
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 1272–1286
July 28-30, 2025 ©2025 Association for Computational Linguistics

CodeIF: Benchmarking the Instruction-Following Capabilities of Large
Language Models for Code Generation

Kaiwen Yan1 *, Hongcheng Guo1 * †, Xuanqing Shi2

Shaosheng Cao3, Donglin Di2, Zhoujun Li1

1Beihang University, 2Tsinghua University, 3Xiaohongshu
lin_rany@foxmail.com, hongchengguo@buaa.edu.cn, sxq23@mails.tsinghua.edu.cn

caoshaosheng@xiaohongshu.com, donglin.ddl@gmail.com, lizj@buaa.edu.cn

Abstract

With the rapid advancement of Large Lan-
guage Models (LLMs), the demand for robust
instruction-following capabilities in code gen-
eration tasks has grown significantly. Code gen-
eration not only facilitates faster prototyping
and automated testing, but also augments devel-
oper efficiency through improved maintainabil-
ity and reusability of code. In this paper, we
introduce CodeIF, the first benchmark specifi-
cally designed to assess the abilities of LLMs
to adhere to task-oriented instructions within
diverse code generation scenarios. CodeIF en-
compasses a broad range of tasks, including
function synthesis, error debugging, algorith-
mic refactoring, and code explanation, thereby
providing a comprehensive suite to evaluate
model performance across varying complexity
levels and programming domains. We conduct
extensive experiments with LLMs, analyzing
their strengths and limitations in meeting the de-
mands of these tasks. The experimental results
offer valuable insights into how well current
models align with human instructions, as well
as the extent to which they can generate con-
sistent, maintainable, and contextually relevant
code. Our findings not only underscore the crit-
ical role that instruction-following LLMs can
play in modern software development, but also
illuminate pathways for future research aimed
at enhancing their adaptability, reliability, and
overall effectiveness in automated code genera-
tion. 1.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), automated code generation is undergo-
ing a profound transformation. While LLMs have
demonstrated promising capabilities in program-
ming tasks, their ability to comprehend and exe-

*Equal contribution
†Corresponding Author

1CodeIF data and code are publicly available
https://github.com/lin-rany/codeIF

cute complex instructions remains a challenge (Liu
et al., 2024; Zhang et al., 2023). To drive progress
in this field, a comprehensive and systematic eval-
uation framework is essential (Jiang et al., 2024;
Zhou et al., 2023).

This study introduces CodeIF, a benchmark
designed to assess LLMs’ instruction-following
capabilities in code generation. Built upon in-
sights from existing evaluation sets like McE-
val (Chai et al., 2024) and FullStackBench (Liu
et al., 2024), CodeIF is tailored for multi-language
environments, covering Java, Python, Go, and C++.
It categorizes tasks by difficulty and systemati-
cally evaluates models across 50 fine-grained sub-
instructions, providing a nuanced understanding of
their strengths and weaknesses.

To ensure rigorous assessment, we propose four
novel evaluation metrics: Completely Satisfaction
Rate (CSR), Soft Satisfaction Rate (SSR), Rigorous
Satisfaction Rate (RSR), and Consistent Continuity
Satisfaction Rate (CCSR). These metrics measure
models’ ability to handle multi-constraint problems
from different perspectives, including full compli-
ance, average constraint satisfaction, logical coher-
ence, and consistency in instruction execution. By
offering a structured evaluation framework, CodeIF
provides valuable insights into the current state and
future direction of LLM-driven code generation.

Overall, our contributions are mainly four-fold:

1. Innovative Benchmark. We introduce
CodeIF, the first systematic benchmark for
evaluating LLMs’ instruction-following capa-
bilities in code generation. CodeIF catego-
rizes tasks into 8 main types and 50 fine-
grained sub-instructions, ensuring a compre-
hensive assessment of model performance.

2. Automated High-Quality Instruction Gen-
eration. Leveraging advanced LLMs like
GPT-4, we develop a method to automat-
ically generate constraint-based instruction

1272

https://github.com/lin-rany/codeIF

LLM

…

Seed Question Selected Question

Internet

constraint collection

Instruction

Human-Expert

High Quality Question
Build Denpendence

CodeIF Data

Pipeline for CodeIF Construction

Figure 1: The construction process of CodeIF. The first
step involves the construction of constraint instructions,
followed by the assembly of the dataset, and finally the
construction of dependencies between instructions.

lists. This approach enhances evaluation
depth by incorporating instructional depen-
dencies while minimizing human interven-
tion.

3. Novel Evaluation Metrics. We propose a
new framework with four key metrics (CSR,
SSR, RSR, and CCSR) tailored for code gen-
eration tasks. These metrics assess models’
ability to handle multi-constraint problems
across different dimensions, offering deeper
insights and new benchmarks for future re-
search.

4. Extensive Evaluation and Analysis. We
systematically evaluate 35 state-of-the-art
LLMs, including both open-source and com-
mercial models, across multiple programming
languages and difficulty levels. Our experi-
ments uncover current strengths and limita-
tions, providing clear directions for future ad-
vancements.

2 CODEIF

Overview: As shown in Figure 1, CodeIF is con-
structed by collecting and refining constraint in-
structions from real code generation tasks, then
combining these tasks with LLM outputs and hu-
man review to create a high-quality evaluation
dataset.

2.1 Building

The construction of the CODEIF dataset involves
two phases: collecting constraint instructions (Sec-
tion 2.2) and processing data to create the final
CodeIF evaluation dataset (Section 2.3).

Figure 2: CodeIF Constraints Instruction Distribution

2.2 Constraint Instructions Collection

The first phase of our work centers on code gener-
ation, constructing the CodeIF evaluation dataset
through two steps: (1) collecting and verifying con-
straint instructions, and (2) using them for dataset
generation.

We analyze benchmarks like McEval (Chai
et al., 2024) and FullStackBench (Liu et al., 2024)
to develop an instruction system spanning eight
categories, each targeting specific aspects of code
generation for a fine-grained assessment of LLMs’
instruction-following abilities. Constraints are de-
composed into atomic instructions with explicit
directives, enabling objective binary evaluation
(yes/no) and minimizing subjective interpretation.
The eight categories cover both architectural-level
specifications and variable-level implementation
controls, ensuring comprehensive constraint cover-
age. Specifically, the Global category evaluates ad-
herence to overarching specifications, while Struc-
tural Control focuses on control structures (e.g.,
loops, conditionals) and data structures. Variable
constraints assess naming and initialization. Higher
abstraction levels include Interface, Function, and
Class constraints for program components, while
the File category tests cross-file dependencies and
external library handling. The Combination cate-
gory integrates constraints across dimensions, chal-
lenging models with complex scenarios.

