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Abstract

The development of large language models
(LLMs) offers a feasible approach to simulat-
ing complex behavioral patterns of individu-
als, enabling the reconstruction of microscopic
and realistic human societal dynamics. How-
ever, this approach demands a realistic envi-
ronment to provide feedback for the evolving
of agents, as well as a parallelized framework
to support the massive and uncertain interac-
tions among agents and environments. To ad-
dress the gaps in existing works, which lack
real-world environments and struggle with com-
plex interactions, we design a scalable frame-
work named AgentSociety, which integrates
realistic societal environments and parallelized
interactions to support simulations of large-
scale agents. Experiments demonstrate that the
framework can support simulations of 30,000
agents that are faster than the wall-clock time
with 24 NVIDIA A800 GPUs and the per-
formance grows linearly with the increase of
LLM computational resources. We also show
that the integration of realistic environments
significantly enhances the authenticity of the
agents’ behaviors. Through the framework
and experimental results, we are confident that
deploying large-scale LLM Agents to simu-
late human societies becomes feasible. This
will help practitioners in fields such as social
sciences and management sciences to obtain
new scientific discoveries via language genera-
tion technologies, and even improve planning
and decision-making in the real world. The
code is available at https://github.com/
tsinghua-fib-lab/agentsociety/.

1 Introduction

In recent years, the rapid advancement of large lan-
guage models (LLMs) has profoundly transformed
the research paradigm of artificial intelligence and
beyond (Zhao et al., 2023). One of the most impor-
tant directions is the agent-based modeling (ABM)

“Yong Li is the Corresponding Author.

liyong@7@tsinghua.edu.cn

driven by LLMs (Gao et al., 2024a). Traditional
ABM approaches, which rely on predefined rules
and simplified environments, have achieved sig-
nificant success in simulating macro-level social
evolution phenomena, such as the phenomenon of
segregation in society (Schelling, 1971) and po-
larization of opinion (Deffuant et al., 2000). This
success is built upon researchers’ comprehension
of macroscopic principles governing human soci-
eties. Meanwhile, the powerful role-play capabili-
ties of LLMs (Park et al., 2023; Jiang et al., 2024;
Strachan et al., 2024; Li et al., 2024) empower re-
searchers to re-examine ABM from a novel perspec-
tive: LLMs can be used to simulate complex behav-
ioral patterns of individuals without the need for
predefined rules, which can help us move beyond
the traditional coarse-grained modeling paradigm
and reconstruct microscopic and more realistic dy-
namics of human societies.

As the famous sociologist George Herbert Mead
stated, “The self is something which has a de-
velopment; it is not initially there, at birth, but
arises in the process of social experience and ac-
tivity.” (Mead, 1934) LLM agents also learn and
evolve through environmental feedback. However,
most existing agent-based societal simulations pre-
dominantly adopt gaming environments (Park et al.,
2023; AL et al., 2024) or simple rule settings (Gao
et al., 2023; Tang et al., 2024), exhibiting insuf-
ficient attention to real-world human societal en-
vironments. This limitation inevitably constrains
the authenticity of LLM agents’ behaviors. There-
fore, constructing realistic environments capable
of providing feedback similar to human societies
emerges as the primary challenge in leveraging
LLM agents to simulate human societies.

Furthermore, in simulating such a complex sys-
tem as human society, the scale serves as a pre-
requisite for the emergence of phenomena and
the discovery of principles. Concurrently, soci-
etal simulations inherently involve massive and
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non-deterministic interactions between agents and
environments, as well as among agents themselves.
However, existing LLM agent programming frame-
works are primarily designed for multi-agent col-
laboration scenarios and struggle to handle large-
scale uncertain interactions in simulations. For ex-
ample, CAMEL (Li et al., 2023) only implements
the simulation of a Hackathon Judge Committee
with fewer than 10 participants. AgentScope (Gao
et al., 2024b), on the other hand, has only achieved
a scale of tens of thousands of agents in extremely
simple games such as the 2/3 number guessing
game. Thus, there is an urgent need for a frame-
work with strong parallel execution and inter-
action processing capabilities to accommodate
the complex and non-deterministic interactions re-
quired for simulating human societies.

