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Abstract

This paper presents a novel approach to e-
commerce payment fraud detection by integrat-
ing reinforcement learning (RL) with Large
Language Models (LLMs). By framing trans-
action risk as a multi-step Markov Decision
Process (MDP), RL optimizes risk detection
across multiple payment stages. Crafting effec-
tive reward functions, essential for RL model
success, typically requires significant human
expertise due to the complexity and variability
in design. LLMs, with their advanced reason-
ing and coding capabilities, are well-suited to
refine these functions, offering improvements
over traditional methods. Our approach lever-
ages LLMs to iteratively enhance reward func-
tions, achieving better fraud detection accuracy
and demonstrating zero-shot capability. Ex-
periments with real-world data confirm the ef-
fectiveness, robustness, and resilience of our
LLM-enhanced RL framework through long-
term evaluations, underscoring the potential of
LLMs in advancing industrial RL applications.

1 Introduction

The advancement of LLMs has been remarkable,
exemplified by notable developments such as the
top-notch model API (OpenAI, 2023) and state-of-
the-art open-source models (Dubey et al., 2024)
(Jiang et al., 2023) (Jiang et al., 2024) (Team et al.,
2024) (Guo et al., 2024). These breakthroughs have
propelled LLMs to new heights in various tasks,
reaching or even surpassing human capabilities in
code generation (Chen et al., 2021), logical reason-
ing (Kojima et al., 2022), and task planning (Shen
et al., 2024). The integration of these advanced
capabilities into the domain of e-commerce pay-
ment fraud detection presents an exciting frontier
for exploration.

Meanwhile, RL has shown its effectiveness in
optimizing nondifferential goals and innovating
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decision strategies in response to environmental
changes (Sutton and Barto, 2018) (Russell and
Norvig, 2010). Its application in the financial fraud
risk domain has seen various approaches, from
modeling the sequence of transactions from a sin-
gle credit card to considering each transaction as
a discrete step in a MDP (Mead et al., 2018) (Vi-
mal et al., 2021). Other studies have explored the
application of RL in fraud risk alerting systems
(Shen and Kurshan, 2020) and discussed its poten-
tial without detailed propositions (El Bouchti et al.,
2017). While supervised learning (SL) remains
prevalent in static fraud detection, it struggles to
model sequential dependencies between decision
stages and directly optimize business metrics like
precision-recall tradeoffs – limitations that RL nat-
urally addresses through reward-driven optimiza-
tion.

The confluence of LLM’s semantic capabilities
with RL has sparked interest, particularly in using
LLMs as a reward shaper for RL. This innovative
approach includes directly feeding the context of
the environment to LLMs for action and reward
processing (Kwon et al., 2023), using LLMs to de-
fine the parameters of the reward function (Yu et al.,
2023), or even to design whole rewards function
codes (Ma et al., 2023). These efforts have mainly
focused on gaming agents and robotic task control,
inspiring our exploration into e-commerce payment
fraud detection.

E-Commerce payment fraud presents a dynamic
challenge necessitating advanced decision-making
across three key stages: 1) Pre-authorization (Pre-
auth) where our platform screens transactions be-
fore card issuers’ risk assessment, 2) Issuer check
where card networks validate payment credentials,
and 3) Post-authorization (Post-auth) where we
conduct final risk evaluation after issuer approval.
Traditional SL approaches operate isolated classi-
fiers at each stage, failing to model the sequential
interdependencies and business constraints (e.g.,
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class PolicyTrainer:
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self.max_t = …
self.print_every = …
self.optimizer = …
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general info: ```python  def reward 
function: return reward```

• Tip 1,Tip 2 …
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• A new best reward function found: ```python 
xxx```

• We trained a RL policy using the reward 
function code and tracked my focused metric 
feedback from an out-of-time test data: xxx

OR
• A sub-optimum reward function found: xxx
OR
• My reflections on my preivious failures are: 

xxx

Figure 1: The LLM enhanced self-improving RL framework overview. It takes in the task description/instructions,
the RL source code, and the example human-designed reward function as the context to generate an executable
reward function. We designed an evolutionary algorithm to allow the LLM to evolve the reward function design
based on feedback on the performance of the RL agent.

