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Abstract

Accurate mapping of queries to product cate-
gories is crucial for efficient retrieval and rank-
ing of relevant products in e-commerce search.
Conventionally, such query classification mod-
els rely on supervised learning using historical
user interactions, but their effectiveness dimin-
ishes in cold-start scenarios, where new cate-
gories or products lack sufficient training data.
This results in poor query-to-category map-
pings, negatively affecting retrieval and rank-
ing. Synthetic query generation has emerged
as a promising solution by augmenting train-
ing data; however, existing methods do not in-
corporate feedback from the query relevance
model, limiting their ability to generate queries
that enhance product retrieval. To address this,
we propose an adversarial reinforcement learn-
ing framework that optimizes an LLM-based
generator to expose weaknesses in query clas-
sification models. The generator produces syn-
thetic queries to augment the classifier’s train-
ing set, ultimately improving its performance.
Additionally, we introduce a structured reward
signal to ensure stable training. Experiments
on public datasets show an average PR-AUC
improvement of +1.82% on benchmarks and
+3.26% on a proprietary dataset, demonstrat-
ing the framework’s effectiveness in enhancing
query classification and mitigating cold-start
challenges.

1 Introduction

The cold-start problem is a critical challenge in
e-commerce, particularly for new products and
emerging categories. This issue arises due to mul-
tiple factors: (a) Bias in ranking models—ranking
algorithms often prioritize established products
and categories with a high volume of historical
interactions, leading to skewed relevance estima-
tion (Lesota et al., 2021; Ning et al., 2024); (b)
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Category-specific relevance—the definition of rel-
evance varies across product categories. For in-
stance, in electronics, attributes such as brand and
RAM specifications are crucial, whereas in phar-
macy, active ingredient composition and dosage
strength play a more significant role. These fac-
tors make it difficult to effectively rank and surface
relevant products for queries related to new or un-
derrepresented categories (Jansen and Booth, 2010;
Mateos and Bellogin, 2024). Hence, an essential
step in product recommendations is determining
the category of a given product, which allows for
the up-ranking or down-ranking of products within
a specific category. This classification is typically
performed in the first-stage ranker, as recommen-
dation systems often employ a two-stage ranking
process to refine product relevance and improve
retrieval effectiveness (Covington et al., 2016).
Typically, query classification models are trained
in a supervised manner, leveraging labeled data de-
rived from customer interactions such as clicks,
cart additions, and purchases (Jagatap et al., 2023).
However, in new or low-interaction categories, re-
liance on historical data exacerbates the cold-start
problem, as limited user engagement leads to poor
classification performance and sub-optimal ranking
of products. Conventionally, this issue is addressed
by allowing time for new products to accumulate
interactions or by inferring relevance through cor-
relations with existing products (Guan et al., 2024).
With recent advancements in generative models,
synthetic query generation has gained prominence
as a viable approach to simulating queries for new
products and categories (Chaudhary et al., 2024;
Jagatap et al., 2024). This technique provides essen-
tial training signals to downstream models, help-
ing to address the cold-start challenge more ef-
fectively. While these approaches use generative
models to produce synthetic queries for improving
downstream classification performance, they do not
leverage feedback from the classifier to guide query
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generation. Specifically, they do not account for
whether the generated queries induce high model
uncertainty or leads to frequent misclassification
errors. We attempt to address these challenges in
our work. The key contributions of our paper are
as follows:

1. Adversarial RL-Based Query Generation
Framework. We introduce a reinforcement learn-
ing framework that establishes a feedback loop
between the LLM generator and the classifier, akin
to a generative adversarial networks (GAN). The
generator is trained to generate synthetic queries
that are particularly challenging for the classifier,
helping it learn to distinguish difficult edge cases
where classification is uncertain. As the genera-
tor improves, it produces more effective adversar-
ial queries, which are then used to augment the
classification model’s training data, leading to a
more robust model that mitigates cold-start issues
in product search.