To address the aforementioned challenges, we
design a scalable framework named AgentSociety,
which integrates realistic societal environments
capable of modeling mobility behaviors, social in-
teractions, and economic activities, along with a
parallelized interaction engine supporting the ex-
ecution and interaction of large-scale LLM agents.
Comprehensive performance experiments validate
that the framework efficiently handles complex in-
teractions while fully leveraging available LLM
computational resources to simulate 30,000 LLM
agents with 24 NVIDIA A800 GPUs that are faster
than the wall-clock time. Meanwhile, the perfor-
mance grows linearly with the supply of computa-
tional resources for LLMs. By deploying properly
designed agents, the framework demonstrates its
ability to provide agents with contextually appropri-
ate environmental feedback, thereby enhancing the
authenticity of agents’ behaviors in a simulation
scenario for urban resident behaviors in Beijing.
Accordingly, we are confident in the feasibility of
deploying large-scale agents to simulate human
societies, which will help practitioners in social
sciences, management sciences, and other fields to
use language generation technologies to make new
scientific discoveries and even improve real-world
planning and decision-making.

2 Realistic Societal Environments

2.1 Overall

Realistic societal environments, which serve as the
foundation for simulating LLM agents as a hu-
man society, aim to provide agents with feedback
and constraints similar to the real-world society,
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Figure 1: The relationship between the societal environ-
ments and agent behaviors.

thereby fostering agent learning and the emergence
of more realistic behavioral patterns. Given the
complexity of diverse human behaviors, explicitly
modeling the most fundamental behaviors facili-
tates this preliminary effort. Thus, we prioritize ex-
plicit modeling of mobility behaviors, social inter-
actions, and basic economic activities—specifically
employment and consumption—as representative
components. By modeling these three categories
of social behaviors, the environment enables the
simulation of individuals’ daily routines, such as
commuting to work by car, collaborating with col-
leagues in workplaces, and engaging in post-work
consumption activities, etc.

To model these behaviors and provide realis-
tic feedback, the built environments include urban
space, social space, and economic space as illus-
trated in Figure 1. Their modeling and interactions
will be discussed in the following sections.

2.2 Urban Space

The urban space is designed to address agents’ mo-
bility demands and their interactions with different
places, capturing the processes of individual loca-
tion changes driven by mobility behaviors.
Inspired by microscopic traffic simulation plat-
forms (Behrisch et al., 2011; Zhang et al., 2019,
2024), we first build maps including road networks
and functional zones, which are Areas of Interest
(AOIs) and Points of Interest (POIs) by the MOSS
toolkit (Zhang et al., 2024). The real-world data
sources include OpenStreetMap' and SafeGraph?.
Agents can retrieve accessible places from the map
and obtain routes along with the estimated travel
time for different transportation methods to help

"https://openstreetmap.org/
Zhttps://www.safegraph.com/

1340


https://openstreetmap.org/
https://www.safegraph.com/

them make better decisions about the destination
and mode of travel. Furthermore, we implement
a high-performance multi-modal mobility simula-
tor in Golang?, including driving, walking, taking
buses, or riding in taxis, through a discrete time-
stepping mechanism with 1-second step intervals.
The simulator updates agents’ states like positions
at each step and allows agents to adjust travel plans
through interactions with the environment while
continuously accessing real-time states as feedback
via gRPC*.

2.3 Social Space

The social space, which models the social behav-
iors among agents, is also a fundamental compo-
nent required for simulating human societies.

The most important element of the social space
is social networks. Social networks store relation-
ships and strengths between agents for social in-
teraction target selection. During the simulation,
agents can modify these relationships and strengths
on their own to change the social network and fu-
ture social behaviors. Social behaviors within the
social space can be categorized into offline and on-
line interactions. By enabling message exchange
between any two agents, both offline and online
social interactions are unified into a consistent im-
plementation. Agents may select targets and send
messages either through spatial proximity relation-
ships or social networks, thereby accomplishing
the two types of interactions, respectively. Agents
can also receive messages and respond appropri-
ately, such as replying to messages or changing
their current actions.

Besides, to realistically simulate online social
media platforms, we also implement the concept
of the supervisor in the messaging system. The su-
pervisor will identify content in online social mes-
sages, filter messages according to user-specified
algorithms, and support the blocking of specific
users or connections, thereby simulating the inter-
vention process of social media platforms in infor-
mation propagation.

2.4 Economic Space

The economic space includes the modeling of key
elements in the macroeconomics (Wolf et al., 2013;
Lietal., 2024) to simulate basic economic activities
represented by employment and consumption.