Pre-Auth Post-Auth

States: SL Model 
scores, features, etc.
Action: Block, Pass
Step: T0

States: SL Model scores, 
features, etc.
Action: Block, Pass
Step: T1

Card issuer checks

Figure 2: Imagine the buyer transaction risk decision
checkpoints pipeline as a Markov Decision Process.

needing to block more potential frauds during Pre-
auth to avoid issuer penalties). This fragmentation
leads to suboptimal precision-recall balance and
excessive manual reviews. RL’s strength in con-
strained sequential optimization makes it uniquely
suited to maximize cumulative fraud prevention
while respecting stage-specific requirements.

In response, we propose a cutting-edge RL
framework that harnesses the power of LLM to
autonomously evolve and refine decision-making
processes in the payment risk domain, a first in this
field. Our contributions are summarized as follows:

LLM-based Reward Function Generation for
RL: We introduce a framework using LLMs to au-
tonomously create reward functions that directly
optimize precision-recall metrics in the payment
risk domain, outperforming human-designed re-

wards. It uses an evolutionary algorithm for itera-
tive refinement based on RL agent feedback, sup-
porting few-shot/zero-shot creation with/without
prior examples. The general process is shown in
Figure 1.

Transaction Risk Detection as Constrained
MDP: We redefine transaction risk detection as
a multistep MDP with stage-specific constraints,
solved using policy-based RL like REINFORCE.
By integrating transaction stages into a coherent
framework (see Figure 2) and aggregating reward
signals across stages (detailed in Figure 3), our
method outperforms SL’s surrogate loss functions
through direct optimization of business objectives.

Our research, supported by extensive experi-
ments with real-world e-Commerce transaction
data, demonstrates significant improvements in
fraud detection performance compared to the exist-
ing SL models on our payment system.

2 Methodology

2.1 Designing the MDP and RL Framework
We model the e-commerce transaction process as
a finite-horizon MDP, visualized in Figure 2. The
system generates state signals from both legacy SL
risk model scores and transaction stage indicators
(Pre-auth, Post-auth). While there are also many
transactional features that can be used as state sig-
nals, our experiments primarily use SL scores for
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state representation due to their proven predictive
value leveraging all the features, the framework
can theoretically incorporate any transactional fea-
tures available at each stage. The policy agent uses
these state signals to decide between risk responses
("block" or "allow"), with the MDP structure en-
abling sequential decision-making that supervised
learning cannot naturally accommodate.

The agent-environment interaction (Figure 3) de-
fines:

• Si = SL scores and stage indicators at step i

• Ai = possible risk responses (block, pass)

• Ri = R(Si,Ai), the reward function

We maximize the business-driven objective:

Maximize $TP − $FP (1)

subject to $TPstage 1 > $TPstage 2

where dollar-wise $TP-$FP optimization directly
meets the theoretical goal of our risk business,
which corresponds to maximizing fraud prevention
while minimizing Loss of the Gross Merchandise
Value (GMV) from false positives. The decreas-
ing $TP constraint reflects practical fraud patterns
where early detection captures higher-value fraud
attempts.

We employ offline RL with policy gradient meth-
ods (REINFORCE (Williams, 1992)) using histor-
ical transaction data. To address offline evalua-
tion challenges, we firstly try to train with enough
amount of transaction data, and secondly we vali-
date policies on extended test periods (6+ months)
demonstrating consistent performance before pro-
duction deployment.

2.2 Human Reward Function Design

While Equation 1 captures core business objectives,
real-world operations require balancing specific
precision-recall trade-offs across transaction cate-
gories. Here we figured out the reward design that
achieve this implicitly through directly consider-
ing the optimization constraints instead of the opti-
mization goal itself. By transforming operational
constraints into differentiable objectives through
algebraic manipulation, we found that it naturally
merges into the optimization goal considering the
precision block level.

Figure 3: TRISK MDP framework with staged decision
points. States incorporate SL risk scores and stage indi-
cators.

