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Abstract

Occupational Health (OH) triage is a system-
atic process for evaluating and prioritising
workplace health concerns to determine appro-
priate care and interventions. This research
addresses critical triage challenges through our
novel AI agent orchestration framework, Occu-
Triage, developed in collaboration with Heales
Medical1 . Our framework simulates health-
care professionals’ reasoning using special-
ized LLM agents, retrieval augmentation with
domain-specific knowledge, and a bidirectional
decision architecture. Experimental evaluation
on 2,589 OH cases demonstrates OccuTriage
outperforms single-agent approaches with a
20.16% average discordance rate compared to
baseline rates of 43.05%, while matching or ex-
ceeding human expert performance (25.11%).
The system excels in reducing under-triage
rates, achieving 9.84% and 3.1% for appoint-
ment and assessor type decisions respectively.
These results establish OccuTriage’s efficacy in
performing complex OH triage while maintain-
ing safety and optimizing resource allocation.

1 Introduction

Triage, the systematic prioritization of cases based
on urgency and resource constraints, is essential
in occupational healthcare delivery. The Royal
College of Occupational Therapists advocates for
prioritizing referrals through analysis of need levels
and resource optimization (Mandelstam, 2005).

1.1 Triage Frameworks in Occupational
Health

Structured frameworks have emerged to standard-
ize triage in occupational healthcare. (CARIBE
et al., 2020) developed a questionnaire-based algo-
rithm for occupational health nursing, while (Jones
and Greenberg, 2015) implemented the TAG-triage
approach, reducing assessment time by 72% while
maintaining clinical effectiveness. (Sands et al.,

1https://www.heales.com/

2016) created a seven-tier system with defined ur-
gency time-frames.

For complex cases, (Lalloo et al., 2021) estab-
lished a comprehensive framework with three do-
mains (health, workplace, and biopsychosocial fac-
tors) containing 27 specific elements, represent-
ing significant advancement over earlier single-
dimension models.

1.2 Triage Implementation and Applications

In practice, (Walker-Bone et al., 2020) deployed an
effective three-tier RED/AMBER/GREEN system
during COVID-19. The ’telephone first’ method-
ology by (O’Reilly and McDonnell, 2020) and
(O’reilly and Carr) demonstrated remarkable effi-
ciency, reducing waiting times by 77% and resolv-
ing approximately half of consultations remotely.

For specific conditions, (Green et al., 2024) em-
ployed symptom questionnaires for post-COVID
syndrome, identifying fatigue as the strongest pre-
dictor of work inability. For musculoskeletal dis-
orders, (McCluskey et al., 2006) implemented
a biopsychosocial approach that significantly re-
duced absence duration. Notably, (Gorick et al.,
2024) found experienced nurses prioritize visual
assessment and clinical judgment over algorithms.

1.3 Machine Learning and AI in Triage

Machine learning has transformed healthcare triage.
In emergency departments, (Fernandes et al., 2020)
showed logistic regression dominated triage Clini-
cal Decision Support Systems. (Jiang et al., 2021)
implemented four machine learning models for car-
diovascular triage, with XGBoost achieving high-
est performance. More sophisticated approaches
include (Mutegeki et al., 2023)’s interpretable
Histogram-Based Gradient Boosting classifier and
(Xie et al., 2021)’s Score for Emergency Risk Pre-
diction. In occupational health specifically, (Weng
et al., 2020) developed a surveillance system using
NLP and logistic regression.
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Large Language Models (LLMs) have created
new triage opportunities. (Uronen et al., 2022)
combined supervised BERT-NER and unsuper-
vised query expansion to detect psychosocial risk
factors in occupational health checks. (Krastev
et al., 2023) proposed a semantic interoperabil-
ity approach for Occupational Health Assessment
Summary. (Kopka et al., 2024)’s RepVig Frame-
work showed LLMs achieved 67.6% accuracy with
representative vignettes, performing better on non-
emergency cases than emergency cases.