2. Reward-Based Guardrails. Such generative
adversarial frameworks are often unstable, making
training challenging. To address this, we design the
reward function to induce stability in the generator
while also guiding it toward producing queries that
are both challenging for the classifier and mean-
ingful for training. This ensures that the generator
does not collapse to producing irrelevant or non-
sensical queries, maintaining effectiveness of the
adversarial training process.

3. Empirical Validation. We demonstrate perfor-
mance improvements over three public relevance
datasets and one industry dataset, showcasing the
effectiveness of our approach in enhancing query
relevance models. Our adversarial RL-based frame-
work achieves a +1.82% average improvement in
PR-AUC across the three public datasets and a
+3.26% PR-AUC improvement on a proprietary
e-commerce dataset. The deployed model led to
a +3.8% increase in purchases within a cold-start
category, as validated through A/B testing.

2  Query-Product Relevance Problem

Let A = A; U Ag represent the product catalog,
where A; and Ag correspond to in-category and
out-of-category products, respectively. Similarly,
let Q denote the space of all customer text queries.
The relevance of a product a € A for a query
q is denoted by p"°(alq), allowing us to define
a soft classification function for query category

membership:

> aea, P (alq)

Yacap ™ (alq)

Py = 1lq) =

In practice, the true relevance p™®(alq) is un-

known. Instead, we observe interactions shaped
by the existing ranking system. Let p*“"(alq)
represent the probability of a product being dis-
played to a customer, factoring in positional bi-
ases. Further, the interaction volume v(a, q), cap-
turing customer engagement (e.g., clicks, cart-adds,
purchases), follows the relationship: v(a,q) o
p*e™(alq)p™ (alq).

Given observed query-product interac-
tions vyrain(a,q), the existing ranking system
p*“"(alq), and product catalog features, our goal
is to learn a classification model that predicts query
category membership p(y|q) to approximate the
true probability p"“¢(y|q).

Since true relevance is unknown, we evaluate
our model on a test set using an estimated probabil-
ity p'®(y|q), where product relevance is inferred
from: p“*!(y|q) o< v***"(a, q)/p**"(alq).

While training and test distributions may be simi-
lar, learning an accurate query classifier is challeng-
ing because training interactions are biased by the
ranking system and may not include new products
or queries. Offline evaluation on unseen test data
provides directional insight, but the true impact of
improved classification is best measured through
increased customer interactions in an online exper-
iment.

3 Related Works

With the rise of generative LLMs (Naveed et al.,
2023) that encode substantial world knowledge,
there has been growing interest in utilizing LL.Ms
for synthetic query generation (Chaudhary et al.,
2024; Sannigrahi et al., 2024). While most re-
search addresses question-answering and binary rel-
evance, recent work explores query generation for
e-commerce products with multi-level relevance,
either by fine-tuning LLMs on historical product-
query data to generate customer-like queries, which
are then used to augment and improve the down-
stream relevance model (Chaudhary et al., 2023)
or have prompted LLMs for query generation im-
plementing feedback loops through Bayesian opti-
mization to refine prompts (Jagatap et al., 2024).
In contrast to these existing methodologies, we
propose a reinforcement learning framework that
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Figure 1: Overview of our reinforcement learning framework for query generation. The generator produces queries
conditioned on a sampled product and relevance label. The relevance model evaluates the generated query, providing
feedback that is used to compute a reward, which updates the generator through classification loss.

directly incorporates relevance model feedback into
the query generation process. The closed-loop sys-
tem we developed resembles a Generative Adver-
sarial Network (GAN) (De Rosa and Papa, 2021)
where the relevance model acts as a discriminator
providing adversarial rewards, while the genera-
tor creates increasingly difficult samples to chal-
lenge the discriminator. However, rather than us-
ing traditional GANs, we employ reinforcement
learning for text generation, building on work by
(Yu et al., 2017), who proposed SeqGAN. This
approach bridges RL and GANs by treating the
generator as an RL agent and using the discrimina-
tor to provide rewards.