Precision Constraint based Reward Function
Business requirements ($TPstage 1 > $TPstage 2)
dictate precision thresholds αi per stage, with
α1 < α2 enforcing stricter precision in later stages.
Hence we assume the blocking precision inequality
in stage i:

$TPi

$TPi + $FPi
> αi (2)

we derive the reward function through Lagrangian
relaxation:

Ri
precision(s, a) = (1−αi)$TPi−αi$FPi > 0 (3)

Maximizing this implicitly maximizing ($TP - $FP)
while maintaining stage-wise constraints by intro-
ducing the coefficients in front these terms, derived
naturally from the inequality above.

While effective, these human-designed rewards
require careful parameter tuning, and in theory
there could be more effective designs that need
more human efforts to explore. Therefore, we pro-
posed a LLM-enhanced framework automates this
exploration by incorporating the specifications of
policy performance feedback in natural language,
to further enhance the RL reward signals.

2.3 LLM-based Reward Function
Optimization

We propose a framework using LLMs to dynam-
ically optimize reward functions in our evolving
RL algorithm for e-commerce payment fraud de-
tection.

2.3.1 Algorithm Overview
Our method, detailed in Algorithm 1, employs
Enhanced LLM-based Reward Optimization for
RL agents, evolving the reward function to boost
decision-making. The cycle includes:

1. Initialization with environment E , baseline
model Mb, and metrics.
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2. Generation of reward candidates by an LLM,
guided by temperature for novelty.

3. Validation and use of candidates to train RL
agents for fraud detection.

4. Evaluation of detection accuracy and impact,
informing reward success.

5. Self-Reflection: top functions update the
LLM context; failures refine iterations.

6. Repeat steps 2-5 until iteration or conver-
gence.

To ensure the executability of generated reward
functions, we implement a two-step validation pro-
cess: (1) incorporating basic reward function struc-
ture requirements in the prompts, and (2) using
preliminary code checks to confirm that generated
functions fit the required structure. If a function
fails these checks, the LLM regenerates it during
the sampling phase, significantly reducing unexe-
cutable cases, without human in the loop.

2.3.2 Customized In-Context Prompt

The initial and iterative instructions provided to the
LLM are critical to the success of our algorithm.
We construct a domain-specific prompt that out-
lines the objectives of the reward function, incorpo-
rates the RL environment framework, and includes
basic requirements and examples. As shown in
Figure 1, the prompt is dynamically updated with
feedback loop information, allowing the LLM to
adapt its generative process to the evolving require-
ments of the fraud detection task. Examples of
prompts are shown in the following boxes, with
more detailed content in Appendix A.

Initial Instruction Prompts

You are a reward engineer trying to write reward
functions to solve reinforcement learning tasks as
effectively as possible. Your goal is to: (1) ... (2) ...
The goal of my task is: ..., my codes framework of
input data as states and train my policy is shown in
the code: “‘python {...} “‘.
Your reward function should use useful variables from
my codes framework as inputs. As some examples,
here are some example reward functions proposed by
humans: “‘python {...} “‘, and here is the best reward
function signature so far: “‘python {...} “‘ ... The
output of the reward function should consist of: (1) ...
(2) ... ...

Feedback Prompts

We trained a RL...:
1. RL Agent Training info: ...
2. Test evaluation info: ...

Moreover, the ratio between the bad GMV blocked
by first step and the bad GMV blocked by second
step is: {...}/{...} ...
Error occurred during training: {...}
Error occurred during evaluating: {...}

2.3.3 Zero-shot and Few-shots setups
Our approach supports both zero-shot and few-shot
capabilities. In the zero-shot setup, the algorithm
generates reward functions based on general com-
ponent descriptions rather than predefined human-
designed functions. For the few-shot setup, detailed
examples of human-crafted reward functions are
included in the prompt, allowing the model to ref-
erence specific code and build on these exemplars.

Feedback and success metrics play a crucial role
in optimizing the reward function, especially in
zero-shot scenarios. Feedback comprises policy
evaluation results, such as precision-recall on test
data, error reports, and comparative evaluations
of previous best and sub-optimal rewards. Im-
portantly, in cases where no sub-optimal reward
is found, a reflection process allows the LLM to
summarize insights from failed reward functions,
integrating this experience into instructions for sub-
sequent iterations, as described in line 26 of Al-
gorithm 1. This reflective feedback is vital for
zero-shot cases.

