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Abstract

Despite advances in unsupervised log anomaly
detection, current models require dataset-
specific training, causing costly procedures,
limited scalability, and performance bottle-
necks. Furthermore, numerous models lack
cognitive reasoning abilities, limiting their
transferability to similar systems. Additionally,
these models often encounter the ''identical
shortcut' predicament, erroneously predict-
ing normal classes when confronted with rare
anomaly logs due to reconstruction errors. To
address these issues, we propose MLAD, a
novel Multi-system Log Anomaly Detection
model incorporating semantic relational rea-
soning. Specifically, we extract cross-system
semantic patterns and encode them as high-
dimensional learnable vectors. Subsequently,
we revamp attention formulas to discern key-
word significance and model the overall distri-
bution through vector space diffusion. Lastly,
we employ a Gaussian mixture model to high-
light rare word uncertainty, optimizing the vec-
tor space with maximum expectation. Experi-
ments on real-world datasets demonstrate the
superiority of MLAD .

1 Introduction

Logs play a vital role in system maintenance by
recording operations and outcomes that can reveal
abnormal behavior. Data-driven log analysis tech-
niques have been widely used to automatically de-
tect anomalies in system behavior (Du et al., 2017a;
Chandola et al., 2009; Meng et al., 2019a; Guo
et al., 2024). However, most log anomaly detection
models are designed for a single system, following
a "'one model for one system'' approach (Yu et al.,
2024; Su et al., 2024; Guo et al., 2023b), as shown
in Fig.1(a). This siloed training limits generaliza-

“Equal contribution.

Corresponding author.

'We provide code and dataset: https://github.com/
LolerPanda/Multi-System-Log-Anomaly-Detection

&3

Datasets Datasets

|
I
A} O Normal
oo, TRy e st
— J e
A
[ 1 (] 1
—— Model 2 0% | e
i .
H H : i
=< . )
Thunderbird ~ :(.:) ! Boundary Thunderbird
k- !

(a) (b)

Figure 1: Multi-system log anomaly detection task. (a)
Existing models learn separate decision bounds for dif-
ferent object logs. (b) We model the multi-system log
distributions so that a single bound can detect anoma-
lies.

tion and fails to capture patterns common across
different systems.

Integrating log data from multiple systems of-
fers the potential to uncover anomalous patterns
hidden in isolated datasets. In practice, though,
new systems often lack sufficient log data to train
reliable models, leading to delayed deployment and
missed anomalies (Landauer et al., 2024). Existing
methods also tend to overlook deeper semantic fea-
tures (Wang et al., 2017; Guo et al., 2023a) shared
across systems. As a result, similar anomalies,
such as repeated error or warning messages, oc-
curring across different system logs may remain
undetected.

To address these challenges, we introduce
MLAD—a generalized log anomaly detection
model designed for multiple systems, as illustrated
in Fig.1(b). MLAD learns a unified decision bound-
ary to classify normal and abnormal events across
all systems, rather than maintaining separate mod-
els per system. Unlike reconstruction-based meth-
ods that can misclassify anomalies due to the “iden-
tical shortcut” (You et al., 2022) effect, where rare
abnormal logs are reconstructed too well and thus
labeled normal (Yao et al., 2024), MLAD avoids
this pitfall. It employs a deflationary transforma-
tion of the vector space to amplify distinctions be-
tween normal and abnormal log samples. This
transformation clusters similar log entries together
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Figure 2: The architecture of our proposed MLAD.

while pushing normal and anomalous logs farther
apart, making anomalies easier to isolate.

MLAD combines a Transformer (Vaswani
et al., 2017) and a Gaussian Mixture Model
(GMM) (Zong et al., 2018; Vilnis and McCallum,
2015) in a unified architecture. The Transformer
component learns rich semantic representations of
log sequences, capturing context and reducing re-
construction error (Ma et al., 2024). The GMM
component functions as a robust probabilistic clas-
sifier for distinguishing normal from anomalous
log instances. We train the Transformer and GMM
jointly, which minimizes encoding errors and yields
more precise anomaly detection. Our contributions
are:

* Multi-System Anomaly Detection. Intro-
duces a new model for detecting anomalies
across multiple systems, overcoming the lim-
itations of traditional one-model-per-system
methods.

