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Abstract

Query classification, including multiple sub-
tasks such as intent and category prediction, is
vital to e-commerce applications. E-commerce
queries are usually short and lack context, and
the information between labels cannot be used,
resulting in insufficient prior information for
modeling. Most existing industrial query clas-
sification methods rely on users’ posterior click
behavior to construct training samples, result-
ing in a Matthew vicious cycle. Furthermore,
the subtasks of query classification lack a uni-
fied framework, leading to low efficiency for
algorithm optimization.

In this paper, we propose a novel Semi-
supervised Scalable Unified Framework
(SSUF), containing multiple enhanced mod-
ules to unify the query classification tasks.
The knowledge-enhanced module uses world
knowledge to enhance query representations
and solve the problem of insufficient query
information. The label-enhanced module uses
label semantics and semi-supervised signals to
reduce the dependence on posterior labels. The
structure-enhanced module enhances the label
representation based on the complex label
relations. Each module is highly pluggable,
and input features can be added or removed as
needed according to each subtask. We conduct
extensive offline and online A/B experiments,
and the results show that SSUF significantly
outperforms the state-of-the-art models.

1 Introduction

E-commerce platforms like Amazon, Taobao, and
JD provide users with billions of diverse products
and have become essential in our daily lives. Due
to the wide variety of user needs and product cate-
gories, capturing users’ purchasing intentions is vi-
tal for both user experience and platform efficiency.
Query classification, including intent, category, and
brand prediction, plays a key role in understanding
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users’ shopping needs and supports the subsequent
modules of the search system.

The inherent characteristics of e-commerce
queries, which are typically short, and ambiguous,
bring significant challenges for query classification.
To solve the problem of insufficient information
caused by short queries, some deep learning-based
models, such as XML-CNN (Liu et al., 2017),
KRF (Ma et al., 2020), HIAGM (Zhou et al., 2020),
and LSAN (Xiao et al., 2019) have been proposed
to learn the contextual information of documents
to enhance the representation learning of queries.
Some recent query classification models, such as
HCLA4QC (Zhu et al., 2023), SMGCN (Yuan et al.,
2024), and HQC (He et al., 2024) also explore uti-
lizing the hierarchical category tree structure or
instance hierarchy to facilitate models to learn ex-
ternal information beyond query information.

Industrial methods for query classification typi-
cally rely on users’ click behavior to generate train-
ing samples. While using real user interactions
can improve model accuracy, it also introduces a
dependency cycle known as the “Matthew effect.”
This cycle leads to biased training data, where pop-
ular queries receive excessive focus, skewing the
model’s understanding and limiting its ability to
generalize to tail queries. Moreover, existing mod-
els often handle subtasks separately, overlooking
potential synergies that could enhance efficiency
in model optimization and development. The lack
of a unified framework further impedes the shar-
ing of insights and improvements across different
subtasks, thereby restricting overall performance.

To address these challenges, we propose a semi-
supervised scalable unified framework (SSUF) for
e-commerce query classification. SSUF is designed
to overcome the above problems by introducing
a set of scalable modules: (1) Label-enhanced
module, (2) Knowledge-enhanced module, and (3)
Structure-enhanced module to enhance query and
label representations with prior knowledge, reduce
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dependency on posterior labels and enhances the
model’s ability to generalize from limited data.
Each module within SSUF is designed to be highly
pluggable, allowing for flexible adaptation to the
specific needs of different subtasks. This modular-
ity ensures that the framework can be tailored to
enhance various aspects of query classification.
The contributions of this paper are as follows:

* We propose a novel unified framework to
improve the optimization efficiency of e-
commerce query classification models.

* We design three scalable modules that en-
hance the query and label representations and
break the “Matthew vicious cycle” to improve
the performance of query classification.

* We conduct extensive offline and online A/B
experiments, and SSUF significantly outper-
forms existing strong baselines. It has been de-
ployed at an e-commerce platform and brings
great commercial value.