Figure 2 presents CodeIF’s distribution across
programming languages and categories. The eval-
uation system features 8 categories and 50 fine-
grained constraint instructions, systematically
assessing LLMs’ code generation performance. By
organizing constraints clearly, the system identifies

1273

strengths and weaknesses, guides optimization, and
advances automated code generation. The full list
of constraints is in Appendix 4.

2.3 Data Construction
Multi-Language and Difficulty-Differentiated
Benchmark Design To ensure diversity and com-
prehensiveness in evaluation, we carefully selected
code generation tasks across four mainstream
programming languages—Java, Python, Go, and
C++—from leading benchmarks such as McE-
val (Chai et al., 2024) and FullStackBench (Liu
et al., 2024). These languages, spanning both dy-
namic and static paradigms, create a rich linguistic
environment that enhances multi-language assess-
ment.

To further refine the evaluation, we categorize
tasks into two difficulty levels: Easy and Hard.
The Hard set includes longer, more intricate in-
struction lists, designed to rigorously test LLMs’
ability to handle complex constraints.

Automated Generation of Constraint Instruc-
tions We used large language models (LLMs)
like GPT-4 to create task-specific instruction lists
for code generation tasks. We prepared 20 detailed
examples and formulated concise atomic instruc-
tions for accuracy. These examples guided LLMs
in refining tasks and streamlining instructions to
enhance clarity and output quality.

Constructing Instruction Dependencies We uti-
lized LLMs to map dependencies between atomic
constraints, improving our evaluation framework’s
precision and verification accuracy. By understand-
ing the dependencies among instructions, we out-
lined clear steps for tasks like function creation,
which involve naming the function, defining pa-
rameter types, and coding the body. Incorporating
these dependencies enhances our evaluation sys-
tem, more accurately assessing the model’s capabil-
ity with complex instructions and identifying areas
for improvement. Figure 3 illustrates a CodeIF task
with its instruction sequence and dependencies.

2.4 Data Analysis
CodeIF Static Analysis Table 1 categorizes the
dataset into three difficulty levels: Easy, Hard,
and Full. Both Easy and Hard sets contain 600
tasks, while the Full dataset combines them, to-
taling 1,200 tasks across Go, Python, Java, and
C++. Java has the most tasks (353), followed by
Python (348), C++ (269), and Go (230). The Easy

Task
Implement a caching module with an LRU (Least Recently Used) replacement policy.

InstructionType

1. Your code should be written in C++.
2. Your answer in total should not exceed 50 lines.
3. Your code should not use the mutable keyword.
4. Your code should not use data structure std::unordered_map.
5. Your code should use for-loop and not use while keyword.
6. Your code should define a variable named cacheSize.
7. Variable cacheSize, type should be size_t.
8. Your code should not use any functions from the namespace std.
9. Your code should define an interface named CacheInterface.
10. Your code should define a class named LRUCache.
11. Your code should be organized in namespace named EasyCache
12 .Your code should define a class named LRUCache that implements the CacheInterface interface.
13. In your code, the class LRUCache should have these properties capacity, ttl, cacheMap, and accessList.
14. In your code, the class LRUCache should have these methods size, add, and get.

global
global
global
structural control
structural control
variable
variable
function
interface
class
file
combination
combination
combination

[]
[1]
[1]
[1]
[1]
[1]
[1,6]
[1]
[1]
[1]
[1]
[1,9,10]
[1,10]
[1,10]

Dependence

Figure 3: Specific cases of the CodeIF dataset, ’Task’
denotes the specific generation task, ’Type’ refers to
the type of constraint, and ’Dependence’ indicates the
prerequisite constraints for this constraint.

Set Num Avg.Instr Go Python Java C++
Easy 600 11.99 127 165 176 132
Hard 600 13.80 103 183 177 137
Full 1200 12.90 230 348 353 269

Table 1: CodeIF dataset statistics, showing the statis-
tical information of different difficulty classifications.
Avg.Instr represents the average length of the atomic
constraint instruction list.

set averages 11.99 instructions per task, the Hard
set 13.8, and the Full dataset 12.9, reflecting in-
creasing complexity. Figure 4 shows task length
distribution.

Constraint Instruction Analysis Table 2com-
pares instruction distribution across difficulty lev-
els. The Hard set consistently has more instruc-
tions per category than the Easy set, with the
Global category averaging 2.5 instructions in Easy
and over 3 in Hard. This indicates greater chal-
lenges for models as task complexity rises. More
analysis is in Appendix D.

3 Metrics

Ensuring that large language models (LLMs) accu-
rately follow instructions is crucial for code gen-
eration. To precisely evaluate this capability, we
introduce four novel metrics designed to assess
how LLMs handle code generation tasks with mul-

Figure 4: The distribution of atomic instruction list
lengths in datasets of different difficulties.

1274

Set Global Structural Control Variable Interface Function Class File Combination
Easy 1638 1008 1336 427 569 544 723 953
Hard 1890 1193 1479 505 659 623 802 1142
Full 3528 2201 2815 932 1228 1167 1525 2095

Table 2: CodeIF dataset statistics information, showing the distribution of atomic restriction instruction categories
under different difficulty classifications.

tiple constraints: Completely Satisfaction Rate
(CSR), Soft Satisfaction Rate (SSR), Rigorous
Satisfaction Rate (RSR), and Consistent Conti-
nuity Satisfaction Rate (CCSR). These metrics
provide a comprehensive evaluation from different
perspectives.

For a dataset with m problems, each problem
contains a set of ni constraints. We define CSR
and SSR as follows:

Completely Satisfaction Rate (CSR):

CSR =
1

m

m∑

i=1




ni∏

j=1

ri,j


 (1)

where ri,j ∈ [0, 1] indicates whether the j-th con-
straint in the i-th problem is satisfied.

Soft Satisfaction Rate (SSR):

SSR =
1

m

m∑

i=1

(∑ni
j=1 ri,j

ni

)
(2)

SSR evaluates the average proportion of constraints
satisfied per problem, providing a more flexible
assessment.

Rigorous Satisfaction Rate (RSR) In code gen-
eration, some constraints depend on prior instruc-
tions, particularly in Combination constraints. To
account for dependencies, we define RSR as:

RSR =
1

m

m∑

i=1



∑ni

j=1

[
ri,j ·

∏
k∈Di,j

ri,k

]

ni




(3)
where Di,j represents the set of constraints that the
j-th constraint in the i-th problem depends on.

Consistent Continuity Satisfaction Rate (CCSR)
In many code generation tasks, maintaining con-
tinuous adherence to instructions is essential. To
measure this ability, we define CCSR as:

CCSR =
1

m

m∑

i=1

Li

ni

, Li = max
{
l
∣∣∣ ∃t∈ [1, ni−l+1],

t+l−1∏

j=t

ri,j = 1
}

(4)

where Li represents the longest consecutive se-
quence of satisfied constraints in problem i.