Our improved generator produces diverse syn-
thetic queries that are systematically incorporated
into the relevance model’s training corpus. The
resulting enhancement in relevance model robust-
ness is particularly significant for mitigating cold-
start issues (Han et al., 2022) common in product
search systems. This methodology also resembles
self-training semi-supervised learning paradigms,
where an established teacher model trained on ex-
tensive datasets generates synthetic labels to en-
hance a student model’s performance and broaden
its input distribution coverage (Pace et al., 2024;
Shen et al., 2024).

4 Proposed Approach

A standard approach for synthetic data augmenta-
tion in query classifiers is fine-tuning a LLM on
historical search logs (Jagatap et al., 2024). In
this method, the model is trained on a dataset of
(product, query, relevance) tuples to gener-
ate queries conditioned on both product attributes
and relevance labels (e.g., Exact, Irrelevant).
This ensures that the generated queries align with
specific relevance categories, enhancing their ef-
fectiveness for downstream classification tasks.
For unseen or sparsely populated product cate-
gories, the fine-tuned generator produces synthetic

queries to augment the classifier’s training set,
thereby improving generalization in low-data set-
tings. Despite its effectiveness, Fine-Tuned ap-
proach presents several limitations. The generator
is heavily conditioned on product metadata, result-
ing in queries that often closely resemble product
descriptions rather than capturing the diversity of
real-world search behavior (Jagatap et al., 2024).

4.1 Adversarial RL-Based Query Generation

The proposed Adversarial-RL framework incor-
porates reinforcement learning (RL) to address
these limitations. The initial steps remain the
same as in Fine-Tuned approach: the generator
is trained to generate queries conditioned on the
product and relevance label, and the generated
queries augment the classifier’s training data. In
Adversarial-RL, within the RL framework, the
generator produces a synthetic query conditioned
on a given product and relevance label, which is
then evaluated by the relevance model.The clas-
sifier’s predicted relevance is evaluated against
the ground-truth label assigned during generation.
A high classification loss indicates a challenging
query that effectively probes the classifier’s deci-
sion boundaries, revealing areas of uncertainty or
misclassification. The generator is rewarded for
producing challenging queries, encouraging the
generation of diverse queries that enhance classi-
fier robustness. This reinforcement mechanism
drives the generator to create queries that deviate
from product metadata while preserving semantic
relevance (see Figure 1). This results in a genera-
tor that more effectively augments the downstream
classifier, particularly in cold-start scenarios where
limited historical data is available for training.

We formulate the training of the LLM generator
as a Proximal Policy Optimization (PPO) problem
(Stiennon et al., 2022), where the classifier acts as
the reward model. The PPO algorithm updates the
generator’s policy parameters 6 by maximizing the
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following objective function:
L(@) :E[Hlln (Tt(g)At, Clip(rt(ﬁ), ].—6, 1+€)At)]

Here, E denotes the empirical expectation and
9 _ Wﬂ(at|5t)
re(0) = 2. ey

o 71—001d(at‘st)
the new policy 7y and old policy 7 ,. a; repre-

sents the token chosen at position t in the sequence.
s¢ is the context (all previous tokens) at position
t. A, is the advantage estimate, which in our case
is derived from the reward function. € is a hyper-
parameter that constrains policy updates. The ad-
vantage function A; is calculated using the reward
signal from the classifier at the end of the sequence.
The clipping operation, controlled by the hyperpa-
rameter €, prevents excessive policy updates that
could destabilize training.

is the probability ratio between

Parameterized Reward Function: Since the
generator is trained to produce queries in an ad-
versarial manner and is explicitly rewarded for gen-
erating challenging samples, it may unintention-
ally be guided to generate semantically incorrect
queries. For example, when prompted to generate a
relevant query for a pharmacy product, the LLM
might incorrectly generate the query "washing ma-
chine". While the classifier correctly predicts it as
irrelevant, the generator, rewarded for confusing
the classifier, would receive a high reward despite
the query being incorrect. To mitigate this issue,
we initialize the generator from a fine-tuned model
and impose a KL divergence penalty to restrict devi-
ations from its learned distribution. Our structured
reward function is defined at each token position as
the generator sequentially generates text: For each
token position ¢ < 7' (before the end-of-sequence
(EOS) token): R(t) = —f - Dxr(mg||mpr). For the
final token position t = 1" (at EOS):