Algorithm 1 LLM-based Reward Function Opti-
mization for RL Agent
Require: Niter, Nsamples, Nepisodes, θrecall, Rscores

1: Initialize environment E , baseline modelMb , and evaluation parameters
2: fbest ← InitializeBestRewardFunction(), Initialize LLM temperature parameters
3: Load baseline model performance and set evaluation criteria
4: for iter = 1 to Niter do
5: Initialize feedback and success lists: feedbacks, success
6: Update LLM temperature based on feedback loop criteria
7: for sample_i = 1 to Nsamples do

8: Sample and validate f
sample_i
reward

using LLM with temperature control

9: if valid f
sample_i
reward

then

10: Save f
sample_i
reward

, proceed to training

11: else
12: Re-sample f

sample_i
reward

13: end if
14: end for
15: for each valid f

sample_i
reward

do

16: Ai ← TrainAgent(E, fsample_i
reward

, Nepisodes)

17: feedbacki, successi ←
EvaluateAgent(Ai,Mb, θrecall, Rscores)

18: Append feedbacki to feedbacks and successi to success

19: end for
20: Update fbest based on evaluation results, Update LLM temperature and instruc-

tions for next iteration based on feedback loop outcomes
21: if new fbest found then
22: Update system instructions for LLM to include new best reward function

details
23: else if sub-optimal reward function found then
24: Update system instructions for LLM to include sub-optimal reward function

details as feedback
25: else
26: Let LLM summarize reflections based on the failed reward functions info and

include its experience into the instructions for next iteration
27: end if
28: end for
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2.3.4 Interpretability of LLM-Generated
Reward Functions

While the proposed framework leverages LLMs
to automatically evolve reward functions for RL
agents, it is important to acknowledge that such
LLM-generated reward functions inherently carry a
degree of "black-box" behavior, especially in zero-
shot settings. To enhance interpretability, we em-
bed domain-specific contextual information into
the prompts provided to the LLM.

In both zero-shot and few-shot reward func-
tion design prompts, we explicitly define domain-
specific contexts such as key business metrics —
$TP, $FP, $TN, and $FN — along with their impli-
cations in fraud detection (lines 6–9 in the prompt
example below). These definitions are paired with
optimization objectives and constraints within the
domain context (lines 10–11), further reinforced by
additional descriptions in the instruction prompts
and feedback mechanisms detailed in Section 2.3.2.
This structured context guides the LLM to generate
reward functions that align closely with real-world
business requirements. Take the zero-shot reward
design as an example: in Listing 1, the LLM in-
corporates terms such as $FP and $FN, indicating
its understanding of the trade-offs between $TP
vs. $FP and $TN vs. $FN. It also assigns higher
weights to early-stage rewards (e.g., reward *=
1.2 at current_step == 0 and reward *= 0.9 at cur-
rent_step == 1), reflecting the business requirement
that detecting fraud earlier yields greater value.

Domain-Specific Context Prompts for
Reward Function Design

1. element in action either equals 0 or 1;
2. action == 1 means the transactions that were taken
blocking action, action == 0 means the transactions
that were taken pass action;
3. element in target either equals 0 or 1;
4. target == 1 means the transactions that are tagged
as fraud risk, target == 0 means the transactions are
not tagged as risk;
5. wgt is the tensor of dollarwise weight for each
transaction;
6. e.g. ((action==1) & (target==1) * wgt) means the
tensor that have the True Postive GMV value where
(action==1) & (target==1);
7. e.g. ((action==1) & (target==0) * wgt) means the
tensor that have the False Positive GMV value where
(action==1) & (target==0);
8. e.g. ((action==0) & (target==0) * wgt) means the
tensor that have the True Negative GMV value where
(action==0) & (target==0);
9. e.g. ((action==0) & (target==1) * wgt) means the
tensor that have the False Negative GMV value where
(action==0) & (target==1);

10. the general goal of this reward function is to drive
the agent to increase True Postive GMV and True
Negative GMV, decrease False Positive GMV and
False Negative GMV;
11. this reward function need to drive the agent to
block more potential True Postive GMV at the cur-
rent_step == 0 than at the current_step == 1.