3https://go.dev/
*https://grpc.io/

In the economic space, agents serve as the most
fundamental participants, obtaining wages through
labor to cover consumption and fulfill their needs.
Correspondingly, firms are modeled to provide
job positions and distribute wages. Employment
relationships can be dynamically adjusted by in-
dividuals or firms during the simulation process
to model employee turnover behavior in the real
world. Banks pay interest on deposits from indi-
viduals or firms, while the government levies taxes
on income. Both interest rates and tax policies are
adjustable during simulations. The National Bu-
reau of Statistics (NBS) is implemented to compile
macroeconomic indicators, such as GDP, average
working hours per person, etc. Such designs, simi-
lar to real economic systems, require agents to care-
fully balance the relationship between work and
consumption to avoid overspending, rather than
engaging in unconstrained behaviors that are incon-
sistent with their predefined roles.

The aforementioned processes are implemented
as an account-book-centered economic simulator
in Golang, which provides all participants with the
capability to adjust deposit increments and decre-
ments. This simulator also facilitates the manage-
ment of employment relationships, automated pro-
cessing of interest and tax calculations, and auto-
mated computation of macroeconomic indicators.
Additionally, it offers comprehensive query and
modification interfaces for these functionalities.

3 Parallelized Interaction Engine

3.1 Overview

Facing the demand for executing large-scale
LLM agents and processing massive and non-
deterministic interactions in simulations, existing
LLM agent programming frameworks are difficult
to handle simultaneously due to their reliance on
predefined standard operating procedures (SOP).
To address the overcome, we redesign the par-
allelized interaction engine by drawing inspiration
from real-world societal structures. In the real
world, individuals make decisions through inde-
pendent reasoning and collaborate via linguistic
communication. Consequently, in our design, each
agent operates as an independent execution unit
while influencing others through message passing
in the social space. Guided by this principle, we im-
plement parallelized agent execution using the Ray
framework (Moritz et al., 2018), construct a high-
performance agent messaging system leveraging
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Figure 2: The architecture of the parallelized interaction engine.

Redis’ publish/subscribe capabilities for message
exchange, and integrate the realistic societal envi-
ronment simulations as remote function calls.

However, preliminary attempts at functional in-
tegration revealed critical failures. Excessive Ray
actors and network service clients rapidly exhaust
machine memory and port resources, while envi-
ronment access through function calls causes incon-
sistent perceived time progression in simulations
due to variable LLM inference latencies per sim-
ulation step. To resolve these issues, we further
develop group-based parallel execution to opti-
mize resource utilization and adopt time alignment
mechanism from Mirage (Zhang et al., 2022) to en-
sure fixed-duration environmental progression per
simulation step. Finally, we provide comprehen-
sive utilities to enhance user experiences, such as
simulation logging using PostgreSQL> and metric
recording using mlflow (Zaharia et al., 2018).

The overview of the final system architecture is
shown in Figure 2. The critical components of the
design will be discussed in subsequent sections.

3.2 Group-based Parallel Execution

Since each Ray actor corresponds to a worker pro-
cess with independent TCP connections to various

5https ://www.postgresql.org/

services, scaling the number of agents to tens of
thousands will exceed system TCP port limits, caus-
ing program errors that prevent new connections
from being established. Concurrently, the massive
number of processes also induces severe memory
insufficiency issues.

To address these issues, we adopt the group-
based distributed execution strategy. We first
evenly partition agents into multiple agent groups
and make each group correspond to a Ray actor.
Agents within the same group share a set of service
clients and leverage asyncio’s asynchronous capa-
bilities to perform parallel network requests with
connection reuse to optimize resource utilization.

Since LLM agent execution is essentially an
1O-intensive processing task, this approach suc-
cessfully maintains efficient parallel execution
while significantly reducing port occupation and
additional memory consumption caused by multi-
process overhead.

3.3 Agent Messaging System

Based on the design of the social space and the par-
allelized interaction engine, the agent messaging
system should support message exchange between
any pair of agents. Such design can also enable
external programs (e.g., GUIs) to send messages to
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specific agents for dialogues or interviews, which
could significantly expand the framework’s appli-
cation potential.

In practice, we utilize the time-tested Pub/Sub
functionality of the Redis database to build
a high-performance message exchange mecha-
nism. During simulations, each agent adopts the
PSUBSCRIBE method to subscribe to the channel
pattern exps:<exp_id>:agents:<agent_id>:*
via a shared Redis client, enabling them to receive
and process messages. The wildcard * is replaced
by specific patterns (e.g., agent-chat for inter-
agent messaging or user-chat for user-agent in-
teractions) on the publisher’s side when calling
the PUBLISH method. This design ensures that the
agent messaging system can readily support vari-
ous future extensions, enriching agents’ interaction
capabilities.