2 Related Work
2.1 Multi-label Classification

Multi-label classification is a vital area in machine
learning, where each instance can be linked to mul-
tiple labels. Machine learning methods address this
problem by transforming the multi-label problem
into several single-label tasks (Tsoumakas et al.,
2007, 2009; Read et al., 2011). Recently, deep
learning models, such as XML-CNN (Liu et al.,
2017), LSAN (Xiao et al., 2019) and LEAM (Wang
et al., 2018) utilize contextual information or label-
specific attention to enhance the interaction be-
tween document and labels for classification.

2.2 Query Classification

Early models mainly relied on deep learning
models, such as CNN (Hashemi et al., 2016),
LSTMs (Sreelakshmi et al., 2018), and attention-
based models (Zhang et al., 2021; Yuan et al., 2023)
to extract fine-grained features for classification.
Recent works like PHC (Zhang et al., 2019) ex-
plore multi-task frameworks to jointly optimize
query classification and textual similarity, while
DPHA (Zhao et al., 2019) leverages label graph-
based neural networks to model label correlations.
HCL4QC (Zhu et al., 2023), SMGCN (Yuan et al.,
2024), and HQC (He et al., 2024) use hierarchical
structures and instance hierarchy to learn informa-
tion beyond query text.

3 Model

In this section, we first formally define the query
classification task. Then, we describe different
modules of SSUF and analyze the influence of the
model during the training and inference process.

3.1 Label-enhanced Module

Instead of directly using the label index as label em-
bedding, we employ BERT (Kenton and Toutanova,
2019) as the encoder for labels to learn the semantic
representation of the label.

The input of the text encoder is a character
sequence of label, which is comprised of two
parts: (1) the label name n = [ng,no,...,nz),
and (2) the enhanced label side information m =
[m1,ma,...,mr, ], which is retrieved from (1) la-
bel description, such as product words, frequently
searched query terms, etc. (2) world knowledge
generated by LLM.

The label’s character sequences are fed into
BERT to encode label representation:

C; = BERT cys([n1, .. mr ),

ey
where C; € R is the “CLS” representation of
the last layer of BERT. In the same way, we can get

the representation of query Q; € R,

LML, M, ..

3.2 Knowledge-enhanced Module

Industrial methods for query classification have re-
lied on users’ posterior click behavior to generate
training samples. However, it leads to the "Matthew
vicious cycle" and results in biased training data,
where popular queries receive more attention, skew-
ing the model’s understanding and limiting its abil-
ity to generalize to less frequent queries.

We propose a semi-supervised module to over-
come the limitations of posterior labels. However,
we found that for queries with ambiguous seman-
tics, it is often inaccurate to directly compute semi-
supervised labels for queries and labels. For exam-
ple, the query “Black 16pro” refers to an Apple mo-
bile phone model, but due to insufficient semantic
information, similarity scores with relevant labels
such as “mobile phone” and “second-hand mobile
phone” are low. This results in the semi-supervised
signal failing to effectively recall related labels.
To solve this issue, we incorporate a knowledge-
enhanced module to improve the representation of
queries for semi-supervised labeling.

We can use (1) the posteriori knowledge, such as
the user’s frequently clicked or bought product la-
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Figure 1: Semi-supervised Scalable Unified Framework for E-commerce Query Classification. The offline part
participates in the training of the model but is not directly deployed online. The part with red dashed lines is a
pluggable module. The “Text Encoder*” denotes a shared text encoder.

bels, (2) the world knowledge extracted from LLM
as the input. To obtain the world knowledge of
the query, we feed the query and the related prod-
ucts to an open-source LLLM to summarize a brief
description, which may contain relevant queries,
categories, products, etc. With this information,
the model can comprehensively encode the seman-
tic representations of the query.

After obtaining the posterior and world knowl-
edge, we feed them into a shared text encoder:

k; = BERT cLs([k1, - .., knl)

to get the knowledge embeddings K € RI¥I*4,

To fuse these knowledge embeddings with query
representation QQ;, we use an attention module,
which can be formulated as follows:

o = softmax(Q;K7”),

q4=Qi+ Y oK;,
j=1

2)

where « is the attention score and g} € R**? s the
final fused query representation.

We compute the similarity score between the
fused query and label representations to treat it as
a semi-supervised label. Specifically,

1T
q;C
s; = stop_grad <’> ,
' [l )
yf]@ml = Sl] ' ]lsij27'7

where s; € R1*IC is the relevance scores between
query ¢; and all categories. T is the threshold to
filter the categories with low scores. yfjmi is the
semi-supervised label.