Despite these efforts, certain aspects — such
as why specific parameter choices lead to particu-
lar precision-recall outcomes on certain test data—
remain difficult to fully interpret. Therefore, we
complement the validation of the reward function
design with long-term evaluations (Test L in Ta-
ble 1), demonstrating the stability and practical
effectiveness of the evolved reward functions over
time.

1 def get_reward(current_step, action, target, wgt):
2 reward = (action * target * wgt).float()
3 if current_step == 0:
4 reward *= 1.2
5 elif current_step == 1:
6 reward *= 0.9
7 fn = ((1 - action) * target * wgt).float()
8 reward -= fn * 0.5
9 fp = ((action * (1 - target) * wgt).float())

10 reward -= fp * 0.1
11 low_weight_penalty = (action * (wgt < 50)).float

()
12 reward -= low_weight_penalty * 0.005
13 reward /= wgt
14 return reward
15

Listing (1) Original zero-shot reward function design by
Mixtral8X7B. The calculation of rewards and penalties in both
steps is uniquely different compared to Equation 3 above.

1 def get_reward(current_step, action, target, wgt):
2 gamma_positive = 1.15
3 gamma_negative = 0.9
4 alpha = 1.2
5 reward = 0
6 if current_step == 0:
7 reward = gamma_positive * (
8 ((action == 1) & (target == 1)) * wgt -
9 ((action == 1) & (target == 0)) * (alpha

* 0.005) * wgt -
10 0.15 * ((action == 0) & (target == 1)) *

wgt
11 )
12 elif current_step == 1:
13 reward = gamma_negative * (
14 ((action == 1) & (target == 1)) * wgt -
15 ((action == 1) & (target == 0)) * (alpha

* 0.002) * wgt -
16 0.10 * ((action == 0) & (target == 1)) *

wgt
17 )
18 return reward
19

Listing (2) Original few-shot reward function design by
Mixtral8X7B. This design introduces unique reward terms
compared to Equation 3 above, rather than simply adjusting
the parameters of the human-designed version.

Figure 4: Reward function designs evolved by Mix-
tral8X7B in different contexts: Listing (1) Zero-shot
context, Listing (2) Few-shot context.
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Table 1: Experiment Datasets.

Dataset Time Window Total Fraud Label

Train 2023-09-01 to
2023-09-14

2,136,590 28,226

Test S 2023-09-15 to
2023-09-30

522,105 825

Test L 2023-11-01 to
2024-04-30

6,174,069 7,834

Table 2: Performance of Policy Agent vs. Baseline, on
Test S.

Recall
Levels

Baseline
$Prec

RL Agent
$Prec

Bad GMV
Catch Ratio

@80% 66.57% 69.65% 9.79
@85% 58.79% 64.22% 15.32
@90% 51.27% 55.7% 13.36

2.3.5 Generalizability Discussion
State-of-the-art approaches, such as those pre-
sented by (Ma et al., 2023), have employed evo-
lutionary loops to demonstrate the robustness of
these methods in optimizing RL training processes
within different robotics tasks. However, these
frameworks are primarily tailored to the specific
data and scenarios encountered in robotics, limit-
ing their direct applicability to our domain. There-
fore, our work introduces this novel adaptation of
evolutionary loops for tasks in e-commerce risk
detection, for the first time. By doing so, we first
demonstrate that this evolutionary reward design
loop, leveraging LLMs, can be effectively general-
ized to e-commerce payment fraud scenarios. The-
oretically, this approach can also be extended to
other RL tasks within this domain that share similar
data structures and objectives.

3 Experiments

3.1 Datasets and Evaluation Metrics
We used real-world transaction data focusing on
Pre-auth and Post-auth stages. SL models (gradient
boost machines) scores Si = {Scri0, · · · , Scrij}
on the 2 stages, and stage indicators, represented
the RL state. Data were split, labeled with our key
fraud signals, and evaluated on out-of-time test sets.
Table 1 shows dataset details. Test S, with 522K
transactions, allows for quick performance compar-
isons but may introduce more variance due to its
size. In contrast, Test L, with 6.17M transactions,
offers more robust validation.