Healthcare-specific LLMs include Med-PaLM
Multimodal (Tu et al., 2023), Clinical Camel (Toma
et al., 2023), and Asclepius (Kweon et al., 2023).
Multi-agent frameworks have emerged for complex
triage tasks, with (Lu et al.)’s TRIAGEAGENT
utilizing retrieval-augmented generation, achieving
up to 18.42% improvement over baselines using
GPT-4 (OpenAI et al., 2023). We use LLama2

and Asclepius3 to evaluate the performance of our
proposed OccuTriage framework against different
benchmark tecnhiques.

1.4 Research Gap Addressed

Our review reveals critical gaps in the literature.
Traditional triage frameworks remain largely man-
ual, with practitioners preferring clinical judgment
over algorithms (Gorick et al., 2024). Current
LLM-based systems show variable accuracy de-
pending on case complexity (Kopka et al., 2024).
While promising, multi-agent systems like those
by (Lu et al.) and (Han and Choi, 2024) focus
primarily on emergency departments rather than
occupational health settings.

Our research addresses these limitations through
a novel AI agent orchestration framework that
bridges clinical judgment and algorithmic ap-
proaches with: (1) a multi-agent system with spe-
cialized AI agents simulating clinical expertise, (2)
retrieval augmentation with external knowledge
bases, (3) an iterative discussion protocol with
safety-prioritized decision rules, and (4) a bidirec-
tional decision architecture enabling comprehen-
sive coverage across multiple triage conditions.

2https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

3https://huggingface.co/starmpcc/
Asclepius-Llama3-8B

2 Methodology

2.1 Problem Setup

Occupational Electronic Health Record (EHR) data
comprises referral forms (r) and associated attach-
ments (a) such as medical records and job de-
scriptions. Our dataset is represented as D =
{M1,M2, ...,Mn}, where Mi = ri + ai for the
ith medical record. For each case Mi, we predict
two triage outcomes:

1. Appointment triage outcome (Y 1
i ): Face-to-

face or video appointment

2. Assessor triage outcome (Y 2
i ): Appropriate

Occupational Health Assessor (nurse or doc-
tor)

2.2 Retrieval Augmentation with External
Database

To enhance interpreting complex medical termi-
nologies in referral forms, we augment content
with information from external sources including
job descriptions, medical terminology explanations,
and medication details.

Knowledge Base Creation. We incorporate
knowledge from diverse external sources into text
representation format to enable semantic-based re-
trieval, represented as E = {k1, k2, ..., km}, where
m is the total number of text vectors in the corpus.
Our knowledge base integrates two specialized re-
sources: the NCI Thesaurus providing comprehen-
sive biomedical terminology with cancer-related
clinical and molecular information (Sioutos et al.,
2007), and O*NET OnLine (National Center for
O*NET Development, 2025) supplying detailed oc-
cupational information across multiple dimensions.
This integration enables more nuanced semantic
understanding and improves domain-specific infor-
mation retrieval in biomedical and occupational
contexts.

Document Anonymization. We employ LLMs
to detect and anonymize personal information in
unstructured data following recent advances in ad-
versarial anonymization techniques (Staab et al.).
We represent the anonymized version of case Mi

as M ′
i .

Corpus Embedding. Following (Cheng et al.,
2023), we use Dragon (Lin et al., 2023), a dual
encoder model with strong cross-domain perfor-
mance, as our retriever. We use the passage encoder
Ep to encode passages from E, and the query en-
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coder Eq during runtime to retrieve the relevant
results.

Medical Entity Extraction. We leverage LLMs
to extract medical entities, as they better under-
stand contextual nuances and recognize specialized
terminology in non-standard formats.

Medical Document Summarizer. The Summa-
rizer component (S) processes both anonymized
records and retrieved knowledge to produce
comprehensive case representations. For each
anonymized record M ′

i , it generates a condensed
representation Si = LLM(M ′

i , k
′
i), where k′i rep-

resents relevant knowledge retrieved from E.
Information Retrieval. We encode medical en-

tities using Eq and retrieve the most relevant infor-
mation (top-k, where k=1) from Ep.