Both queries and labels utilize the same text
encoder, but their word distributions is different.
Feeding the gradient of the semi-supervised signal
back into the semi-supervised label module can
create a circular dependency, potentially causing
the model to collapse. To prevent this, we disable
gradient feedback from this branch.

3.3 Structure-enhanced Module
3.3.1 Graph Construction

Firstly, we obtain the co-occurrence relations be-
tween categories by counting the co-occurrence
times of categories in the training samples. Then,
we compute the conditional probability of two cat-
egories and obtain the adjacency matrix A“°°:

N(Ci, Cj)

N ) )

A5 = 7Az¢jqo = aij - la;;>a
where N (¢;, ¢;) is co-occurrence frequency of la-
bel ¢; and ¢; and N(c;) denotes the frequency of
label ¢;. « is the threshold to filter the edges with
low relevance scores. A e RICIXIC is the adja-
cency matrix of co-occurrence.

Then, we can obtain the semantic similarity rela-

tions between categories by computing the cosine
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similarity of every pair of categories:

T

=t AN = a1, 55, (6)
ICillCy| e — 0 Faa=p

ajj
where [ is the threshold to filter the edges with low
relevance scores. A5 ¢ RICIXIC1 is the similarity
adjacency matrix.

For some query classification subtasks, such as
intent or category prediction, there is a hierarchi-
cal structure among each level of labels. This
structure is beneficial in strengthening the relations
among relevant labels and weakening the close-
ness among irrelevant labels. To use this structure,

we encode it into the hierarchy adjacency matrix
Ahier ¢ RICIX ‘C’|, and the edge is defined as:

Ahier = max 1 ml
i |Child(B)" X2 e cniay ™i )
Q)

where Child(k) is the child node set of k, and
i,j € Child(k). m; is the frequency of node j
being clicked by users in the dataset. |C’| denotes
the number of all labels, including the first-level,
the second-level, and the leaf labels. |C| denotes
the number of leaf labels.

3.3.2 Graph Fusion and Learning

In addition to the above three label relationship
graphs, each subtask can also increase or decrease
the number of label graphs based on its existing
input data and business characteristics.

After obtaining the label correlation matrices,
we fuse these correlation matrices and normalize
the fused matrix with a normalization method (Kipf
and Welling, 2017):

A = 1(ACOO + Aszm) N Ahier,

2 ®)
~ 1 1
A=D:(A+I)D 2,

where — denotes an assignment symbol. The
assignment process is shown in Figure 1. A €
RICIXICl is the final adjacency matrix. I is a
identity matrix. D is a diagonal degree matrix
with D;; = X;A;;. Finally, we use GCN (Kipf
and Welling, 2017) to learn nodes’ representation
H e RIYI*4 from the final adjacency matrix A.
Although the training samples for tail labels are
limited, these labels can be readily linked to their
associated hot labels through intricate label rela-
tionships. Such relationships enable the transfer

of gradients from samples with hot labels to those
with tail labels, leading to more effective repre-
sentation training for tail labels and mitigating the
limitations of posterior labels.

3.4 Training and Inference

In our application scene, we only need to classify
a user’s input query q; € R'*? to the leaf labels
space rather than all labels. Thus, we extract from
H to get leaf labels embedding H; € RICI*4. Fj-
nally, we use an interaction layer to project the
query into label space:

y; = sigmoid(q;H} +b), 9)

where b € R*I€l s the bias, and y; € R'*I¢ js
the predicted labels of query g;.

To optimize the model with the posteriori and
priori labels, we fuse them together as follows:

yi = min (y 4y 10)  (10)

where yf“Ck is the multi-hot encoding of clicked

labels of query g¢;, and the value range of y; is
vi € [0,1]. We use the binary cross-entropy loss
as the objective to train the model.

4 Experiment

4.1 Dataset

To evaluate the effectiveness of SSUF, we con-
ducted a series of experiments on two large-scale
real-world datasets derived from user click logs on
an e-commerce application. The statistics of the
datasets are listed in Table 1 and 2. The experi-
ments focused on the following two tasks:

* Intent Task: This task predicts multiple pur-
chase intents based on the user’s query. The
e-commerce platform meticulously defines a
hierarchical intent architecture by experts, en-
compassing over 1000 distinct user intents.
Both the train and test data are extracted from
historical user click logs.