3.4 Time Alignment Mechanism

Since the execution time of LLM agents is con-
strained by the response speed of LLM APIs, which
fluctuates significantly due to server load, the du-
ration required for completing one agent iteration
becomes uncontrollable. Concurrently, the clock
speed within the environment also varies with op-
erational efficiency. The mismatch between these
two factors will result in uncertainty regarding the
elapsed time between consecutive agent iterations,
thereby compromising the reproducibility of simu-
lation outcomes.

Following Mirage (Zhang et al., 2022), we im-
plement a clock manager and embed it into the
environment simulator. Each round of agent iter-
ation is required to take time alignment with the
environment simulator to synchronize their opera-
tional speeds. The default setting maps one round
of agent iteration to 300 steps (equivalent to 300
seconds) in the environment simulator, balancing
behavioral authenticity with execution efficiency.

3.5 Utilities

In addition, we also provide a rich set of utilities
to facilitate the usage of the framework including
LLM API adapters, a JSON parser, a retry mech-
anism, a metric recorder based on mlflow, simula-
tion result logging using both the local file storage
with the AVRO format® and PostgreSQL databases.
A GUI program has been developed to create and
manage simulations, and visualize results stored in

®https://avro.apache.org/

the PostgreSQL database, significantly enhancing
usability and making the system more accessible
to general users.

4 Experiments

The experiments in the section focus on the follow-
ing research questions:

* RQ1: What is the performance of the framework
for different agent sizes, agent group sizes, and
LLM computational resources?

¢ RQ2: Can the realistic societal environments
enhance the authenticity of agent behavior?

All experiments were conducted on a Huawei
Cloud c7.16xlarge.4 cloud server to ensure compa-
rability of results. The LLMs operate on multiple
servers with 8 NVIDIA A800 cards using vLLM
v0.8.1 (Kwon et al., 2023) and the Qwen2.5-7B-
Instruct model (Yang et al., 2024). The details of
the deployment can be found in Appendix A.

4.1 Framework Performance

To evaluate the performance of the proposed frame-
work AgentSociety in practical deployments, we
conducted a series of experiments with the agent de-
sign above to capture various metrics during system
operation under different configurations of agent
numbers, group numbers, and LLM computational
resource provisioning.

First, we evaluated the results of {1000, 3000,
10000, 30000} agents under {4, 8, 16, 32} groups,
reporting the results in Table 1. Collected met-
rics include runtime statistics and time costs. Be-
sides, we counted the average input tokens and
output tokens requested by LLMs. The results are
very close in all cases, being 347.97 4+ 0.80 and
62.30 £ 0.42 respectively. The results show that
the framework achieves faster than real-time simu-
lation at the scale of 30,000 agents, demonstrating
the parallel performance of the framework. Addi-
tionally, it can be observed from the results that
the simulation efficiency mainly depends on the
efficiency of LLLM calls. Moreover, an increase in
the number of groups, on one hand, enhances the
efficiency of environment calls, while on the other
hand, it may lead to exceeding the load capacity
of LLM services, thereby increasing unnecessary
retry time. This highlights the importance of rea-
sonably setting the degree of parallelism according
to the supply of LLM services.

Second, we evaluated the performance of sim-
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Table 1: Performance metrics for different configurations using the 24-GPU vLLM cluster as LLM providers. All
values are the means of 10 rounds of iterations, standard deviations are not provided due to their distribution not
being normal. #L.C represents the number of successful LLM calls. LCSR stands for LLM Call Success Rate and is
used to record the percentage of all LLM requests attempted to be called that are returned correctly. #EC and #MC
denotes the number of environment simulator call and agent message system call, respectively. In the time cost
part, All denotes the average time taken by all the agents to iterate a round. LLM, Env, and Msg represents the
time spent for each LLM call, environment simulator call, and agent message system call, respectively. The dash (-)
indicates experimental failure due to excessive failed LLM requests.