4 Experiment

4.1 Experimental Setup

The temperature coefficient is set to 0 to ensure
output determinism, with a maximum generation
length of 4096 tokens. All other settings follow the
official default parameters for each model. Com-
mercial API models are accessed through the latest
available interface as of December 2024. All ex-
periments are conducted using the official API and
8 H800(80G).

4.2 Automatic Evaluation

To ensure robust evaluation, we used LLMs and
human experts to verify model adherence to atomic
constraints. Constraints were decomposed into
atomic elements, enabling objective binary eval-
uations (Yes/No) over subjective judgments. Fol-
lowing FairEval (Wang et al., 2023a), GPT-4-1106-
Preview was the primary evaluation tool (prompt
details in Appendix A). Three domain experts man-
ually annotated 150 stratified samples. Statistical
analysis showed strong agreement, with Pearson
correlations of 0.87 (LLM-human) and 0.85 (inter-
human), confirming high consistency. Baselines
are in Appendix C.

4.3 Main Experiments

Table 3 evaluates CodeIF using four metrics: CSR,
SSR, RSR, and CCSR. Detailed results are in Ap-
pendix B.

Overview. DeepSeek-V3 and Claude-3-5-
Sonnet-20241022 lead across metrics, excelling in
complex tasks. However, the highest CSR on Hard
tasks is just 0.362, showing challenges in meeting
strict constraints.

Model Scale Trends. Larger models generally
perform better, as seen in Qwen2.5 series. How-
ever, the Llama3 series shows inconsistent results,
highlighting the importance of architecture, data
quality, and optimization.

Open vs. Closed Models. Closed-source mod-
els like GPT-4O and Claude-3-5 outperform open-

1275

Models
CSR SSR RSR CCSR

Full Easy Hard Full Easy Hard Full Easy Hard Full Easy Hard

Llama-3.2-1B-Instruct 0.034 0.046 0.022 0.218 0.277 0.159 0.182 0.231 0.132 0.152 0.197 0.107
Llama-3.1-8B-Instruct 0.145 0.187 0.102 0.467 0.544 0.388 0.418 0.493 0.340 0.370 0.444 0.295

Qwen2.5-Coder-7B-Instruct 0.142 0.198 0.087 0.514 0.590 0.438 0.453 0.533 0.373 0.390 0.463 0.318
Qwen2.5-7B-Instruct 0.153 0.201 0.104 0.535 0.599 0.471 0.475 0.546 0.405 0.416 0.479 0.353

Ministral-8B 0.161 0.205 0.116 0.552 0.614 0.489 0.486 0.552 0.419 0.431 0.490 0.371
Gemma-2-9B-It 0.171 0.210 0.131 0.573 0.642 0.504 0.513 0.587 0.440 0.445 0.508 0.383

Qwen2.5-Coder-32B-Instruct 0.365 0.422 0.307 0.736 0.767 0.704 0.679 0.723 0.635 0.634 0.669 0.599
Gemma-2-27B-It 0.245 0.300 0.190 0.658 0.709 0.607 0.596 0.652 0.540 0.533 0.588 0.478

Qwen2.5-32B-Instruct 0.294 0.337 0.251 0.680 0.722 0.638 0.621 0.674 0.568 0.560 0.604 0.515
Qwen2.5-72B-Instruct 0.281 0.319 0.244 0.685 0.734 0.634 0.621 0.677 0.564 0.569 0.619 0.518
Llama-3.3-70B-Instruct 0.307 0.359 0.255 0.698 0.749 0.647 0.632 0.691 0.574 0.589 0.643 0.536

Gemini-Exp-1206 0.357 0.410 0.303 0.744 0.781 0.707 0.685 0.734 0.636 0.636 0.675 0.597
GPT-4O-2024-11-20 0.383 0.441 0.325 0.748 0.792 0.702 0.689 0.745 0.633 0.650 0.698 0.602

Claude-3-5-Sonnet-20241022 0.444 0.525 0.362 0.727 0.784 0.669 0.692 0.757 0.626 0.652 0.715 0.587
Deepseek-V3 0.414 0.468 0.359 0.821 0.847 0.794 0.764 0.806 0.723 0.712 0.743 0.680

Table 3: CodeIF evaluation results of different difficulties. We use bold font to mark the best results in all models.

Figure 5: Performance of different LLMs on the CodeIF
evaluation across instruction categories, measured by
SSR.

source models, especially under complex con-
straints. While large open-source models (e.g.,
Qwen2.5-72B-Instruct) are competitive, they lag
due to differences in data quality and RLHF tech-
niques.

Task Difficulty Impact. Performance drops with
increasing task complexity. For instance, GPT-4O’s
CSR falls from 0.441 on Easy tasks to 0.325 on
Hard tasks, highlighting the challenge of strict con-
straints.

5 In-Depth Analysis

5.1 Performance Analysis Across Instruction
Types

Figure 5 compares LLM performance across in-
struction categories, revealing notable variations.
DeepSeek-V3 leads overall, excelling in combi-
nation tasks (0.831) and global structure control,

though weaker in variable handling, reflecting its
optimization focus. Meta’s Llama series shows
a clear correlation between model size and per-
formance, with larger variants (Llama-3.3-70B-
Instruct) outperforming smaller ones (Llama-3.2-
1B-Instruct). However, size alone is not deci-
sive; comparisons with similarly sized models like
Google’s Gemma highlight the role of architecture
and training methods in shaping performance.

5.2 Cross-Language Performance Analysis of
LLMs

Figure 6 compares the performance of leading
LLMs across C++, Java, Python, and Go, high-
lighting trends at both model and language levels.
At the model level, DeepSeek-V3 leads with the
highest CCSR in C++ (0.725), Java (0.753), and Go
(0.722), and an RSR of 0.787 in Java. Claude-3-5-
Sonnet excels in Java with the highest CSR (0.504)
and RSR (0.749), but shows lower SSR in Python
(0.703). GPT-4O demonstrates balanced perfor-
mance, ranking second in Python’s CSR (0.355)
and RSR (0.682), with minimal variance (CV =
0.18). At the language level, C++ is the most
challenging due to complex template metaprogram-
ming. Java shows high inter-model variance, with
Claude-3-5-Sonnet performing best. Go achieves
the highest SSR but fluctuates in RSR. These re-
sults highlight cross-language generalization differ-
ences and suggest optimization areas like depen-
dency handling and paradigm consistency.

1276

Figure 6: SSR scores of LLMs across different programming languages in the CodeIF evaluation.