» Category Task: This task aims to predict the
product categories the user demands. The
high-click categories (top 95% click-through
rates) of products previously were considered
the query’s categories.
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Table 1: Data statistics on the intent classification task.

. L. Intent Task
Statistics Train Val  Test
Queries 67,450,702 20,0000 31,792
Avg. chars 7.63 5.00 8.36
Total Labels 1,605 1,605 1,605
Avg. # of labels 1.04 1.67 1.91
Min. # of labels 1 1 1
Max. # of labels 7 3 16

Table 2: Data statistics on the category task.

‘e Category Task
Statistics Train Val Test
Queries 113,686,150 20,0000 33,960
Avg. chars 8.50 6.53 6.02
Total Labels 6,634 6,634 6,634
Avg. # of labels 1.52 2.05 5.33
Min. # of labels 1 1 1
Max. # of labels 16 13 20

4.2 Baseline Models

We compare SSUF with several strong baselines,
including multi-label classification methods and
query classification models. The detailed introduc-
tions are listed as follows:

(1) Multi-label classification baselines:

* XML-CNN (Liu et al., 2017): It is a CNN-
based model, which combines the strengths of
CNN models and goes beyond the multi-label
co-occurrence patterns.

* LEAM (Wang et al., 2018): It is a label-
embedding attentive model, which embeds the
words and labels in the same space, and mea-
sures the compatibility of word-label pairs.

* LSAN (Xiao et al., 2019): It is a label-specific
attention network that uses document and
label text to learn the label-specific docu-
ment representation with the self- and label-
attention mechanisms.

(2) Query classification baselines:

e DPHA (Zhao et al., 2019): It contains a label
graph-based neural network and soft training
with correlation-based label representation.

¢ MMAN (Yuan et al., 2023): It is a BERT-
based model that extracts features from the

character and semantic level from a query-
category interaction matrix to mitigate the gap
in the expression between informal queries
and categories.

« HCL4QC (Zhu et al., 2023) uses hierarchi-
cal structures and instance hierarchy to learn
information beyond the query text.

* SMGCN (Yuan et al., 2024): It extends cat-
egory information and leverages categories’
co-occurrence and semantic similarity graph
to enhance the relations among labels.

* HQC (He et al., 2024): It uses hierarchical
information by enhanced representation learn-
ing that utilizes the contrastive loss to discern
fine-grained instance relations in the hierarchy,
and a nuanced hierarchical classification loss
that attends to the intrinsic label taxonomy.

4.3 Experiment Settings

Query classification is essentially a text classi-
fication task. In alignment with previous stud-
ies (Zhang et al., 2021; Yuan et al., 2023), we eval-
uate model performance using micro and macro
precision, recall, and F1-score metrics.

Our models are implemented using the Py-
Torch framework, and we use the Adam algo-
rithm (Kingma and Ba, 2014) with learning rate
le~*. The BERT embeddings have a dimension-
ality of 768. We use a 2-layer GCN to learn label
embeddings from the graph, with an embedding di-
mensionality of 768. The maximum query length is
set to 20. Edge thresholds (o) and (3) are both set
to 0.5, determined by grid search. Model training
use a warm start strategy, with the semi-supervised
threshold (7) initially set at 1.0 and gradually de-
creased to 0.8 during training. Training is con-
ducted over 20 epochs, with a batch size of 1024.

4.4 Offline Evaluation

4.4.1 Offline performance

The experimental results are shown in Table 3.
Specifically, we have the following observations:
(1) SSUF shows significant performance advan-
tages in both tasks over the multi-label baselines.
Although improving query and label representa-
tions can alleviate the problem of insufficient con-
textual information caused by short queries, they
ignore the complexity in industrial applications. In-
dustrial datasets suffer from class imbalance, with
data distribution heavily skewed towards popular
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Table 3: The experimental results are compared to multi-label text classification and query classification models.