R(T) = ()é'LC]S—(1—0()-lOngen—5-DKL(ﬂ'9’ ‘WFT)

The term Dyy, represents the KL divergence (Kull-
back and Leibler, 1951) between the current and
fine-tuned policies at each token position, ensuring
that the generator does not deviate excessively from
the pre-trained distribution. The classifier’s cross
entropy loss over the complete sequence is denoted
by L, guiding the generator to produce queries
that effectively challenge the classifier. The term
Pryen captures the generation probability, which is
incorporated into the reward to stabilize learning.
If the generator confidently produces a challeng-
ing query, it receives a reward proportional to Pyey,

encouraging the exploration of difficult yet mean-
ingful queries rather than generating random noise.
The hyperparameters « and 3 control the balance
between these reward components, ensuring that
the generator optimizes for both adversarial and
semantically valid query generation.

4.1.1 Training Schedule

SFT
G Go G Ga
Au A Au Ly Au
SFT ) AO ) AO )
C Co 1 (s

Figure 2: Illustration of the iterative reinforcement learn-
ing framework for improving the generator G through
PPO feedback and enhancing the classifier C' via syn-
thetic data augmentation.

As shown in Figure 2, our training process be-
gins with both the generator and classifier under-
going Supervised Fine-Tuning (SFT) on customer
data, yielding G and Cy. The training then fol-
lows an automated reinforcement learning cycle
consisting of two steps. In the first step, Data Aug-
mentation, the generator Gy generates synthetic
queries using metadata and relevance labels as in-
put of new or unseen products. This newly gener-
ated synthetic data, denoted as D", is combined
with the original classifier training dataset Dy to
create an augmented dataset: Dy = D%n U Dy.
The classifier C)y is then trained on Dy _1, mean-
ing C represents the classifier trained with the
augmented dataset Dy _;, which was generated
using the generator G _1 from the previous cycle.

Next, in PPO Training, the updated classifier
Cn41 provides PPO rewards to the generator G .
Using these rewards, the generator is fine-tuned
for 2 epochs, resulting in an improved generator
G n41- This iterative process of data augmentation
followed by PPO-based optimization constitutes a
single training cycle. The training is repeated for a
total of 4 cycles, progressively refining both models.
These hyperparameters: PPO training epochs (2),
classifier training epochs (5), and the number of
training cycles (4) are fixed and can be adjusted
based on validation performance.
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5 Experiments

5.1 Datasets

Ecom-Pharma is an internal dataset sampled from
real customer interactions on an e-commerce phar-
macy platform. The dataset is partitioned into tem-
porally disjoint sets: train (Sep 2024-Nov 2024)
and test (Dec 2024). To construct the dataset, we
start with the pharmacy catalog (ground truth list
of products) and identify "weak pharmacy intent
queries" that have led to at least 5% clicks on phar-
macy products. For each query, we retrieve all
clicked products (set A) and classify them as phar-
macy or non-pharmacy. We then expand the query
set by retrieving all queries associated with prod-
ucts in set A. Each query is mapped to a binary
label (pharmacy/non-pharmacy) based on interac-
tion volume and used to train the query classifier.
For generator fine-tuning, we use product-query
pairs from set A, weighted by interaction volume.

Our experiments also utilize three public
datasets: WANDS (Chen et al., 2022), Home
Depot (Home Depot, 2016), and Amazon ESCI
(Reddy et al., 2022), all of which consist of product-
query pairs annotated with relevance labels. The
WANDS dataset focuses on product search rele-
vance in the home improvement domain, categoriz-
ing relevance into ExactMatch, PartialMatch, and
Irrelevant. The Home Depot dataset also provides
product-query relevance annotations but assigns
real-valued relevance scores, which we discretize
into three categorical levels—Irrelevant, Partial-
Match, and ExactMatch—using the 33rd and 66th
percentile thresholds. Lastly, the Amazon ESCI
dataset is a large-scale collection of product search
queries with four relevance levels: Exact, Substi-
tute, Complement, and Irrelevant.