5.3 Analysis of Instruction Adherence
Deviations

Analysis of model-generated responses shows
frequent deviations from instructions, especially
in naming conventions and formatting con-
straints. Models often ignore global formatting
rules, such as line limits, and inconsistently fol-
low naming conventions. For example, when in-
structed to use PascalCase, models sometimes
output lowercase or underscore-separated formats
(e.g., incorrectly transforming current_power
into CurrentPower). A notable issue is the dis-
regard for prohibitive instructions. For instance,
models often use if statements despite being in-
structed to avoid them in favor of ternary operators
or data structures like dictionaries, revealing gaps
in constraint enforcement.

5.4 Improving Instruction Compliance

Appendix Table 5 highlights strategies to improve
adherence. Supervised Fine-Tuning (SFT) proves
effective, especially in the Llama series, while
larger models like Qwen2.5-72B-Instruct outper-
form smaller ones in instruction-following accu-
racy. Key improvements include prioritizing hard
constraints (e.g., syntax rules) over soft guidelines
(e.g., coding styles). Patterned code generation can
replace conditional statements with lookup tables
or state machines. A naming convention engine can
automate variable name formatting (e.g., convert-
ing snake_case to PascalCase). Abstract Syntax
Tree (AST) analysis can detect and transform pro-
hibited structures, such as replacing for loops with
while loops. Conflict resolution mechanisms can
address contradictory instructions, offering alter-
native solutions when certain language features
are unavailable (e.g., using Python’s alternatives to
switch-case).

6 Related Work

Code generation and instruction-following are
pivotal capacities under examination in AI re-
search (Feng et al., 2020; Sun et al., 2024; Luo
et al., 2024; Wang et al., 2023b; Kim et al., 2018;
Li et al., 2023; Lu et al., 2021; Li et al., 2022; Wei
et al., 2023; Nijkamp et al., 2023b; Zhuo et al.,
2024; Jain et al., 2024; Nijkamp et al., 2023a;
Zhang et al., 2023; Allal et al., 2023; Lozhkov
et al., 2024a; Roziere et al., 2023; Lozhkov et al.,
2024b; Wang et al., 2021; Yan et al., 2023). Sev-
eral benchmarks have been devised to appraise
these capabilities in large-scale models. For code
generation, benchmarks like McEval (Chai et al.,
2024), FullStackBench (Liu et al., 2024), Re-
pocoder (Zhang et al., 2023), Repobench (Liu et al.,
2023), and LiveCodeBench (Jain et al., 2024) have
been notable. Similarly, instruction-following ca-
pacities are gauged through benchmarks such as
InfoBench (Qin et al., 2024), CFBench (Zhang
et al., 2024), Instruct-following (Zhou et al., 2023),
and FollowBench (Jiang et al., 2024), each tailored
to assess different aspects of following instructions
given to models.

7 Conclusion

This study introduces CODEIF, a benchmark for
evaluating the instruction-following capabilities of
LLMs in code generation. Covering Java, Python,
Go, and C++, CodeIF constructs a diverse test
set with constraints ranging from global to spe-
cific variables. It introduces novel evaluation met-
rics—Completely Satisfaction Rate (CSR), Soft
Satisfaction Rate (SSR), Rigorous Satisfaction
Rate (RSR), and Consistent Continuity Satis-
faction Rate (CCSR)—to assess multi-constraint
handling across multiple dimensions.

1277

8 Limitations

Limited Language Support. CodeIF includes
key languages like Java, Python, Go, and C++,
but excludes popular ones like JavaScript, Ruby,
and Swift. Expanding language coverage would
improve its applicability in diverse contexts.
Static Evaluation Focus. CodeIF focuses mainly
on static code properties, such as structure and
naming conventions, while overlooking dynamic
factors like runtime behavior, performance, and
debugging. Including dynamic evaluation would
better reflect real-world development challenges.
Uniform Metric Weighting. The metrics (CSR,
SSR, RSR, CCSR) treat all constraints equally,
which may not align with practical priorities. For
example, syntactic correctness is often more criti-
cal than naming conventions. Introducing weighted
scoring could enhance the interpretability of model
performance.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric
Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli
Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 technical
report. Preprint, arXiv:2412.08905.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin,
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas-
sively multilingual code evaluation. arXiv preprint
arXiv:2406.07436.

DeepSeek-AI. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report. Preprint, arXiv:2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2024. Follow-
bench: A multi-level fine-grained constraints follow-
ing benchmark for large language models. Preprint,
arXiv:2310.20410.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong
Oh, and Pramod Viswanath. 2018. Deepcode: Feed-
back codes via deep learning. Advances in neural
information processing systems, 31.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Siyao Liu, He Zhu, Jerry Liu, Shulin Xin, Aoyan Li, Rui
Long, Li Chen, Jack Yang, Jinxiang Xia, Z. Y. Peng,
Shukai Liu, Zhaoxiang Zhang, Ge Zhang, Wenhao
Huang, Kai Shen, and Liang Xiang. 2024. Fullstack
bench: Evaluating llms as full stack coders. Preprint,
arXiv:2412.00535.

Tianyang Liu, Canwen Xu, and Julian J. McAuley.
2023. Repobench: Benchmarking repository-level
code auto-completion systems. abs/2306.03091.

1278

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2310.20410
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2412.00535
https://doi.org/10.48550/ARXIV.2306.03091
https://doi.org/10.48550/ARXIV.2306.03091

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024a. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024b. Starcoder 2 and the stack v2: The next
generation.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023b. Codegen: An open large language
model for code with multi-turn program synthesis.
In International Conference on Learning Representa-
tions.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench:
Evaluating instruction following ability in large lan-
guage models. Preprint, arXiv:2401.03601.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.

Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin,
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun
Yang, and Zhoujun Li. 2024. Unicoder: Scaling
code large language model via universal code. arXiv
preprint arXiv:2406.16441.

Gemini Team. 2024a. Gemini: A family of highly capa-
ble multimodal models. Preprint, arXiv:2412.19437.

Gemma Team. 2024b. Gemma: Open models based
on gemini research and technology. Preprint,
arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023a. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for code
understanding and generation.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehensive
multilingual benchmark for code translation.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. Repocoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570.