2.3 AI Agent Orchestration Framework

Our framework simulates triage rules practiced by
Heales Medical with heterogeneously orchestrated
agents divided into two crews, each supervised by
dedicated chat managers. Crew 1 is managed by
C1
M and consists of agents A1 and A2, while Crew

2 is managed by C2
M and comprises agents A3

through A8. Figure 1 illustrates our approach to
Occupational Health (OH) Triage using multiple
LLM agents.

2.4 System Overview

We constructed our triage agent-based framework
following standardized triage protocols developed
by expert clinicians at Healthcare Provider. Our
framework implements a sequential processing
pipeline beginning with LLM-based anonymiza-
tion of clinical records Mi, followed by a two-stage
information enrichment process: (1) extraction of
medical entities and occupation-related informa-
tion, and (2) comprehensive information summa-
rization, producing condensed case representations
Si. These are directed to our dual-channel triage
system managed by specialized Chat Managers
C1
M and C2

M .
C1
M coordinates Crew1 to analyze communica-

tion difficulties and workplace assessment require-
ments for appointment modality decisions. Con-
currently, C2

M orchestrates Crew2 to evaluate spe-
cialized case characteristics for healthcare provider
assignment. Specifically, Crew2 identifies criti-
cal factors including substance abuse (A3), job-
related safety concerns (A4), disciplinary action
issues (A5), mental health conditions (A6), infec-

Table 1: Distribution of Medical Categories in the
Dataset

Category Total Count Percentage
Mental Health 888 34.1%
Musculoskeletal 770 29.6%
Neurological 174 6.7%
Cardiovascular 133 5.1%
Gastrointestinal 124 4.8%
Genitourinary 109 4.2%
Respiratory 91 3.5%
Oncology 83 3.2%
ENT and Sensory 68 2.6%
Infectious Disease 41 1.6%
Pregnancy 29 1.1%
Other 79 3.0%

tious diseases (A7), and RIDDOR4-related cases
(A8).

Iterative Discussion. Our framework imple-
ments five consecutive discussion iterations among
specialized agents for each case, employing major-
ity voting to determine the final recommendation.

Decision Rules. We employ a safety-prioritized
protocol where if any agent in Crew1 recommends
face-to-face consultation, the case defaults to an
in-person appointment. Similarly, if any agent in
Crew2 suggests physician consultation, the case
is assigned to a doctor rather than an alternative
provider.

Our framework employs a multi-dimensional ap-
proach: distributed parallel assessment (horizontal
dimension) where specialized agents concurrently
evaluate distinct clinical aspects, and temporal iter-
ative refinement (vertical dimension) consisting of
five sequential deliberation cycles.

Early Stopping Mechanism. We terminate
agent deliberation after three consistent decisions
from an individual agent, as the majority outcome
in a five-iteration sequence is determined after three
identical decisions.

3 Experiments

3.1 Experiment Setups
Dataset. We conducted experiments using a com-
prehensive private occupational healthcare dataset
from Heales Medical, comprising 2,589 clinically
diverse cases. The distribution of medical cate-
gories is detailed in Table 1. Our preliminary inves-
tigation employed a transformer-based model with

4https://www.hse.gov.uk/riddor/
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Figure 1: Overview of our OccuTriage orchestration framework for occupational healthcare multi triage prediction,
developed in collaboration with Heales Medical . The framework integrates referral forms, medical records, and
external knowledge bases, utilizes multiple specialized LLM agents to perform comprehensive analysis and generate
accurate triage recommendations.

a standard data partitioning protocol, yielding mod-
erate F1-scores of 63% for assessor type prediction
and 55% for appointment modality classification.
These limitations stemmed from insufficient train-
ing data volume and architectural constraints in
learning from sparse, unstructured clinical informa-
tion.

Implementation Details. We implement
Llama3.1 8B and Llama3.2 13B vision models by
(Team and Meta, 2024) deployed using Text Gener-
ation Inference engine on a Linux server with four
Nvidia H100 GPUs. Llama3.2 13B was utilised
to extract information from case related pdf doc-
uments. We use temperature 0.7, top_p 0.95, and
repetition_penalty 1.0 for inference. Our agent
framework uses Microsoft’s Autogen5 for multi-
agent interactions.