Parameters Runtime Statistics Time Costs
#Agents #Groups #LCs (/fround) LCSR(%) #ECs (/round) #MCs (/round) All (s/round) LLM (s/call) Env (ms/call) Msg (ms/call)
1,000 4 995.5 100.0 7,547.0 2.0 13.19 4.60 88.01 225
1,000 8 992.5 100.0 7,547.4 19 13.70 459 44.61 1.16
1,000 16 987.0 100.0 7,529.9 23 1321 477 2126 0.79
1,000 3 988.5 100.0 75132 23 13.96 470 10.87 0381
3,000 4 2,963.9 100.0 22,567.9 7.0 31.87 13.80 219.12 1.98
3,000 8 2,971.7 100.0 22,644.2 7.2 28.98 13.15 103.57 1.30
3,000 16 2,975.7 85.2 22,504.4 5.6 33.64 14.32 55.20 143
3,000 2 2,978.4 86.3 22,601.5 6.9 34.70 14.95 28.63 1.14
10,000 4 9,905.1 100.0 75,335.1 219 93.10 44.96 943.61 8.35
10,000 8 9,885.8 100.0 75,291.7 229 81.45 475 349.49 3.59
10,000 16 9,897.0 97.1 75,343.9 222 98.08 41.01 208.75 348
10,000 32 - - - - - - - -
30,000 4 30,686.3 100.0 230,309.9 83.0 327.39 130.58 4,102.45 21.82
30,000 8 29,860.7 100.0 226,915.8 70.7 251.85 12322 1,682.88 14.48
30,000 16 - - - - - - - -
=25 M- E e T m 100 a social agent and an experimental scenario. The
‘= - . . . .
£20 - 05 — agent is designed to simulate urban residents’ be-
T .” X . .. . g
€15 < haviors, comprising a guiding module based on
o 90
10 2 the Needs Model (Maslow, 1943) and Planned-
T - . . . .
gos 85 Behavior Model (Ajzen, 1991), along with multi-
(-3
0055 e 2 54 80 dimensional action modules (cognition, mobility,

Number of GPUs

—8— Speed (rounds/min) - LCSR (%)

Figure 3: Performance with different LLM computa-
tional resources.

ulating 3,000 agents (with #Groups set to 8) with
the same experimental setup as before, under dif-
ferent deployments of LLMs on {4, 8, 12, 16, 20,
24} GPUs. The experiments failed when the num-
ber of GPUs was less than or equal to 8. The re-
maining results are shown in Figure 3. The results
indicate that, when LLM calls are always success-
ful, the framework’s performance increases linearly
with computational resource supply. Instead, when
some calls fail the performance is higher, possibly
because appropriate failures and retries facilitate
the reallocation of LLM computational demands
over time, thereby enhancing overall throughput.
Thus, designing appropriate LLM request schedul-
ing is an important future work of AgentSociety.

4.2 Environment Impact

To evaluate the impact of the realistic societal en-
vironments on agent performance, we constructed

economy, and social interactions), interconnected
via stream memory and function calling. The exper-
imental scenario integrates mobility and cognitive
scenarios, constructed using mobility trajectories
collected from 169 urban residents in Beijing, each
accompanied by associated intention data (Shao
et al., 2024).

Table 2 presents a comparative analysis of agent
performance under conditions with environment
support (W-Env) and without environment support
(WO-Env). W-Env was conducted using the pro-
posed environment simulator, whereas WO-Env re-
lied on an LLM-based textual simulator whose de-
tailed prompt implementations can be found in Ap-
pendix B.1. We also compared the results with clas-
sical generative models including TimeGeo (Jiang
et al., 2016), Movesim (Feng et al., 2020), Volun-
teer (Long et al., 2023), DiffTraj (Zhu et al., 2023),
and Act2Loc (Liu et al., 2024).

The results highlight the critical importance of
the realistic societal environment, particularly re-
flected by data support for feasible destinations,
inter-location distances, and travel durations. Per-
formance significantly declines in mobility-related
metrics (e.g., radius and dayloc) under WO-Env
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Table 2: Authenticity comparison among LLM Agent
simulations with/without the realistic societal environ-
ments and classical generative models. Refer to Ap-
pendix B.2 and B.3 for more details about the metrics
and the distributions, respectively.

Method  Radius Dayloc itdNum itdError itdDur
TimeGeo  0.254 0.258 0.297 0.536 0.155
Movesim  0.233 0.051 0.154 0.904 0.178
Volunteer  0.455 0.049 0.318 0.804 0.162
DiffTraj 0.027 0.647 0.695 0.597 0.080
Act2Loc  0.024 0.042 0.131 0.391 0.040
WO-Env 0427 0.129 0.158 0.241 0.091
W-Env 0.023 0.038 0.073 0.094 0.027

conditions. Cognitive metrics (itdNum, itdError,
and itdType) also show noticeable degradation.
This indicates that the absence of environmental
context severely restricts agents’ capacity to accu-
rately replicate realistic human behaviors. Besides,
under W-Env conditions, agents in our proposed
framework demonstrate excellent performance and
outperform all baseline methods, effectively cap-
turing authentic behavior patterns.