Tao Zhang, Yanjun Shen, Wenjing Luo, Yan Zhang,
Hao Liang, Tao Zhang, Fan Yang, Mingan Lin, Yu-
jing Qiao, Weipeng Chen, Bin Cui, Wentao Zhang,
and Zenan Zhou. 2024. Cfbench: A comprehensive
constraints-following benchmark for llms. Preprint,
arXiv:2408.01122.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

1279

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2401.03601
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2408.01122
https://arxiv.org/abs/2408.01122
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

A Prompt Template

Prompt for Instruction Generation

You are an instruction compliance evaluator, required to assess the instruction compliance ability
of large models. Therefore, you need to generate a series of data for the code generation instruction
detection of large models.
[Input Format]
I will input a series of data, and you need to generate a dictionary based on these data, which
includes two fields “question” and “instruction_list”
Original question:
{Original question}
Original instruction list:
{instruction_list}
Input Explanation
The original question is the original question. It contains the original code generation problem.
The original instruction list is the original instruction list. It contains randomly generated code
compliance instructions. Some instructions will contain directive keywords that need to be replaced
and are wrapped in {{}}.
Return Format
Return a json data, do not have extra output. The returned dictionary contains two fields: “question”
and “instruction_list”
The format is as follows:

{
"question": "Optimized question",
"instruction_list": [

{
"instruction_id": "id1",
"instruction": "Instruction 1"

}
]

}

Explanation
“question”: It is the optimized question, which does not contain any directive instructions, only
contains the explanation of the original question. It does not contain any restrictions on the code.
Move the instructions in the question to the instruction list
“instruction_list”: It is the optimized instruction list. You should optimize according to the meaning
of the question. More in line with the meaning of the question. Instead of directly outputting the
original instruction list, note that you should replace all directive keywords that need to be replaced
and are wrapped in , and the final output should not contain directive keywords that need to be
replaced.
Generation Requirements
question: Please generate the optimized question based on the following data, which does not
contain any directive instructions, only contains the core content of the original question.
instruction_list: Originated from the input original instruction list. If there are instructions that
completely conflict with the meaning of the question or instructions that conflict with each other
You should delete as little as possible, you should modify more. Please replace according to
the content in the original instruction_list, you should delete as little as possible. Unless it is
contradictory instructions, or instructions that cannot be achieved at all, if you only need to generate
additional code to meet the requirements, you can replace it.

1280

Prompt for Code Generation

As a programming assistant, your task is to generate code snippets based on the user question and
instructions given below:
Please consider the following points while generating the code snippet:
- Make sure you follow the user instructions word to word. If the instruction says to use a specific
language or a specific method, use exactly that.
- Your output should be a valid code snippet in the programming language indicated in the question
or the instructions.
- Pay close attention to the syntax and formatting rules of the programming language that you are
using. The code should be well-formatted and easy to read.
- Make sure that the code snippet you are generating is efficient and is not overly complicated.
Output Format:
The output should be a valid, well-formatted, and efficient code snippet that adheres to the above
question and instructions.
Task information
User Question:
{question}
Instructions:
{instructions_str}
Please generate the code snippet based on the above information:

Prompt for Answer Judgment

As a programming assistant, your task is to evaluate whether the generated code strictly follows
the instructions given in light of the user’s problem and directives. You need to return a list of
the same length as the instructions, containing only ’Yes’ and ’No’, indicating whether the model
adhered to each specific instruction.
Consider the following when making judgments:
- You must strictly follow the user’s instructions. If the instruction requires the use of a specific
language or method, you must explicitly check if the code utilizes it.
- Your output should be a list of the same length as the instructions, containing only ’Yes’ and ’No’.
- Pay close attention to the programming language syntax and formatting rules you are evaluating.
The code should be neatly organized and easy to read.
- The list you generate should be valid and not overly complex.
Task Information
User question:
{question}
Instructions:
{instructions_str}
Model-generated response:
{generated_code}
Based on the information provided, determine whether the model has followed the instructions,
and return a list of the same length as the instructions, containing only ‘Yes’ and ‘No’. Please
note!!! Your output should only contain the list, with no other content. The items in the list should
only be ‘Yes’ and ‘No’, with no other words included.

B More Resluts

1281

ID Type Instruction Format Format Keys

1 global Your entire response should be written in {programming_language}, the
use of other programming languages is not allowed.

["programming_language"]

2 global Your code lines should not exceed {characters_num} characters. ["characters_num"]
3 global Your code should use global variables. []
4 global Your code should not use global variables. []
5 global Your function should have at most {parameter_count} parameters. ["parameter_count"]
6 global Your code should not have more than {function_count} functions. ["function_count"]
7 global Your code should not have more than {class_count} classes. ["class_count"]
8 global Your code should not use the {keyword} keyword. ["keyword"]
9 global Your function should not exceed {line_num} lines. ["line_num"]

10 global Your answer in total should not exceed {line_num} lines. ["line_num"]
11 global Your code should use the {keyword} keyword. ["keyword"]
12 structural control Your code should use data structure {data_structure}. ["data_structure"]
13 structural control Your code should not use data structure {data_structure}. ["data_structure"]
14 structural control Your code should use for-loop. []
15 structural control Your code should not use for-loop. []
16 structural control Your code should use while-loop. []
17 structural control Your code should not use while-loop. []
18 structural control Your code should use if statement for decision making. []
19 structural control Your code should not use if statement for decision making. []
20 structural control Your code should use switch statement for decision making. []
21 structural control Your code should not use switch statement for decision making. []
22 variable Your code should define a variable named {variable_name}. ["variable_name"]
23 variable Your code should define an enumeration named {enumeration_name} ["enumeration_name"]
24 variable The variable names in your code should follow the {naming_convention}

naming convention
["naming_convention"]

25 variable Variable {variable_name}, type should be {variable_type}. ["variable_name", "variable_type"]
26 variable Variable {variable_name}, should be a global variable. ["variable_name"]
27 variable Variable {variable_name}, should not be a global variable. ["variable_name"]
28 variable Variable {variable_name}, the initial value should be {variable_value}. ["variable_name", "variable_value"]
29 variable Variable {variable_name}, should be a constant. ["variable_name"]
30 variable Variable {variable_name} should not be a constant. ["variable_name"]
31 function Your code should include a function named {function_name}. ["function_name"]
32 function The function names in your code should follow the {nam-

ing_convention}. naming convention
["naming_convention"]

33 function Your code should not use any functions from the {disal-
lowed_function_list}.

["disallowed_function_list"]

34 interface Your code should define an interface named {interface_name}. ["interface_name"]
35 interface The interface names in your code should follow the {naming_convention}

naming convention.
["naming_convention"]

36 class Your code should define a class named {class_name}. ["class_name"]
37 class The class names in your code should follow the {naming_convention}

naming convention.
["naming_convention"]

38 file Your code should be organized in a package named {package_name}. ["package_name"]
39 file Your code should import the following libraries {library_list}. ["library_list"]
40 file Your code should use the function {function_name} from the library

{library_name}.
["function_name", "library_name"]

41 file Your code should not use the following libraries {disal-
lowed_library_list}.