Evaluation Metrics. Following (Lu et al.), we
evaluate performance using discordance rate as our
primary metric, supplemented by under-triage and
over-triage rates (Table 2). Under-triage occurs
when patients receive insufficient care, creating
potential safety risks. Over-triage represents re-
source inefficiency through unnecessary allocation
of higher care levels. While total discordance mea-
sures overall triage accuracy, under-triage poses the
greater clinical risk.

5https://microsoft.github.io/autogen/

Table 2: Triage discordance metrics.

Term Definition Formula
Undertriage Lower level of

care than clini-
cally needed

Undertriage cases
Total cases ×

100%

Overtriage Higher level of
care than clini-
cally needed

Overtriage cases
Total cases ×

100%

Discordance Total incorrect
triage deci-
sions

Under + Over
Total cases ×

100%

Baselines. We compared our proposed Occu-
Triage framework against several baseline config-
urations: a single LLM agent without enhance-
ments, progressively adding Chain of Thought
(CoT) reasoning and Retrieval-Augmented Gen-
eration (RAG).

3.2 Main Experimental Results

Table 3 presents a comprehensive comparison of
our OccuTriage framework against baseline config-
urations and human expert performance.

The single-agent LLM baseline without enhance-
ments demonstrates substantial discordance rates,
with Llama and Asclepius models achieving aver-
age discordance rates of 45.38% and 43.05% re-
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Table 3: Performance comparison of different experimental configurations for occupational health triage prediction
using Llama3.1 and Asclepius LLM models. Results show discordance metrics (%) for both appointment type and
OH assessor type prediction tasks. Lower values indicate better performance.

Configuration Model Appointment Type OH Assessor Type Average
Under Over Disc. Under Over Disc. Disc.

1-Agent LLM (No RAG,
few shot or CoT)

Llama 22.54 26.21 48.75 7.0 35.0 42.0 45.38
Asclepius 19.82 27.18 47.00 6.8 32.3 39.1 43.05

1-Agent LLM
+ RAG

Llama 18.65 25.10 43.75 5.9 30.2 36.1 39.93
Asclepius 15.40 22.10 37.50 6.1 26.4 32.5 35.00

1-Agent LLM
+ Few-shot (3)

Llama 16.32 27.43 43.75 8.5 31.0 39.5 41.63
Asclepius 16.95 24.05 41.00 7.2 32.8 40.0 40.50

1-Agent LLM
+ CoT

Llama 14.85 19.65 34.50 5.3 28.7 34.0 34.25
Asclepius 14.25 20.75 35.00 5.7 24.8 30.5 32.75

OccuTriage
(our framework)

Llama 9.52 15.91 25.43 2.9 14.2 17.1 21.27
Asclepius 9.84 12.48 22.32 3.1 14.9 18.0 20.16

Human Expert 11.84 14.38 26.22 9.0 15.0 24.0 25.11

spectively. This indicates that unaugmented LLMs
struggle with the complex decision-making re-
quired for occupational health triage.

When incorporating retrieval augmentation
(RAG), performance improves significantly, reduc-
ing average discordance to 39.93% (Llama) and
35.00% (Asclepius). This improvement highlights
the importance of domain-specific knowledge inte-
gration.

Few-shot learning (3 examples) yields modest
improvements over the baseline, with average dis-
cordance rates of 41.63% (Llama) and 40.50%
(Asclepius). Chain of Thought (CoT) reasoning
demonstrates substantial performance gains, reduc-
ing average discordance to 34.25% (Llama) and
32.75% (Asclepius).

Our proposed OccuTriage framework signif-
icantly outperforms all baseline configurations,
achieving an average discordance rate of 21.27%
with Llama and 20.16% with Asclepius. Notably,
OccuTriage exceeds human expert performance
(25.11% average discordance).

The most clinically significant finding relates
to under-triage rates, where OccuTriage achieves
9.52% (Llama) and 9.84% (Asclepius) for appoint-
ment type decisions, and 2.9% (Llama) and 3.1%
(Asclepius) for assessor type decisions. These re-
sults are particularly important as under-triage rep-
resents potential safety risks.