Hybrid Transformer—GMM Architecture.
Integrates Transformers with GMMs, jointly
learning semantic log representations while
preserving clear separation between normal
and abnormal events.

* Addressing “Identical Shortcut”. Mitigates
the identical shortcut problem by transforming
the vector space, which effectively separates
abnormal samples from normal ones based on
learned distance relationships.

Improved Performance. Extensive experi-
ments on real-world log datasets show that
MLAD outperforms state-of-the-art anomaly
detection approaches.
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2 Related Work

Traditional log anomaly detection methods use
manual rules or statistical approaches like SVD
(Mahimkar et al., 2011), ARIMA (Zhang et al.,
2005), and variants. While effective to some extent,
these models are noise-sensitive and parameter-
sensitive (Chen et al., 2023a), limiting practical
applications. Recent models leverage deep learn-
ing networks (Du et al., 2017b; Han and Yuan,
2021; Zhang et al., 2022). Du et al. proposed
DeepLog (Du et al., 2017b), an LSTM architecture
for identifying anomalous log message sequences.
LogAnomaly (Meng et al., 2019b) improves on
DeepLog by using log sequence embedding rather
than template sequences. Zhang et al. introduced
LogRobust (Zhang et al., 2019), an attention-based
Bi-LSTM model for anomaly detection. Huang
et al. (Huang et al., 2020) employed hierarchical
transformers to model both log template sequences
and parameter values. LogBERT (Guo et al., 2021)
predicts masked log keys, positioning normal logs
close together in embedding space.

3 MLAD

We introduce MLAD, as depicted in Figure 2, a
hybrid model trained on log sequences using unsu-
pervised tasks to automatically detect anomalies.

3.1 Problem Definition

System logs contain unstructured messages with
fields like timestamp and severity, exhibiting se-
quential patterns and semantic relationships. We
extract templates using the Drain parser (He et al.,
2017), as shown in Figure 3. For example, the
BGL log template "exception syndrome register:
<>" comes from "exception syndrome register:
0x008000", where <> indicates variable param-
eters. We map each template to a key, creating
sequences I = [T,T5,...,T;,...,TN], where
T; € T is the template key at position i, and T is
the set of NV template sequences from system logs.
Our model identifies abnormal template sequences
by training only on normal log sequences.

3.2 Feature Extractor

For semantic template relation learning, we use
pre-trained Sentence-Bert (Reimers and Gurevych,
2019) to obtain template sequence representations
and MEAN pooling (Reimers and Gurevych, 2019)
to compress vectors into fixed dimension d embed-
dings. This prevents information loss from log pars-
ing errors and facilitates single- or multi-system log
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Figure 3: Log processing flow.

fusion. Each sequence 7' € R**¢ forms template
vectors in high-dimensional vector spaces.

3.3 Sparse Log Self-attention

Self-attention encodes template sequence vectors
by associating words based on pairwise similar-
ity function f(-,-). We use linear projection 7" to
acquire query @, key K, and value V, and adopt
Scaled DotProduct Attention (Vaswani et al., 2017)
with sparse transformation:

Q,K,V:TWq TW i , TW o,

QKT
v

)V, ey

where learnable weights {W,, Wy, W, } € RI¥x4,
V/dy, is a scaling factor, (Q of Eq. 1 is the query
representation matrix, K is the key matrix, and V'
is the values matrix. The sparse transformation
(Peters et al., 2019) increases attention weight dif-
ferences to accurately learn keyword embedding
vectors. Weight values follow the function:

h=Attention(Q,K,V)=a—entmax (

o-entmax(z)=argmax (pT o+H] (p)) ,
peAd—1
" 2
B (=] @D 2 (”j‘pf>’ a7l
HT(p)v o = 17

where H_! (p) is Tsallis a-entropies (Tsallis, 1988),
parameterized by scalar o > 1. From Eq. 2, the soft-
max function equals 1-entmax, with Shannon and
Gini entropy as regularizers. Parameter o controls
shape and sparsity, as shown in Figure 4. When 1
< a < 2, the function produces sparse probability
distribution with smooth corners. Traditional soft-
max (Bridle, 1989) has small slope at 0.5, making
weight values dense around 0.5 when word count is
high, reducing word differentiation and hindering
keyword identification.