["disallowed_library_list"]

42 combination You should initialize an object named {object_name} as an instance of
the {class_name} class using {parameters_name_list} for initialization.

["object_name", "class_name", "param-
eters_name_list"]

43 combination You should define an interface named {interface_name} that includes
these methods {method_name_list}.

["interface_name",
"method_name_list"]

44 combination Your code should define a class named {class_name} that implements
the {interface_name} interface.

["class_name", "interface_name"]

45 combination In your code, the class {class_name} should have these properties {prop-
erties_name_list}.

["class_name", "properties_name_list"]

46 combination In your code, the class {class_name} should have these methods
{method_name_list}.

["class_name", "method_name_list"]

47 combination The function {function_name} should take {parameter_name_list} as
parameters.

["function_name", "parame-
ter_name_list"]

48 combination The function {function_name} should return a {return_type} as its result. ["function_name", "return_type"]
49 combination Your code should be organized in a package named {package_name},

which should contain these classes {class_name_list}.
["package_name", "class_name_list"]

50 combination Your code should be organized in a package named {package_name},
which should contain these functions {function_name_list}.

["package_name", "func-
tion_name_list"]

Table 4: Constraint Instruction Table

1282

Models CSR SSR RSR CCSR

Full Easy Hard Full Easy Hard Full Easy Hard Full Easy Hard

Llama-3.2-1b-instruct 0.034 0.046 0.022 0.218 0.277 0.159 0.182 0.231 0.132 0.152 0.197 0.107
Qwen2.5-1.5b-instruct 0.034 0.053 0.015 0.265 0.334 0.197 0.222 0.282 0.162 0.181 0.234 0.128

Qwen2.5-coder-1.5b-instruct 0.058 0.086 0.03 0.358 0.436 0.281 0.301 0.371 0.233 0.251 0.314 0.189
Qwen2.5-3b-instruct 0.078 0.109 0.046 0.415 0.489 0.34 0.357 0.432 0.282 0.299 0.364 0.233

Llama-3.2-3b-instruct 0.101 0.137 0.065 0.396 0.473 0.318 0.344 0.419 0.268 0.305 0.375 0.235
GPT-3.5-turbo 0.102 0.14 0.065 0.41 0.467 0.353 0.362 0.42 0.303 0.314 0.369 0.259

Qwen2.5-coder-3b-instruct 0.097 0.142 0.051 0.445 0.529 0.359 0.383 0.464 0.301 0.33 0.401 0.258
Llama-3.1-8b 0.129 0.178 0.08 0.452 0.551 0.353 0.402 0.497 0.306 0.352 0.44 0.263

Llama-3.1-8b-instruct 0.145 0.187 0.102 0.467 0.544 0.388 0.418 0.493 0.34 0.37 0.444 0.295
Qwen2.5-coder-7b-instruct 0.142 0.198 0.087 0.514 0.59 0.438 0.453 0.533 0.373 0.39 0.463 0.318

Ministral-3b 0.127 0.162 0.092 0.526 0.591 0.46 0.458 0.527 0.39 0.4 0.458 0.342
Phi-3.5-mini-128k-instruct 0.154 0.217 0.09 0.514 0.635 0.391 0.456 0.574 0.337 0.405 0.51 0.299

Qwen2.5-7b-instruct 0.153 0.201 0.104 0.535 0.599 0.471 0.475 0.546 0.405 0.416 0.479 0.353
Ministral-8b 0.161 0.205 0.116 0.552 0.614 0.489 0.486 0.552 0.419 0.431 0.49 0.371

Gemma-2-9b-it 0.171 0.21 0.131 0.573 0.642 0.504 0.513 0.587 0.44 0.445 0.508 0.383
Llama-3.1-70b 0.196 0.232 0.16 0.61 0.664 0.555 0.545 0.607 0.482 0.482 0.533 0.43

Qwen2.5-coder-14b-instruct 0.218 0.276 0.16 0.596 0.667 0.525 0.539 0.614 0.463 0.483 0.55 0.416
Qwen2.5-14b-instruct 0.238 0.279 0.198 0.61 0.676 0.543 0.557 0.628 0.486 0.498 0.565 0.431
Gemini-2.0-flash-exp 0.254 0.29 0.218 0.615 0.648 0.583 0.556 0.593 0.518 0.514 0.547 0.481

Gemma-2-27b-it 0.245 0.3 0.19 0.658 0.709 0.607 0.596 0.652 0.54 0.533 0.588 0.478
Llama-3.1-70b-instruct 0.265 0.3 0.229 0.675 0.723 0.627 0.612 0.667 0.556 0.559 0.601 0.516
Qwen2.5-32b-instruct 0.294 0.337 0.251 0.68 0.722 0.638 0.621 0.674 0.568 0.56 0.604 0.515
Qwen2.5-72b-instruct 0.281 0.319 0.244 0.685 0.734 0.634 0.621 0.677 0.564 0.569 0.619 0.518

Codestral-2501 0.28 0.339 0.219 0.683 0.748 0.617 0.621 0.691 0.551 0.571 0.633 0.507
Phi-4 0.312 0.361 0.262 0.698 0.735 0.66 0.635 0.681 0.589 0.589 0.631 0.546

Llama-3.3-70b-instruct 0.307 0.359 0.255 0.698 0.749 0.647 0.632 0.691 0.574 0.589 0.643 0.536
GPT-4o-mini 0.292 0.348 0.237 0.731 0.78 0.682 0.665 0.724 0.606 0.609 0.66 0.559

GPT-4o 0.338 0.392 0.283 0.721 0.77 0.671 0.665 0.721 0.609 0.616 0.668 0.563
Qwen2.5-coder-32b-instruct 0.365 0.422 0.307 0.736 0.767 0.704 0.679 0.723 0.635 0.634 0.669 0.599

Gemini-exp-1206 0.357 0.41 0.303 0.744 0.781 0.707 0.685 0.734 0.636 0.636 0.675 0.597
Gemini-1.5-pro 0.351 0.383 0.318 0.763 0.794 0.732 0.704 0.744 0.663 0.647 0.679 0.615

GPT-4o-2024-11-20 0.383 0.441 0.325 0.748 0.792 0.702 0.689 0.745 0.633 0.65 0.698 0.602
Claude-3-5-sonnet-20241022 0.444 0.525 0.362 0.727 0.784 0.669 0.692 0.757 0.626 0.652 0.715 0.587

Deepseek-coder 0.41 0.45 0.37 0.805 0.836 0.773 0.749 0.791 0.707 0.699 0.732 0.666
Deepseek-v3 0.414 0.468 0.359 0.821 0.847 0.794 0.764 0.806 0.723 0.712 0.743 0.68

Table 5: CodeIF evaluation results of different difficulties. We use bold font to mark the best results in all models.