We assess performance using a metric for dollar-
wise precision ($Precision) at key dollar-wise recall

($Recall) levels, calculated by our main fraud la-
bel. This metric is crucial as it aims to maximize
legitimate GMV by minimizing $FP transaction
values at a given risk level. For the RL agent scores,
we find combinations of blocking score thresholds
across two stages to achieve the desired overall $Re-
call, then observe the $Precision. For the baseline
model, we use the Pre-auth SL model score, which
is most commonly employed by the policy, to ob-
serve this metric. Due to the complexity of human
analysis in business practice, no cross-stage pol-
icy has been designed previously using SL model
scores as a baseline. Which is also why we need to
propose our RL solution in the first place.

3.2 Experimental Results and Analysis
Part 1: Human-designed Reward Function: In
the first segment, a single RL agent was trained
using a 3-layer neural network with dimensions [8,
32, 8], incorporating dropout layers and GELU
activation functions. The model processed a
four-dimensional input consisting of representative
scores from legacy SL models, which served as
the state representation. The output was the prob-
ability of taking the "block" action. Training was
conducted using the REINFORCE algorithm with
the Adam optimizer.

Multiple trials stabilized results, Table 2 shows
enhanced performance and risk detection efficiency,
with the agent blocking more fraudulent GMV in
the Pre-auth stage.

All training in part 1 was performed on a ma-
chine equipped with a single V100 GPU (32GB
VRAM), 32 CPU cores, and 450GB of RAM.
With our current implementation, iterating over
200 training epochs — generally sufficient for ob-
serving convergence in our experiments — took
approximately 20 minutes per epoch. Each itera-
tion involved processing the full training dataset,
as detailed in Table 1.

Part 2: LLM-enhanced Reward Function: We
employed LLM-enhanced rewards using models
like Mixtral-8x7B, LLaMa-3-8B, and Gemma7B.
Experiments included zero-shot and few-shot se-
tups with varying LLM prompts. Algorithm 1 pa-
rameters included Niter ≈ 60, Nsamples ≈ 10,
Nepisodes ≈ 150, and θrecall ∈ [80%, 85%, 90%].
Results are in Table 3.

Zero-shot scenarios used descriptive prompts
without reward function examples, leading to com-
petitive reward designs, as shown in Listing (1).
Few-shot scenarios also allowed LLMs to mod-
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Table 3: Zero-shot and Few-shot Performance Comparison of LLMs in LLM+RL Approach, on Test S.

Recall Levels Baseline $Prec Zero-shot Evolved RL agent $Prec Few-shot Evolved RL agent $Prec

Mixtral-8x7B Gemma7B LLaMa-3-
8B

Mixtral-
8x7B

Gemma7B LLaMa-3-
8B

@80% 66.57% 72.71% 73.27% 72.86% 73.41% 73.53% 73.74%
@85% 58.79% 69.62% 65.42% 69.40% 70.73% 69.87% 71.70%
@90% 51.27% 57.42% 53.65% 57.06% 58.00% 56.93% 55.90%

ify and create reward functions, as shown in List-
ing (2), improving performance metrics. Zero-shot
setups required more iterations, indicating opti-
mization potential, but overall, LLM-enhanced ap-
proaches showed adaptability and innovation.

Each complete training iteration, encompass-
ing LLM inference, RL agent training, and per-
formance evaluation, required approximately 40
minutes. All experiments in part 2 were conducted
on a machine equipped with 2 V100 GPUs (32GB
VRAM), 32 CPU cores, and 450GB of RAM, with
LLMs loaded in 4-bit precision (load_in_4bit =
True) to reduce VRAM consumption. The pri-
mary computational bottlenecks were identified as
LLM inference and policy evaluation. These com-
ponents represent key areas for future optimization
in the implementation pipeline.

Part 3: Long-term Evaluation: To test RL
agent robustness over time, we extended evaluation
on Test L covering six additional months. Using
the same RL agent, we analyzed performance with
$Prec metric against a baseline model at similar
$Recall thresholds for all LLMs in both zero-shot
and few-shot scenarios.

Figure 5 shows RL agents consistently outper-
forming the baseline over time. Figure 6 illustrates
zero-shot scenarios where RL agents maintained
superior performance.