5 Related Works

5.1 LLM Agent-driven Simulation

Existing studies have validated the feasibility of
LLM agent-driven simulations across multiple di-
mensions. Works such as Smallville (Park et al.,
2023) and Project Sid (AL et al., 2024), through
agent simulations within gaming environments,
have demonstrated that LL.Ms can exhibit anthro-
pomorphic behaviors and generate emergent social
phenomena. Meanwhile, other studies employing
rule-driven environments have further validated the
similarities between LLLM agents and real humans
in aspects such as economic behaviors (Li et al.,
2024) and social interactions (Gao et al., 2023;
Tang et al., 2024).

However, these works have yet to incorporate
realistic environments to provide feedback similar
to human societies, thereby making it difficult to
conduct LLM agent-driven simulations of them.

5.2 LLM Agent Programming Frameworks

Existing LLM agent programming frameworks are
predominantly oriented toward multi-agent collabo-
ration to enhance task-specific performance. These
frameworks (Hong et al., 2024; Qian et al., 2024;
Gao et al., 2024b; Li et al., 2023) typically require
users to design SOPs based on message dependen-
cies among agents and orchestrate parallel execu-

tion via directed acyclic graphs (DAGs), while treat-
ing environmental interactions as external function
calls for LLMs. Such designs are difficult to han-
dle the complex and non-deterministic interactions
among agents and environments. Moreover, they
face significant challenges in scaling effectively
under conditions of complex interactions.

Additionally, Concordia (Vezhnevets et al.,
2023) has attempted to design simulation-oriented
LLM agent programming architectures. However,
the LLM-driven Game Master introduces a bottle-
neck during large-scale simulations, severely limit-
ing their scalability and practical applicability.

Therefore, there remains an urgent demand for
LLM agent programming frameworks explicitly
tailored for large-scale LLM agent simulation sce-
narios, capable of supporting massive, dynamic,
and non-deterministic interactions.

6 Conclusion

In conclusion, the proposed AgentSociety pro-
vides a scalable framework for the simulation of
LLM agents by integrating realistic societal envi-
ronments and parallelized interactions, supporting
large-scale human society simulation with highly
realistic agents’ behaviors. It successfully achieved
a simulation of 30,000 agents faster than real-time
clock speed with 24 NVIDIA A800 GPUs. We
hope that AgentSociety will come to the attention
of practitioners in social sciences, management sci-
ences, and other fields so that simulations based on
LLM agents become a new driving force behind
new scientific discoveries and better real-world
planning and decision-making.

7 Limitation

Although AgentSociety has achieved preliminary
success in supporting the simulation of human so-
cieties using LLM Agents, we believe significant
work remains to achieve a comprehensive social
simulation. In terms of environmental modeling,
there remains a substantial gap between current
economic system representations and real-world
ones, such as the lack of simulations for market
mechanisms and firm decision-making processes.
Regarding system architecture, improving agent
execution efficiency through prompt engineering
or other enhancements to enable large-scale simu-
lations remains an open challenge.

1345



Acknowledgments

This work is supported in part by the National Key
Research and Development Program of China un-
der 2024YFC3307603 and in part by Tsinghua-
Toyota Joint Research Center.

References

Icek Ajzen. 1991. The theory of planned behavior.
Organizational Behavior and Human Decision Pro-
cesses.

Altera AL, Andrew Ahn, Nic Becker, Stephanie Carroll,
Nico Christie, Manuel Cortes, Arda Demirci, Melissa
Du, Frankie Li, Shuying Luo, et al. 2024. Project sid:
Many-agent simulations toward ai civilization. arXiv
preprint arXiv:2411.00114.

Michael Behrisch, Laura Bieker, Jakob Erdmann, and
Daniel Krajzewicz. 2011. Sumo—simulation of urban
mobility: an overview. In Proceedings of SIMUL
2011, The Third International Conference on Ad-
vances in System Simulation. ThinkMind.

Guillaume Deffuant, David Neau, Frederic Amblard,
and Gérard Weisbuch. 2000. Mixing beliefs among
interacting agents. Advances in Complex Systems,
3(01n04):87-98.

Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan
Wang, and Yong Li. 2020. Learning to simulate
human mobility. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 3426-3433.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2024a.
Large language models empowered agent-based mod-
eling and simulation: A survey and perspectives.
Humanities and Social Sciences Communications,
11(1):1-24.

Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao,
Jinghua Piao, Huandong Wang, Depeng Jin, and
Yong Li. 2023. S3: Social-network simulation sys-
tem with large language model-empowered agents.
arXiv preprint arXiv:2307.14984.

Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang,
Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, et al. 2024b.
Agentscope: A flexible yet robust multi-agent plat-
form. arXiv preprint arXiv:2402.14034.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024. MetaGPT: Meta pro-
gramming for a multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations.

Hang Jiang, Xiajie Zhang, Xubo Cao, Cynthia Breazeal,
Deb Roy, and Jad Kabbara. 2024. Personallm: In-
vestigating the ability of large language models to
express personality traits. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2024,
pages 3605-3627.

Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele
Veneziano, Shounak Athavale, and Marta C Gonzalez.
2016. The timegeo modeling framework for ur-
ban mobility without travel surveys. Proceedings
of the National Academy of Sciences, 113(37):E5370—
E5378.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qing-
min Liao. 2024. Econagent: large language model-
empowered agents for simulating macroeconomic
activities. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15523-15536.

Kang Liu, Xin Jin, Shifen Cheng, Song Gao, Ling Yin,
and Feng Lu. 2024. Act2loc: a synthetic trajectory
generation method by combining machine learning
and mechanistic models. International Journal of
Geographical Information Science, 38(3):407-431.

Qingyue Long, Huandong Wang, Tong Li, Lisi Huang,
Kun Wang, Qiong Wu, Guangyu Li, Yanping Liang,
Li Yu, and Yong Li. 2023. Practical synthetic human
trajectories generation based on variational point pro-
cesses. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 4561-4571.

AH Maslow. 1943. A theory of human motivation. Psy-
chological Review, 2:21-28.

George Herbert Mead. 1934. Mind, self, and society
[from the standpoint of a social behaviorist. Chicago.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I Jor-
dan, et al. 2018. Ray: A distributed framework for
emerging {Al} applications. In /3th USENIX sym-
posium on operating systems design and implementa-
tion (OSDI 18), pages 561-577.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra

1346


https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o

of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1-22.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. 2024. Chatdev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174-15186.

Thomas C Schelling. 1971. Dynamic models of segre-
gation. Journal of mathematical sociology, 1(2):143—
186.

Chenyang Shao, Fengli Xu, Bingbing Fan, Jingtao
Ding, Yuan Yuan, Meng Wang, and Yong Li. 2024.
Chain-of-planned-behaviour workflow elicits few-
shot mobility generation in llms. arXiv preprint
arXiv:2402.09836.

James WA Strachan, Dalila Albergo, Giulia Borghini,
Oriana Pansardi, Eugenio Scaliti, Saurabh Gupta,
Krati Saxena, Alessandro Rufo, Stefano Panzeri,
Guido Manzi, et al. 2024. Testing theory of mind in
large language models and humans. Nature Human
Behaviour, pages 1-11.

Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Hao-
ran Tan, Dawei Gao, Yushuo Chen, Xu Chen, Yankai
Lin, Yaliang Li, et al. 2024. Gensim: A general so-
cial simulation platform with large language model
based agents. arXiv preprint arXiv:2410.04360.

Alexander Sasha Vezhnevets, John P Agapiou, Avia
Aharon, Ron Ziv, Jayd Matyas, Edgar A Duéiez-
Guzman, William A Cunningham, Simon Osindero,
Danny Karmon, and Joel Z Leibo. 2023. Generative
agent-based modeling with actions grounded in phys-
ical, social, or digital space using concordia. arXiv
preprint arXiv:2312.03664.

Sarah Wolf, Steffen Fiirst, Antoine Mandel, Wiebke
Lass, Daniel Lincke, Federico Pablo-Marti, and Carlo
Jaeger. 2013. A multi-agent model of several eco-

nomic regions. Environmental modelling & software,
44:25-43.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Gh-
odsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, et al. 2018. Accelerating the machine learn-
ing lifecycle with mlflow. IEEE Data Eng. Bull.,
41(4):39-45.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding,
Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu,
Haiming Jin, and Zhenhui Li. 2019. Cityflow: A
multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide
web conference, pages 3620-3624.