1283

Models Global Structural Control Variable Interface Function Class File Combination

Llama-3.2-1b-instruct 0.186 0.190 0.206 0.144 0.284 0.260 0.198 0.172
Qwen2.5-1.5b-instruct 0.244 0.236 0.221 0.213 0.355 0.315 0.230 0.213

Qwen2.5-coder-1.5b-instruct 0.328 0.304 0.326 0.293 0.436 0.426 0.351 0.304
Qwen2.5-3b-instruct 0.383 0.346 0.412 0.383 0.468 0.481 0.383 0.366

Llama-3.2-3b-instruct 0.344 0.332 0.393 0.376 0.454 0.447 0.363 0.367
GPT-3.5-turbo 0.388 0.344 0.417 0.375 0.467 0.449 0.378 0.352

Qwen2.5-coder-3b-instruct 0.397 0.367 0.438 0.419 0.511 0.507 0.415 0.403
Llama-3.1-8b 0.410 0.355 0.451 0.424 0.500 0.503 0.413 0.413

Llama-3.1-8b-instruct 0.422 0.373 0.482 0.455 0.524 0.499 0.407 0.437
Qwen2.5-coder-7b-instruct 0.479 0.419 0.497 0.502 0.576 0.571 0.492 0.487

Ministral-3b 0.472 0.403 0.527 0.512 0.618 0.609 0.524 0.535
Phi-3.5-mini-128k-instruct 0.461 0.410 0.512 0.531 0.562 0.574 0.485 0.491

Qwen2.5-7b-instruct 0.484 0.425 0.532 0.548 0.616 0.591 0.520 0.520
Ministral-8b 0.497 0.433 0.541 0.570 0.622 0.631 0.527 0.557

Gemma-2-9b-it 0.541 0.498 0.599 0.510 0.659 0.618 0.543 0.511
Llama-3.1-70b 0.558 0.500 0.652 0.653 0.685 0.671 0.545 0.597

Qwen2.5-coder-14b-instruct 0.541 0.467 0.623 0.669 0.645 0.652 0.547 0.594
Qwen2.5-14b-instruct 0.569 0.526 0.652 0.592 0.649 0.644 0.533 0.559
Gemini-2.0-flash-exp 0.555 0.526 0.653 0.666 0.685 0.669 0.564 0.615

Gemma-2-27b-it 0.621 0.569 0.699 0.640 0.722 0.710 0.607 0.637
Llama-3.1-70b-instruct 0.606 0.546 0.722 0.718 0.744 0.738 0.603 0.680
Qwen2.5-32b-instruct 0.637 0.581 0.713 0.712 0.732 0.742 0.601 0.653
Qwen2.5-72b-instruct 0.633 0.570 0.734 0.711 0.727 0.726 0.645 0.686

Codestral-2501 0.617 0.552 0.723 0.718 0.733 0.746 0.651 0.694
Phi-4 0.633 0.586 0.734 0.739 0.721 0.752 0.677 0.710

Llama-3.3-70b-instruct 0.621 0.634 0.733 0.730 0.759 0.738 0.645 0.695
GPT-4o-mini 0.671 0.663 0.787 0.774 0.784 0.783 0.657 0.710

GPT-4o 0.665 0.651 0.742 0.759 0.743 0.759 0.666 0.716
Qwen2.5-coder-32b-instruct 0.683 0.654 0.776 0.763 0.772 0.758 0.695 0.736

Gemini-exp-1206 0.690 0.677 0.780 0.789 0.798 0.809 0.675 0.727
Gemini-1.5-pro 0.718 0.696 0.814 0.800 0.812 0.815 0.672 0.749

GPT-4o-2024-11-20 0.685 0.666 0.784 0.786 0.779 0.785 0.706 0.755
Claude-3-5-sonnet-20241022 0.677 0.678 0.750 0.736 0.742 0.730 0.640 0.692

Deepseek-coder 0.759 0.714 0.850 0.856 0.846 0.847 0.754 0.813
Deepseek-v3 0.780 0.732 0.866 0.876 0.866 0.873 0.762 0.831

Table 6: The performance of various models on CodeIF for different types of instructions

Models CPP Java Python Go

CCS CS SS RS CCS CS SS RS CCS CS SS RS CCS CS SS RS

Llama-3.2-1b-instruct 0.123 0.023 0.185 0.150 0.190 0.037 0.265 0.221 0.179 0.047 0.262 0.223 0.086 0.022 0.117 0.096
Qwen2.5-1.5b-instruct 0.171 0.023 0.250 0.206 0.191 0.026 0.277 0.228 0.197 0.047 0.298 0.257 0.151 0.040 0.216 0.179

Qwen2.5-coder-1.5b-instruct 0.253 0.068 0.348 0.297 0.259 0.055 0.375 0.308 0.263 0.060 0.380 0.328 0.218 0.049 0.309 0.255
Qwen2.5-3b-instruct 0.251 0.046 0.367 0.302 0.310 0.078 0.419 0.367 0.306 0.092 0.435 0.384 0.327 0.093 0.433 0.365

Llama-3.2-3b-instruct 0.284 0.073 0.377 0.313 0.345 0.121 0.435 0.380 0.321 0.112 0.429 0.383 0.244 0.084 0.304 0.265
GPT-3.5-turbo 0.301 0.085 0.388 0.332 0.367 0.134 0.461 0.409 0.265 0.092 0.371 0.334 0.318 0.088 0.412 0.363

Qwen2.5-coder-3b-instruct 0.339 0.103 0.444 0.380 0.338 0.101 0.453 0.391 0.320 0.091 0.446 0.390 0.323 0.093 0.431 0.363
Llama-3.1-8b 0.319 0.115 0.409 0.354 0.366 0.130 0.477 0.420 0.376 0.152 0.485 0.446 0.330 0.110 0.413 0.363

Llama-3.1-8b-instruct 0.328 0.112 0.432 0.375 0.408 0.173 0.503 0.447 0.393 0.147 0.496 0.455 0.325 0.133 0.406 0.365
Qwen2.5-coder-7b-instruct 0.389 0.147 0.505 0.434 0.375 0.118 0.503 0.444 0.400 0.155 0.531 0.475 0.401 0.154 0.516 0.456

Ministral-3b 0.356 0.107 0.473 0.401 0.410 0.150 0.542 0.476 0.404 0.112 0.538 0.481 0.430 0.138 0.544 0.464
Phi-3.5-mini-128k-instruct 0.354 0.108 0.461 0.388 0.426 0.179 0.532 0.478 0.440 0.180 0.559 0.510 0.380 0.131 0.482 0.422