These evaluations highlight our LLM-enhanced
RL framework’s durability and effectiveness in real-
world applications, supporting continuous deploy-
ment without frequent retraining. More results are
in Appendix B.

3.3 Production Efficiency

Due to the compact architecture and lightweight de-
sign of the RL agent network described above, the
model supports efficient deployment across both
transaction stages. In production, it achieves infer-
ence latencies of less than 50 milliseconds using
standard CPU infrastructure, making it suitable for
real-time fraud detection at scale.

Test Data Time Interval
$P

re
c

30.00%

40.00%

50.00%

60.00%

2023-11
2023-12

2024-1
2024-2

2024-3
2024-4

AVERAGE LLMRL few-shots AVERAGE Baseline

Figure 5: Averaged blocking $Prec@$Recall from 3 LLM
guided RL agents, in the few-shots scenario, on Test L.
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60.00%
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2024-3
2024-4

AVERAGE LLMRL zero-shot AVERAGE Baseline

Figure 6: Averaged blocking $Prec@$Recall from 3 LLM
guided RL agents, in the zero-shots scenario, on Test L.

4 Conclusion

This study introduces an RL and LLM integra-
tion framework for e-Commerce fraud detection,
conceptualizing risk assessment as an MDP and
enabling dynamic sequential strategies. Our ap-
proach, using LLMs to refine reward functions,
surpasses traditional human-designed functions in
efficiency and zero-shot capability. Empirical tests
confirm its superiority over our conventional SL
model, with six-month evaluations demonstrating
robust performance. The lightweight architecture,
is practical for industrial adoption. Future work
includes generalizing to more sequential scenarios
of risk prevention, and exploring online RL.
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A Prompts Design for the LLM RL
framework

In this section, we provide the prompts of our LLM
RL framework.

Prompt 1: Initial Instruction Prompts

You are a reward engineer trying to write re-
ward functions to solve reinforcement learn-
ing tasks as effective as possible. Your goal
is to: (1) write a reward function for the
environment that will help the agent learn
the task described below. (2) try to write im-
proved or try different parameters in the re-
ward function comparing to the reward func-
tions found so far, based on analyzing the
provided reward function feedback informa-
tion below. The goal of my task is: Design
a reward function that enables the RL agent
to make more effective decisions across 2
steps for improved overall performance in
identifying and blocking risky transactions
comparing to a baseline scores in the 1st
step, my codes framework of input data as
states and train my policy is shown in the
code: “‘python {...} “‘.

Prompt 2: Code Generation Instruction
Prompts

Your reward function should use useful vari-
ables from my codes framework as inputs.
As some examples, here are some exam-
ples reward functions proposed by human:
“‘python {...} “‘, and here is the best reward
function signature so far: “‘python {...} “‘
Since the reward function will be decorated
with @torch.jit.script, please make sure that
the code is compatible with TorchScript
(e.g., use torch tensor instead of numpy ar-
ray).
Make sure any new tensor or variable you
introduce is on the same device as the input
tensors. The output of the reward function
should consist:

(1) the completed reward function.
(2) the reward code’s input at-
tributes must follow the format:"def
get_reward(current_step,action,target,wgt):".
(3) the code output should be formatted as
a python code string: "“‘python ... “‘".
(4) if you have extra functions defined in the
reward function, also output these functions
completely in one code block.
(5) your codes and the related annotations
must be consistent.
(6) it is encouraged to only output your com-
pleted reward function python codes in the
beginning of your outputs, for the ease of
code extraction.
(7) remember to use the backslash properly
as a line continuation where you separate
one logic line into multiple physical lines
for better readability.

Prompt 3: Additional Reward Generation
Instruction Prompts with Domain-Specific
Context

