generated
queries while maintaining the performance.
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A Appendix

A.1 Prompts

Here, we introduce the prompts used in the query generation and expansion reward models. For the CTR
reward model, as it is treated as a regression task, we do not design a specific prompt template. Instead,
the input to the CTR reward model is simply the concatenation of (title, content, shopinfo, query).

Prompt for Query Generation

You are a user of a leading local lifestyle information platform that provides shop info, consumer
reviews, discounts, and nearby lifestyle information. You often browse user-generated content
and excel at summarizing and extending related interest queries to help other users explore more
related information.
Requirements:
1. Provide only one answer, keep it within 15 words.
2. Output the answer directly, without any explanations or unnecessary prefixes.
3. The answer should be related to the content but not just a summary, guiding users to search for
more related topics.
Given a note, please summarize and extend the interest queries for the content.
##Note Content
Title: {{title}}
Content: {{content_body}}
Shop info: {{shopinfo}}
Answer:

Prompt for Expansion Reward Model

You are a search term quality assessment expert. Based on the following note content and
query, score the query’s expansion (0 or 1), and output the result in the specified format without
explanations.
Expansion: Does the search query include information beyond the note content that can spark user
interest for further exploration? It might involve novel, interesting, or trending topics that seem
worth delving into.
Score 0: Completely redundant information (directly copying POI name/title queries), with no
apparent extensibility, as the information is fully covered by the note content, and users can get
complete information without further clicking.
Score 1: Has a certain extensibility. Even if the note doesn’t mention this information, if the
query can guide users to acquire new useful information (like reservation methods) or encourage
comprehensive exploration of the place (like "exploring shop" queries), it is considered to have
extensibility.
##Note Content
Title: {{title}}
Content: {{content_body}}
Shop info: {{shopinfo}}
Query: {{query}}
Answer:
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A.2 The Pseudo Code of Consistent Multi-Objective Alignment

Algorithm 1: Consistent Multi-Objective Alignment
Data: Offline content dataset DSFT, QSA model πθQSA , Threshold τ1, τ2, Adaptation rate γ,

Trade-off parameter α, Sample number N , Generation number k, Max iteration T
Initialize policy πθ0 ← πθQSA ;
for iteration t = 1, 2, . . . T do
Dt ← ∅;
Sample contents {x}N1 ∼ DSFT;
for content x ∈ {x}N1 do

Generate queries {y1,y2, ...,yk} ∼ πθt−1(·|x);
Compute rewards ri =

√
r2αexp(x,yi)r

2(1−α)
ctr (x,yi) for each yi;

Dpos,Dneg ← ∅, ∅;
for query i = 1, 2, . . . k do

if ri > τ1 then
Dpos ← Dpos ∪ {(x,yi, ri)};

if ri < τ2 then
Dneg ← Dneg ∪ {(x,yi, ri)};

if Dpos ̸= ∅ and Dneg ̸= ∅ then
(yc, rc) ∼ Dpos;
(yl, rl) ∼ Dneg;
Dt ← Dt ∪ {(x,yc,yl, rc, rl)};

Compute averge reward M = 1
|Dt|

∑
(rc,rl)∈Dt

rc(1− rl);
for data sample (x,yc,yl, rc, rl) ∈ Dt do

Compute adaptive β̃ = 1 + γ (rc(1− rl)−M);
Perform Consistent DPO Training via Equation (3);

A.3 Data Collection

We construct the dataset DSFT where each sample (x,y) is a tuple of (content, query). The construction
procedure of DSFT mainly includes the following steps:

• Core Metric Aggregation. We first aggregate behavioral signals (page views, clicks) at the content-
query level through temporal summation, with the time spans one year. This initial phase establishes
baseline engagement metrics and computes derived indicators including CTR. A minimum exposure
threshold eliminates statistically insignificant observations.

• Multi-Dimensional Filtering.The raw dataset undergoes successive quality filters:

– Lexical constraints: Remove short/non-compliant queries through length thresholds and regex
pattern matching.

– Engagement thresholds: Eliminate low-CTR entries through percentile-based cutoffs
– Commercial term exclusion: Filter queries containing promotional phrases via predefined

blocklists
– Semantic redundancy checks: Exclude queries exhibiting high similarity to shop names through

normalized Levenshtein distance calculations

• Diversity-Preserving Sampling. To ensure categorical diversity and prevent domain dominance in
the training corpus, we implement a stratified sampling strategy grounded in content taxonomy. The
dataset is first partitioned by content categories. Within each categorical partition, entries are ranked
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Figure 7: (a) The Pareto Front of CMAQ under different query sample times k ∈ [2, 4, 6, 8]. (b) The Pareto Front of
CMAQ under different scaling coefficient γ in obtaining β̃, where γ ∈ [0.2, 0.5, 1].

through a composite scoring metric prioritizing CTR while considering auxiliary quality signals. A
maximum cap of 10,000 samples per category is enforced to prevent the bias of prevalent domains.

Finally, we collected DSFT for both quality style alignment and consistent multi-objective alignment
processes. The size of DSFT is 1,292,031.

A.4 Detailed Experiment Settings
For all fine-tuning experiments in each iteration, we utilize PyTorch 2.1.01 (Paszke et al., 2019) in
conjunction with HuggingFace’s TRL framework2. Experiments are executed on eight A100 GPUs, with
each iteration requiring approximately 10 GPU hours, including query generation, rewarding and training.
We employ the AdamW optimizer (Loshchilov and Hutter, 2019) with a learning rate of 1e-5 and a cosine
learning rate schedule incorporating 20 warmup steps. The temperature is set to 1.5 in generation k
queries to ensure the diversity for iterative DPO training. The training process spans 1 epochs with a
global batch size of 32. For LoRA training, we set the rank r = 32, and the α = 8. For online inference,
we utilize vLLM3 (Kwon et al., 2023) for speed-up.

A.5 Supplementary Experimental Results
We conducted additional experiments to investigate the impact of the sampling number k and the scaling
coefficient γ in Equation (3) on the performance.

The impact of sample times k Figure 7a illustrates that the performance of CMAQ improves as k
increases, suggesting that additional sampling instances contribute to more diverse information during
training. As the number of sample times rises with k, we select k = 8 for our final model, balancing the
trade-off between performance and efficiency.

Parameter sensitivity of γ Figure 7b indicates that CMAQ exhibits robustness across various values
of γ. This suggests that the method maintains its effectiveness despite changes in the hyperparameter
settings, making it adaptable to different conditions.

1https://pytorch.org/
2https://github.com/huggingface/trl
3https://github.com/vllm-project/vllm
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