5.2 Algorithms & Metrics

Since the generator is used only during training, its
size does not impact inference latency. At infer-
ence, we prioritize efficiency, opting for a smaller
relevance model. As the generator operates in an of-
fline setup, we prioritize generation quality over la-
tency, leveraging FLAN-T5-XL for the Ecom dataset
and FLAN-T5-Large for public datasets. For all
datasets, the classifier is built on the FLAN-Small
encoder with a classification head.

Classification Metrics: To assess the performance
of our classifier model, we measure PR-AUC
(Davis and Goadrich, 2006) for the entire test set.
Generation Metrics: We compute BERTScore

(Zhang et al., 2020), which measures the semantic
similarity between the generated queries and the
target queries.

Ranking Metrics: On external datasets where
class labels are ordered, we evaluate ranking perfor-
mance using the approach in prior work. For each
query-product pair, we compute the score: E; =
> jete,pay P(Yjlzi)-w; where E, P, and I denote
ExactMatch, PartialMatch, and Irrelevant, re-
spectively. The weight values are set as: w; =
{E =2.0,P =1.0,I =0.0}. We then compute
NDCG @10 by ranking products based on E;.

5.3 Results & Discussion

In this section, we analyze the impact of differ-
ent training strategies on downstream relevance
model performance across multiple datasets. We
further investigate the impact of generator size on
downstream model performance. Additionally, we
explore how parameterization choices and reward
design influence RL training stability and down-
stream performance.

Strategy PR-AUC BERT-score
Prompted +0.30% 83.58%
Fine-tuned +2.38% 92.51%
Adversarial RL +3.26% 91.94%

Table 1: Improvement in performance using different
strategies on the Ecom-Pharma dataset. We show the
relative improvement in performance over the base clas-
sifier.

RQ1. Does RL improve downstream relevance
model performance?

Table 1 presents the relative improvements in
PR-AUC and BERT-score across different train-
ing strategies on the Ecom-Pharma dataset. A sim-
ple prompting-based method for generating syn-
thetic queries yields a modest PR-AUC improve-
ment of +0.30%, serving as a basic augmentation
baseline. While Fine-Tuning based augmentation
significantly enhances classification performance
over the base model, Adversarial-RL based aug-
mentation achieves the highest PR-AUC gain of
+3.26%, demonstrating its effectiveness in refining
query generation to improve retrieval performance.
However, the slight drop in BERT-score compared
to Fine-Tuning suggests that adversarial training
may prioritize generating diverse queries that devi-
ate from observed data.

Further, we evaluated our approach across three
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public e-commerce benchmarks: WANDS, Home
Depot, and Amazon ESCI. Table 2 demonstrates
that our Adversarial-RL approach consistently
outperforms Fine-Tuning in PR-AUC, micro-
averaged across the multiple relevance labels.
We also observe an improvement in ranking ef-
fectiveness (NDCG@10). Notably, the Amazon
ESCI dataset shows the highest gain in PR-AUC
(+3.42%) and NDCG@10 (+2.22%) when using
adversarial RL. The BERT-Score metric indicates
that Fine-Tuning generates queries which are sim-
ilar to the ones we observe in the test data, while
adversarial RL introduces slight variations due to
reinforcement learning optimizing for diversity.

Strategy PR-AUC (micro) NDCG@10 BERT-score
WANDS

None 85.69% 96.42% -

Fine-Tuning 86.21% 96.88% 96.52%

Adv. RL 86.63% 97.40% 96.35%
Home Depot

None 48.38% 93.32% -

Fine-Tuning 48.46% 93.45% 91.46%

Adv. RL 49.49% 94.69% 91.13%
Amazon ESCI

None 63.70% 96.12% -

Fine-Tuning 65.28% 97.15% 94.86%

Adv. RL 67.12% 98.34% 94.03%

Table 2: Impact on classification and ranking per-
formance basis different data augmentation strategies
across public datasets.