When analyzed by triage decision type, asses-
sor type prediction demonstrates consistently lower
discordance rates than appointment type predic-
tion across all configurations. This superior per-
formance can be attributed to our comprehensive

six-agent architecture in Crew 2, which effectively
captures the multifaceted clinical factors influenc-
ing provider selection.

The consistent performance advantage of Ascle-
pius over Llama3.1 across most configurations con-
firms the value of domain-specific model training
as established by (Kweon et al., 2023).

4 Case Study

We evaluated OccuTriage on 2,589 occupational
health cases from Heales Medical, comparing its
performance against single-agent LLM baselines
and human experts. The framework demonstrated
superior triage accuracy across all metrics, achiev-
ing an average discordance rate of 20.16% with the
Asclepius model, compared to 25.11% for human
experts.

The progression from baseline configurations
through our multi-agent approach showed steady
improvement in triage accuracy. Most significantly,
OccuTriage reduced under-triage rates for asses-
sor type prediction to 2.9% (Llama3.1) and 3.1%
(Asclepius), substantially outperforming human ex-
perts’ 9.0% rate.

Our safety-efficiency tradeoff analysis demon-
strates OccuTriage’s optimal balance between
under-triage (safety risk) and over-triage (effi-
ciency risk). Configuration progression consis-
tently moved toward the ideal performance region,
with the final framework achieving both lower
under-triage and over-triage rates than human ex-
perts.

Statistical analysis revealed that OccuTriage per-
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forms better on assessor type prediction than ap-
pointment type prediction across all configura-
tions. The framework achieved discordance rates
of 22.32% and 18.0% for appointment and asses-
sor type predictions respectively using Asclepius,
compared to 26.22% and 24.0% for human experts.

While domain-specific Asclepius models gener-
ally outperformed Llama3.1, the performance gap
varied across configurations. The most substan-
tial improvement occurred with RAG integration
(4.93% average discordance reduction), suggest-
ing domain-specific models significantly enhance
knowledge-intensive operations.

Clinician feedback confirms that OccuTriage’s
improved accuracy justifies its modest computa-
tional overhead, particularly as reduced under-
triage directly impacts patient safety while de-
creased over-triage optimizes resource alloca-
tion. These findings demonstrate OccuTriage’s
potential for improving occupational health triage
through its specialized agent architecture and
safety-prioritized decision protocols.

5 Conclusion

This paper presents OccuTriage, a novel AI agent
orchestration framework for occupational health
triage prediction. Our approach employs special-
ized LLM agents, retrieval augmentation, and a
bidirectional decision architecture to simulate clin-
ical reasoning. Experimental evaluation on 2,589
occupational health cases demonstrates that Occu-
Triage outperforms single-agent approaches with a
20.16% average discordance rate compared to base-
line rates of 43.05%, while matching or exceeding
human expert performance (25.11%).

The most significant finding is OccuTriage’s abil-
ity to reduce under-triage rates to 9.84% and 3.1%
for appointment and assessor type decisions respec-
tively, substantially outperforming human experts
(11.84% and 9.0%). This improvement is critical
for patient safety, as under-triage represents inade-
quate care allocation.

Our multi-agent architecture demonstrates par-
ticular efficacy in assessor type prediction, with
each agent focusing on distinct clinical do-
mains—substance abuse, safety concerns, disci-
plinary issues, mental health, infectious diseases,
and RIDDOR-related cases. This specialized focus
enables robust consensus formation and precise
decision-making, establishing OccuTriage as an
effective tool for complex healthcare triage tasks.

The framework’s safety-prioritized protocol en-
sures that high-risk cases default to face-to-face
consultations and physician evaluations, aligning
with clinical safety practices. The early stopping
mechanism optimizes computational efficiency
without compromising decision integrity.

In comparison with existing approaches, Occu-
Triage addresses the limitations identified in previ-
ous work by bridging clinical judgment and algo-
rithmic approaches, incorporating domain-specific
knowledge, and implementing a multi-dimensional
decision framework specifically designed for occu-
pational health settings.