information of the get_reward:
def get_reward(current_step,action,target,wgt):
# current_step is one integer;
# if the agent is in step 0, then current_step
== 0;
# if the agent is in step 1, then current_step
== 1;
# current_step either equals 0 or 1 in
get_reward function;
# action and target and wgt are tensors in
size (transaction_batch_size,);
# element in action either equals 0 or 1;
# action == 1 means the transactions that
were taken blocking action, action == 0
means the transactions that were taken pass
action;
# element in target either equals 0 or 1;
# target == 1 means the transactions that are
tagged as fraud risk, target == 0 means the
transactions are not tagged as risk;
# wgt is the tensor of dollarwise weight for
each transaction.;
# e.g. ((action==1) & (target==1) * wgt)
means the tensor that have the True Pos-
tive GMV value where (action==1) & (tar-
get==1);
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# e.g. ((action==1) & (target==0) * wgt)
means the tensor that have the False Posi-
tive GMV value where (action==1) & (tar-
get==0);
# e.g. ((action==0) & (target==0) * wgt)
means the tensor that have the True Nega-
tive GMV value where (action==0) & (tar-
get==0);
# e.g. ((action==0) & (target==1) * wgt)
means the tensor that have the False Nega-
tive GMV value where (action==0) & (tar-
get==1);
# the general goal of this reward function is
to drive the agent to increase True Postive
GMV and True Negative GMV, decrease
False Positive GMV and False Negative
GMV;
# this reward function need to drive the
agent to block more potential True Postive
GMV at the current_step == 0 than at the
current_step == 1;
# the returned reward also need to be a
tensor in size (transaction_batch_size,) or
(transaction_batch_size,1) , it will be aggre-
gated outside this get_reward function
return reward

Prompt 4: Feedback Prompts

We trained a RL policy using the new found
reward function code and tracked my fo-
cused metric feedback from a out-of-date
test data:
1. RL Agent Training info: after training in
{...} episodes, the final blocking action num-
ber of the RL agent in first step is: {...}, and
the final blocking action number of second
step is: {...}, and the final reward value is:
{...} comparing to the initial reward value
is: {...}. Normally we hope to observe the
RL agent take more blocking action in the
first step than in the second step, and the
final reward value should be larger than the
initial value.
2. Test evaluation info: after 2 steps actions
of a policy agent, we observed the final best
precision performance by the agent under
some targeting recall thresholds levels: {...}
and compare with the baseline model, the
goal is have better precision compare to the
baseline model. The detail of the observa-

tions are: Our 2 steps policy agent can reach
the similar recall:{...} and the agent can
reach at best the precision: {...}. Moreover,
the ratio between the bad GMV blocked
by first step and the bad GMV blocked by
second step is: {...}/{...}, and the ratio be-
tween the total GMV blocked by first step
and the total GMV blocked by second step
is {...}/{...};
Error occurred during training: {...}
Error occurred during evaluating: {...}

Prompt 5: Reflection Prompts if No Usable
Reward Function Found

However, after an iteration of reward de-
signs and validations, all of your designed
reward functions failed in either training or
evaluation, your designs and their regarding
failure info are listed here: {...}
With all the feedback information, reflect
the failed experience regards to your reward
functions and output a detailed guidance of
reward function design for yourself briefly,
in less than length of 1000 tokens:

Prompt 6: Reflection Prompts if A Better
Reward Function Found

The previous best reward function’s policy
agent performance: when the recall thresh-
old is {...}, the baseline model can reach the
precision: {...}. A better new found reward
function in iteration {...}:{...}.

Prompt 7: Reflection Prompts if A Sub-
optimal Reward Function Found

You found a sub-optimal new reward function in iter-
ation {...}:{...}, which has worse performance than
the previously best reward function.

B Long-term Test evaluations with
different LLM

In this appendix, we present detailed figures illus-
trating the performance of different models evalu-
ated in this study.
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Figure B.1: Averaged blocking $Prec@$Recall from
Mixtral-8X7B guided RL agents, in the few-shots sce-
nario.

Figure B.2: Averaged blocking $Prec@$Recall from
LLaMa-3-8B guided RL agents, in the few-shots sce-
nario.

Figure B.3: Averaged blocking $Prec@$Recall from
Gemma7B guided RL agents, in the few-shots scenario.

Figure B.4: Averaged blocking $Prec@$Recall from
Mixtral-8X7B guided RL agents, in the zero-shot sce-
nario.

Figure B.5: Averaged blocking $Prec@$Recall from
LLaMa-3-8B guided RL agents, in the zero-shot sce-
nario.

Figure B.6: Averaged blocking $Prec@$Recall from
Gemma7B guided RL agents, in the zero-shot scenario.
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