RQ2. What is the impact of generator size
on the relevance model performance? A larger
generator is expected to encode more world knowl-
edge, enabling it to generate more diverse and
informative queries when properly guided. As
shown in Table 3, scaling from FLAN-T5-Large
to FLAN-T5-XL for WANDS dataset, enhances both
classification performance (PR-AUC) and ranking
effectiveness (NDCG@10). The Fine-Tuning ap-
proach achieves a +4.89% gain in PR-AUC and
+1.31% in NDCG@10, while Adversarial-RL
further improves PR-AUC by +5.44%. How-
ever, the NDCG @10 gain is comparatively lower
(+0.53%), suggesting that while increasing gen-
erator capacity significantly enhances classifica-
tion, its impact on ranking is positive but relatively
smaller.

RQ3. How do the weights in parameteriza-
tion impact the downstream performance? The
choice of reward weighting parameters plays a cru-
cial role in determining downstream classifier per-

Strategy FLAN-T5-Large — FLAN-T5-XL
A PR-AUC (micro) A NDCG@10

+4.89% +1.31%
+5.44% +0.53%

Fine-Tuning
Adv. RL

Table 3: Relative improvement in classification
and ranking when scaling from FLAN-T5-Large to
FLAN-T5-XL for WANDS dataset.

formance during Adversarial-RL. Figure 3 illus-
trates the impact of « and 5 on PR-AUC perfor-
mance computed across Amazon ESCI dataset.
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Figure 3: Effect of reward weighting parameters (A) o
and (B) [ on final classification model performance on
ESCI dataset. Data points represent actual observations,
while the curve represents a smoothing spline fit.

In Figure 3A, we observe that increasing « en-
hances PR-AUC, demonstrating that prioritizing
classification loss as a reward signal improves the
downstream classifier’s performance. However, be-
yond a = 0.9, performance degrades, as the dimin-
ishing contribution of the generation probability
term (completely absent when ac = 1.0) leads to in-
stability during training. In Figure 3B, we examine
the impact of 3, which controls the contribution of
KL penalty to the reward. Classifier performance
improves as ( increases up to approximately 0.85,
suggesting that lower values allow the adversarial
reward to dominate, leading to the generation of
semantically irrelevant queries. However, beyond
this threshold, performance slightly declines, indi-
cating that excessive regularization limits beneficial
exploration.

6 Conclusion

In this work, we propose an adversarial reinforce-
ment learning framework to enhance search query
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relevance by jointly optimizing query generation
and classification using classifier feedback as a
reward signal. Empirical results on e-commerce
datasets show improved classification and ranking
performance over fine-tuning-based augmentation.
By incorporating structured rewards, KL regulariza-
tion, and confidence-weighted training, we ensure
informative query generation while minimizing in-
correct examples. Deploying our approach in the
pharmacy category led to a +13.9% increase in
product views and +3.8% increase in purchases,
demonstrating its real-world effectiveness.

Limitations

While our adversarial reinforcement learning
framework enhances query generation and clas-
sifier robustness, several challenges remain that
require further investigation.

Training Stability. Adversarial training can be
unstable, requiring careful hyperparameter tuning
to prevent degenerate query generation. Future
work can explore advanced regularization tech-
niques to mitigate this issue.

Generalizability to Other Domains. Our ex-
periments focused on e-commerce search, but the
framework could benefit other retrieval tasks, such
as dialogue systems (retrieving relevant responses
in conversational Al), code search (enhancing pro-
gramming assistant recommendations), and infor-
mation extraction (retrieving structured data from
unstructured documents), among others.

Benefits Beyond Cold-Start. While our ap-
proach is particularly beneficial in low-data set-
tings, further evaluation is needed to determine its
impact in high-data regimes. Future work should
assess whether adversarial query generation im-
proves performance even when ample training data
is available.

By addressing these limitations, we can expand
the applicability and robustness of our framework
across diverse retrieval tasks.
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