Qwen2.5-7b-instruct 0.401 0.162 0.514 0.448 0.439 0.152 0.559 0.495 0.397 0.147 0.523 0.471 0.429 0.154 0.541 0.485
Ministral-8b 0.400 0.143 0.518 0.439 0.434 0.158 0.560 0.495 0.410 0.142 0.538 0.481 0.494 0.214 0.599 0.532

Gemma-2-9b-it 0.446 0.200 0.560 0.499 0.446 0.164 0.576 0.518 0.380 0.131 0.510 0.456 0.542 0.204 0.678 0.609
Llama-3.1-70b 0.487 0.201 0.598 0.518 0.507 0.232 0.632 0.572 0.425 0.136 0.579 0.521 0.522 0.226 0.635 0.571

Qwen2.5-coder-14b-instruct 0.464 0.224 0.572 0.514 0.478 0.206 0.592 0.535 0.522 0.216 0.653 0.594 0.454 0.235 0.544 0.490
Qwen2.5-14b-instruct 0.481 0.230 0.590 0.533 0.528 0.265 0.639 0.581 0.472 0.188 0.599 0.550 0.511 0.281 0.603 0.557
Gemini-2.0-flash-exp 0.491 0.259 0.587 0.519 0.575 0.309 0.664 0.604 0.468 0.207 0.584 0.533 0.514 0.233 0.619 0.558

Gemma-2-27b-it 0.529 0.271 0.645 0.579 0.551 0.261 0.676 0.616 0.465 0.179 0.604 0.543 0.611 0.289 0.727 0.665
Llama-3.1-70b-instruct 0.535 0.267 0.653 0.578 0.581 0.276 0.685 0.620 0.555 0.251 0.696 0.639 0.557 0.264 0.655 0.596
Qwen2.5-32b-instruct 0.551 0.314 0.655 0.602 0.589 0.330 0.706 0.638 0.522 0.231 0.665 0.609 0.580 0.311 0.690 0.634
Qwen2.5-72b-instruct 0.543 0.297 0.638 0.574 0.580 0.288 0.701 0.633 0.574 0.284 0.702 0.651 0.573 0.249 0.687 0.610

Codestral-2501 0.562 0.307 0.658 0.595 0.583 0.301 0.694 0.632 0.566 0.249 0.693 0.637 0.569 0.261 0.681 0.611
Phi-4 0.570 0.331 0.663 0.601 0.612 0.328 0.719 0.650 0.587 0.295 0.714 0.660 0.577 0.292 0.679 0.613

Llama-3.3-70b-instruct 0.558 0.300 0.652 0.582 0.621 0.348 0.713 0.644 0.572 0.264 0.709 0.653 0.602 0.317 0.712 0.640
GPT-4o-mini 0.582 0.292 0.684 0.615 0.620 0.299 0.738 0.667 0.586 0.261 0.731 0.674 0.661 0.330 0.775 0.707

GPT-4o 0.600 0.337 0.698 0.639 0.652 0.368 0.748 0.693 0.600 0.312 0.723 0.676 0.603 0.332 0.701 0.636
Qwen2.5-coder-32b-instruct 0.633 0.384 0.717 0.658 0.654 0.401 0.753 0.699 0.621 0.342 0.736 0.688 0.624 0.322 0.731 0.661

Gemini-exp-1206 0.640 0.424 0.726 0.672 0.650 0.360 0.755 0.689 0.590 0.290 0.724 0.674 0.677 0.373 0.777 0.710
Gemini-1.5-pro 0.635 0.370 0.741 0.676 0.674 0.379 0.783 0.720 0.610 0.278 0.758 0.706 0.674 0.395 0.764 0.707

GPT-4o-2024-11-20 0.653 0.374 0.741 0.669 0.683 0.434 0.776 0.716 0.612 0.355 0.724 0.682 0.653 0.358 0.747 0.683
Claude-3-5-sonnet-20241022 0.615 0.425 0.684 0.643 0.720 0.504 0.789 0.749 0.611 0.396 0.703 0.674 0.650 0.444 0.716 0.686

Deepseek-coder 0.709 0.441 0.802 0.735 0.731 0.463 0.819 0.764 0.657 0.336 0.791 0.747 0.702 0.403 0.805 0.744
Deepseek-v3 0.725 0.435 0.831 0.762 0.753 0.497 0.839 0.787 0.651 0.315 0.793 0.744 0.722 0.404 0.822 0.76

Table 7: the evaluation results of different languages on CODEIF. The metrics include Consistent Continuity Satis-
faction Rate (CCSR), Complete Satisfaction Rate (CSR), Soft Satisfaction Rate (SSR), and Rigorous Satisfaction
Rate (RSR).

1284

Figure 7: Distribution of atomic instruction list lengths across difficulty levels.

C Baselines

We evaluate over 30 language models spanning both open-source architectures and commercial APIs. The
Meta Llama 3 Series (Touvron et al., 2023) contains Llama-3.2-1B/3B/8B/70B-Instruct variants and Llama-
3.3-70B-Instruct. Qwen2.5 Series (Yang et al., 2024) encompasses Qwen2.5-1.5B/3B/7B/14B/32B/72B-
Instruct with dedicated code generation models Qwen2.5-Coder-1.5B/3B/7B/14B/32B-Instruct (Hui et al.,
2024). Mistral Series (Jiang et al., 2023) includes Mistral-3B, Mistral-8B, and the code-specialized
Codestral-2501.

The evaluation covers Microsoft’s Phi-3.5-Mini-128K-Instruct (3.8B) and Phi-4 (Abdin et al., 2024),
along with Google’s Gemma-2-9B/27B-It (Team, 2024b). DeepSeek Series incorporates DeepSeek-
Coder (Guo et al., 2024) and DeepSeek-V3 (DeepSeek-AI, 2024). Commercial APIs include OpenAI’s
GPT-3.5-Turbo, GPT-4O-Mini, GPT-4O-2024-05-13, and GPT-4O-2024-11-20 (Achiam et al., 2023);
Google’s Gemini-2.0-Flash-Exp, Gemini-Exp-1206, and Gemini-1.5-Pro (Team, 2024a); plus Anthropic’s
Claude-3.5-Sonnet-20241022.

D More Data Analysis

Figure 7 shows the proportion of each instruction category. Global constraints dominate (22.77%),
followed by Variable constraints (18.17%). This distribution reflects CodeIF’s balanced focus on high-
level structural coherence and fine-grained variable precision, ensuring comprehensive evaluation of code
generation capabilities. Figure 8 compares instruction distribution across difficulty levels.

1285

Figure 8: The distribution of constraint instruction list lengths in datasets of different difficulties.

1286