Intent Task Category Task

Models Micro Macro Micro Macro
Prec. Recall F1 |Prec. Recall F1 |Prec. Recall F1 |Prec. Recall F1
XML-CNN |78.66 32.09 45.58(50.33 20.76 27.24|86.95 24.60 38.34|40.50 15.44 20.16
LEAM 76.22 37.21 50.01|55.11 25.72 32.40|76.79 26.68 39.60|39.40 17.19 21.31
LSAN 76.46 34.96 4798 |54.47 25.12 31.71|86.39 23.66 37.15|44.69 17.79 22.84
DPHA 7722 3691 49.94|55.09 25.74 32.53|87.29 2249 35.76|36.08 13.11 17.26
MMAN [79.26 3896 52.24|56.27 26.32 33.36|82.05 32.57 46.63|57.41 2826 34.68
HCL4QC |74.28 40.25 52.21|54.13 31.33 37.94|79.39 33.02 46.64|54.03 30.17 36.11
SMGCN |75.83 4991 59.72|63.18 43.90 48.54|82.51 40.05 53.92|55.83 35.62 40.15
HQC 75.02 37.03 49.58|50.28 30.87 36.77|80.87 31.03 44.85|54.73 28.74 33.98
SSUF 74.89 52.62 61.81|62.74 4591 49.46 |80.74 43.40 56.45|54.98 36.02 41.22
w/o. SE-S |73.49 50.92 60.16]59.49 41.32 4521(79.92 4131 54.47|54.36 3434 39.72
w/o. SE-C |74.03 51.19 60.53]59.92 40.21 44.92|79.17 4091 53.94|54.12 3492 39.24
w/o. SE-H |74.32 52.02 61.20(60.33 44.02 47.29|79.32 41.88 54.82|54.43 35.13 39.95
w/o. SE  |76.88 48.28 59.31|56.88 37.58 43.30(81.44 38.92 52.67|55.42 3439 38.52
w/o. KE 7491 49.12 5933|5691 42.12 45.82(81.83 39.12 52.93|55.88 35.43 39.24
w/o. LE&KE [ 77.03 45.05 56.85(55.49 3221 42.36(82.02 35.35 49.41|56.02 30.51 36.47
BERT 81.28 37.59 51.41|51.63 2997 36.84|82.83 31.99 46.15|56.72 27.80 33.80
labels, leading to the “Matthew vicious cycle”. * w/o KE: Removing the structure-enhanced

Therefore, the effectiveness of these models may module.

be reduced if directly applied to online systems.

(2) Compared to query classification methods,
SSUF also achieves better performance on both
tasks. As the results are shown in the table, the re-
call of relevant categories obtains nearly 3% F1 im-
provement on both tasks. Although HCL4QC and
HQC also use hierarchical structures to enhance
label representations, they cannot model complete
label relationships and a priori knowledge to break
the vicious cycle. Furthermore, when the query
lacks sufficient semantic information, the model’s
generalization ability is insufficient, and it degener-
ates into a memory model. SSUF can solve these
problems with three extensible modules by fusing
posterior signal and a priori knowledge, resulting
in superior performance.

4.4.2 Ablation study

To discover the relative importance of each mod-
ule in SSUF, we performed ablation studies on its
variants:

* w/o KE: Removing the knowledge-enhanced
module.

* w/o KE+LE: Removing the label-enhanced
module and knowledge-enhanced module.

* w/o KE-S: Removing the semantic relation of
the structure-enhanced module.

* w/o KE-C: Removing the co-occurrence rela-
tion of the structure-enhanced module.

* w/o KE-H: Removing the hierarchy relation
of the structure-enhanced module.

* BERT: Only remaining BERT as text encoder
for query classification.

The experiment results are shown in Table 3.
The experimental results demonstrate that:

(1) When removing the SE, the performance has
a little drop compared with SSUF on both datasets.
A similar phenomenon can be seen when removing
the co-occurrence graph, showing that the similar-
ity or co-occurrence graph contains extra informa-
tion that is neglected in the posterior data.

(2) When we eliminate both similarity and co-
occurrence graphs, the performance degrades by
more than 5% compared with the complete SSUF.
The results indicate that both graphs play different
roles in category representation learning.