3.4 Feed-Forward Network
We apply a fully connected Feed-Forward Network

(FEN) to each position to add nonlinearity and con-
sider latent dimension interactions. FFN includes
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Figure 4: An illustration of the c-entmax function in a
two-dimensional space.

two linear transformations with Continuously Dif-
ferentiable Exponential Linear Unit (CeLU) (Bar-
ron, 2017) activation:

FEN(h)=CeLU(hW; +b1 ) Wa-+bs, 3
CeLU(z)=max(0,z)+min(0,ax(exp(z/a)—1),

where Wy, Wy, by, and by are parameters. CeLU(-)
provides smoother transition than ReLU(-), im-
proving generalization. We use normalization and
dropout to prevent overfitting.

3.5 Gaussian Mixture Model

For anomaly detection, we use GMM with
Expectation-Maximization (EM) algorithm (Hu-
ber and PeterJ, 2009). GMM excels in label-free
learning but struggles with large-scale data (Zong
et al., 2018). Transformers encode large-scale data
and learn high-dimensional features effectively. By
adjusting Multi-head Attention layers, we reduce
vector space dimensions, addressing the big data
limitations of GMM. Transformers face binary clas-
sification challenges when loss approaches zero.
The a-entmax function maps normal log words
to an identity matrix, potentially misclassifying
similar abnormal logs. Replacing the decoder of
Transformer with GMM enhances vector space dif-
ferentiation through iterative sample reconstruction,
improving normal/abnormal sample distinction. In
the EM algorithm’s E-step, GMM prior defines dis-
tributions on reconstruction function f(h) using
Gaussian distributions /. We compute probabil-
ity ng that hidden vector h; belongs to the k-th

Gaussian:
g=entmax(hWh+b),

@FZ?& %Tkv
where ¢; indicates anomaly class probability and
adjusts the attenuation parameter. Each Gaussian
has mean p (sample location) and covariance .
Sentence-BERT uses cosine similarity but over-
looks uncertainty (Reimers and Gurevych, 2019)
from low-frequency words. In multi-system log de-
tection, imbalance between normal/abnormal sam-
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ples exacerbates this issue. We integrate covariance
matrix into the loss function to capture uncertainty
differences, calculating mean p and covariance X
as:

N N
=1 Yikhi
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In the M-step, we substitute estimated parameters
to find the extreme value of the lower bound func-
tion, updating parameter values when the derivative
equals 0. Sample energy is inferred as:
cxp(—%(hi—ﬂk)-rik1(%—%)))

VAESN
(6)

During testing, sample energy is estimated directly
and high-energy samples above threshold are pre-
dicted as anomalies.

E(h;)

—log <Z£<_1 ng

3.6 Objective Function

For N samples, the objective function is:

Loss= % SN, L(yi—9:)2+ 52 2N, BE(h)+22P(S), (7)

where y is ground truth, with \; 0.1 and
A2 = —0.005. This function has three components.
L (y; — 9;) quantifies discrepancy between predic-
tions and actual values, reflecting Transformer pre-
diction accuracy. E (h;) represents GMM normal
probability modeling, minimizing energy for nor-
mal samples and maximizing for abnormal ones.
P(3) addresses the "identical shortcut" issue by
incorporating keyword uncertainty into the loss
function, with higher uncertainty indicating higher
anomaly probability.

4 Experiment

We first describe our experimental setup, compare
MLAD with state-of-the-art baselines, and analyze
components’ roles and multisystem the impact of
datasets.