Jun Zhang, Wenxuan Ao, Junbo Yan, Can Rong, De-
peng Jin, Wei Wu, and Yong Li. 2024. Moss: A
large-scale open microscopic traffic simulation sys-
tem. arXiv preprint arXiv:2405.12520.

Jun Zhang, Depeng Jin, and Yong Li. 2022. Mirage:
an efficient and extensible city simulation framework
(systems paper). In Proceedings of the 30th Interna-
tional Conference on Advances in Geographic Infor-
mation Systems, pages 1-4.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).

Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu
Zhao, and James Yu. 2023. Difftraj: Generating gps
trajectory with diffusion probabilistic model. Ad-
vances in Neural Information Processing Systems,
36:65168-65188.

1347



A vLLM Deployment

We deploy a vVLLM cluster across 3 servers, each
equipped with 8 NVIDIA A800 40GB GPUs, 128-
thread processors, and 1024GB RAM. The de-
ployed model is Qwen2.5-7B-Instruct, with auto-
matic tool selection and chunked prefill enabled,
configured with max-num-batched-tokens set to
8192 (without extensive tuning). The guided de-
coding backend uses outlines. We do not enable
tensor parallelism. Instead, we independently run
a vLLM instance on each GPU and construct a re-
verse proxy supporting round-robin load balancing
through Caddyserver’ as the access endpoint. Our
program accesses this endpoint to invoke the LLM
computation services provided by vLLM.

B Supplementary Materials Regarding
the Environment Impact Experiments

B.1 LLM-based Textual Simulator Prompts

As an alternative to the realistic simulation environ-
ment, we designed the following prompts to lever-
age the existing knowledge of LLMs to achieve
functions including text-based location type selec-
tion, destination selection, and travel time estima-
tion to support the agent’s mobility behavior simu-
lation.

Place Type Selection: This prompt assists the
agent in determining the appropriate type of loca-
tion to visit, based on its current needs and internal
states.

You are an intelligent assistant
specializing in understanding user needs
and suggesting appropriate location
types. Based on the user’s intention,
provide the most suitable location type.

- User’s intention: { }

Please output in JSON format without any
other text:

{

"type": "string”, location type
}

Example Output:

{

"type": "Grocery Store”

}

"https://caddyserver.com/

Destination Selection: This prompt guides the
agent in selecting a specific destination, given its
current location and desired location type. It also in-
cludes information regarding the distance between
these two locations.

You are an intelligent assistant
specializing in suggesting specific
destinations based on location types.

Provide a suitable location name and
estimate its distance from the current
position.

- Current location: { 3
- Target location type: { 3

Please output in JSON format without any
other text:

{

"name”: "string", locations’ name
"distance”: "integer"”, in meter

}

Example Output:

{

"name”: "Supermarket”,
"distance”": 1500

}

Travel Time Estimation: This prompt estimates
the time required for the agent to reach the selected
destination, considering both the current environ-
mental conditions and the agent’s status.

You are an intelligent assistant
specializing in travel time estimation.
Based on the provided distance, calculate
the estimated time required to reach the

destination, assuming typical traffic
conditions.

- User’s profile: { }

- Weather: { }

- distance: {

I m

Please output in JSON format without any
other text:

{

"time": "integer"”, in minutes
}

Example Output:

{

"time": 10

}
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B.2 Metrics

The specific meanings of the five metrics used in
the experiments are as follows:

o
w
o]

o
W
=)

* Radius: radius of gyration, representing the spa-
tial dispersion of an agent’s movements;

o
N
]

Probability
3

* Dayloc: daily visited locations, indicating the
number of unique locations visited each day; 015

* itdNum: the number of intentions per day, mea-
suring daily intention frequency;

e itdError: the similarity between intention se-

quences, reflecting consistency in agent behav- 0.00- N S
iors; Daily Intentions
9

* itdType: time proportion of intentions, denoting Figure 6: Distribution of daily intentions.
the temporal distribution of different intentions.

B.3 Distribution Details we can see that the information and constraints in-
troduced by the realistic societal environments sig-
nificantly improve the movement behavior patterns
of the agents, making them highly approximate to
the real data (Figure 4 and 5) And bring about a cer-
tain improvement in the distribution of intentions
(Figure 6).
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Figure 4: Distribution of Radius of Gyration.
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Figure 5: Distribution of daily locations.

This section provides the distribution details for
the experiments in Section 4.2. From these results,
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