These results establish OccuTriage’s efficacy
in performing complex occupational health triage
while maintaining safety and optimizing resource
allocation, with potential applications across di-
verse healthcare settings.

6 Extended Analysis and System
Evaluation

6.1 Error Analysis and Performance Patterns

Analysis of the remaining 20.16% discordance
cases reveals specific patterns that inform sys-
tem optimization strategies. The residual dis-
cordance cases primarily cluster around complex
multi-comorbidity scenarios where manual clini-
cal judgment traditionally varies among practition-
ers. The specialized Mental Health Agent (A6)
systematically applies consistent diagnostic criteria
across cases, with musculoskeletal cases (29.6%
of dataset) showing improved consistency through
structured decision protocols. Category-specific
analysis reveals no systematic classification fail-
ures in any diagnostic domain.

Complex cases involving rare medical conditions
or non-standard terminology usage in referral doc-
umentation present ongoing challenges that con-
tribute to remaining discordance cases. Knowledge
base retrieval with NCI Thesaurus and O*NET in-
tegration enables nuanced interpretation of medi-
cal terminology and occupational context, though
these edge cases highlight areas for knowledge base
expansion.

6.2 Computational Architecture Analysis

Model-specific analysis reveals distinct output for-
matting characteristics that impact system integra-
tion. Asclepius consistently generates responses in
paragraph format with reasoning rather than struc-
tured decision outputs, necessitating additional pro-
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cessing overhead through a secondary Llama-based
sentiment analysis layer to extract binary triage de-
cisions. This architectural requirement contrasts
with Llama models that directly produce structured
classifications without requiring post-processing.

The sentiment analysis overhead adds processing
complexity to Asclepius-based implementations,
requiring additional model invocations per case to
convert paragraph-format clinical reasoning into
structured binary classifications. Despite this com-
putational trade-off, the clinical accuracy benefits
of the domain-specialized Asclepius model justify
the additional processing requirements.

Runtime performance metrics demonstrate prac-
tical efficiency for clinical deployment. Processing
time per case averages approximately 12 seconds,
representing acceptable computational overhead
for non-emergency occupational health triage. The
early stopping mechanism optimizes efficiency by
terminating agent discussions after achieving con-
sensus, while the dual-crew architecture enables
concurrent evaluation, maximizing resource utiliza-
tion through parallel processing.

6.3 Clinical Workflow Integration
The framework demonstrates robust integration ca-
pabilities with existing healthcare information sys-
tems. Structured JSON-formatted outputs maintain
compatibility with Electronic Health Record sys-
tems, while comprehensive audit trails preserve
complete decision reasoning for clinical gover-
nance compliance. The system successfully pro-
cesses typical occupational health referral volumes
without performance degradation.

Clinical workflow compatibility extends to pro-
fessional oversight capabilities, with complete rea-
soning chains available for practitioner review and
quality assurance processes. The safety-prioritized
protocol preserves clinical discretion, allowing
healthcare providers to override system recommen-
dations when clinical judgment necessitates alter-
native decisions.

6.4 Multi-Agent Discussion Protocol
Effectiveness

Multi-agent discussion protocols prove essential
for complex case resolution, with iterative consen-
sus mechanisms resolving borderline cases that
challenge single-agent approaches. The six-agent
architecture in Crew2 demonstrates particular ef-
fectiveness for assessor type predictions, achiev-
ing 18.0% discordance compared to human ex-

pert performance of 24.0%. Analysis reveals that
simple cases maintain high accuracy matching hu-
man expert performance, while complex multi-
comorbidity cases represent the primary source
of remaining discordance, where the framework’s
structured approach provides more consistent re-
sults than traditional manual assessment methods.

Processing efficiency considerations support in-
tegration into existing healthcare information sys-
tems, where occupational health decisions oc-
cur within consultation scheduling timeframes
rather than emergency response requirements. The
computational overhead remains justified by the
substantial accuracy improvements demonstrated
across all experimental configurations.
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