(3) After removing these three modules, we can
see that the micro and macro F1 decay by 8% com-
pared with the complete SSUF. This result further
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demonstrates that all of these components in SSUF
provide complementary information to each other,
and are requisite for query classification.

4.5 Online Evaluation
4.5.1 Online Deployment

To reduce the deployment latency, the text encoder
of the SSUF used a 4-layer BERT, which is consis-
tent with the online model. Moreover, we only need
to cache the category embeddings H € RI¢1*4 pro-
duced by GCN rather than directly deploying the
GCN. In this way, we can deploy SSUF without
adding any additional computation and latency.

4.6 Online architecture

Figure 2 shows the role of SSUF in the search
system. When a user inputs a query, SSUF first
predicts the user’s intent and identifies the relevant
categories, passing this information to downstream
modules. The vector-based retrieval module then
finds items associated with these categories. The
retrieved items are combined with items from other
retrieval sources and filtered by a sub-module to
remove those that do not match the user’s desired
categories. The filtered items are then sent to the
ranking module.
Retrieval

Query Intent Classification
Sysfem
( Vector Item to Inverted
Based Item Index

'VV

i\ @@@}

item collection

\ cidy, cidg > Filter item by cid
it item Ranki
cid: category id

Figure 2: The deployment of SSUF and the role of
category plays in the E-commerce system.

4.6.1 Online Performance

We deployed the SSUF and base model in the ad-
vertising engine for A/B testing. Each model was
allocated 5% of the traffic. The A/B test was ob-
served for a minimum duration of one week. For
online evaluation, we use several business metrics:
Imp. (the number of times ads are displayed), Click,
CPM (cost per mille), and ad revenue.

Table 4: Online improvements of SSUF. Improvements
are statistically significant with p < 0.05 on a paired
t-test. (%)

Models | Imp. Click CPM Ad. Revenue
Online - - - -
SSUF |+3.14 4272 +135  +4.49
wlo. SE-S | +3.07 4238 +0.90  +3.97
wlo. SE-C | +2.43 +2.27 +1.51  +3.94
wlo. SE-H | +2.72 4234 +1.13  +3.86
wlo. SE | +2.51 +2.38 +1.02  +3.53
w/o. KE |+2.67 +2.34 +0.95  +3.61
wlo. LE |+2.93 +247 +124  +4.17

As shown in Table 4, SSUF achieves significant
improvements in business metrics compared to the
online model. The improvement of ad impressions
and clicks indicates that more relevant products
are retrieved by the advertising system, and they
are effectively aligned with user preferences and
search intentions. The removal of any submodule
of SSUF results in a performance decline, which
further validates the effectiveness of each module
and its synergistic integration within the SSUF.

In conclusion, both the offline and online exper-
imental results consistently demonstrate the effi-
ciency, universality, and scalability of SSUF.

5 Conclusion

In this paper, we propose a semi-supervised
scalable unified framework for e-commerce
query classification, addressing critical challenges
such as short and ambiguous query contexts
and the reliance on posterior click behaviors.
SSUF integrates three innovative modules: label-
enhanced module, knowledge-enhanced module,
and structure-enhanced module that collectively
improve query and label representations, break the
“Matthew vicious cycle” and allow for flexible adap-
tation across different subtasks. Extensive offline
and online A/B testing shows that SSUF signifi-
cantly surpasses baselines, validating its effective-
ness and practicality. The successful deployment
of SSUF in a commercial e-commerce platform
highlights its substantial commercial value.

In future work, we plan to enhance SSUF by
incorporating user-specific information and histori-
cal search behaviors to achieve personalized query
classification, aiming to improve classification ac-
curacy and user satisfaction.
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Ethical Consideration

We discuss the ethical issues from the following
aspects:

* Intended Use. If the technology operates
as intended, both sellers and users of e-
commerce platforms can benefit from the
SSUF model. SSUF can help customers in
quickly identifying the products they desire.
It also aids sellers by reducing the effort re-
quired to select more accurate product cate-
gories when listing new products.

¢ Failure Modes. In the event of a malfunction,
SSUF may output inaccurate product infor-
mation. This non-factual information could
potentially influence the shopping experience
of users. The system might predict wrong
product categories, thereby recommending un-
desired products to customers and adversely
affecting their shopping experience.
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