4.1 Datasets and Setting

Experiments use public BGL, HDFS, and Thun-
derbird datasets (Oliner and Stearley, 2007), de-
tailed in Table 1. For fair comparison, all mod-
els use 100-dimensional embeddings, Adam opti-
mizer with 0.001 learning rate, 0.5 dropout rate
on NVIDIA A100 (80G), 512 batch size, and 30
maximum epochs.
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BGL HDFS Thunderbird
# Log sequences 2,780,580 5,856,609 9,975,120
# Templates 138 (35) 44(25) 1,291 (243)
# Words 987 118 6,546
# Anomalies 248,560 10,109 2,456,660
# Train data 2,283,460 5,544,398 5,061,800
# Test data 497,120 312,211 4,913,320

Table 1: The Statistics of datasets

4.2 Baselines and Metrics

We compare with DeepLog (Du et al., 2017b),
Dagmm (Zong et al., 2018), LogAnomaly (Meng
et al., 2019b), LogRobust (Zhang et al., 2019), Log-
TAD (Han and Yuan, 2021), PLELog (Yang et al.,
2021), LogBERT (Guo et al., 2021), CAT (Zhang
et al., 2022) and ChatGPT (OpenAl, 2022). As
anomaly detection is binary classification (Chen
et al., 2022), we use precision, recall and F1 score
for evaluation (Chen et al., 2023b).

4.3 Log Pre-Processing

For HDFS, log sequences are extracted by block
IDs, while BGL and Thunderbird use a 20-sized
sliding window. Logs are parsed with Drain (He
et al., 2017), and anomalies are identified by win-
dows with anomalous messages. The test set in-
cludes all abnormal sequences and an equal number
of random normal ones, while the training set con-
tains the rest. Table 1 summarizes key statistics.

4.4 Performance Comparison

Table 2 shows MLAD outperforming all baselines
by combining Transformer and GMM strengths.
DeepLog struggles with complex datasets, often
misclassifying anomalies. LogAnomaly achieves
stable F1 scores using semantic vector-based tem-
plate matching. LogTAD performs well on smaller
datasets but underperforms on Thunderbird due to
word-level information loss. Similarly, Dagmm
shows inconsistent results, particularly on Thunder-
bird. LogRobust requires extensive manual label-
ing, limiting unsupervised performance. PLELog
performs poorly on unsupervised datasets with long
training times. Transformer-based LogBERT and
CAT excel at capturing global dependencies and
contextual information. However, no baseline con-
sistently performs well across all datasets, facing
precision-recall balance challenges and identical
shortcut issues.

5 Ablation

5.1 Effect of Components
Our ablation experiments assessed each compo-

nent’s contribution to model performance (Table 2).



BGL HDFS Thunderbird
Pre Rec F1 Pre Rec F1 Pre Rec F1
DeepLog 0.9659 0.6396 0.7696 0.5518 0.6785 0.6024 0.7538 0.6027 0.6699
Dagmm 0.9397 0.8831 0.9065 0.9018 0.6214 0.7358 0.5256 0.5395 0.5322
LogAnomaly 0.8918 0.8584 0.7428 0.8213 0.6179 0.7052 0.7672 0.8963 0.8273
LogRobust 0.9531 04766 0.6354 0.6989 0.5677 0.6700 0.8675 0.8652 0.8664
LogTAD 0.9102 0.8761 0.8949 0.7793 0.9091 0.8393 0.7523 0.8370 0.7886
PLELog 0.6843 0.8759 0.7314 09126 0.8373 0.8799 0.8606 0.8537 0.8671
LogBERT 0.8328 0.8772 0.8579 0.8142 0.7813 0.8089 0.8375 0.8452 0.8402
CAT 0.8727 0.9481 09106 0.8638 0.8892 0.8771 0.8994 0.8838 0.8923
ChatGPT 0.7545 0.6923 0.7221 0.7039 0.7733 0.7369 0.7923 0.7562 0.7738
MLAD 0.9492 0.8932 09184 0.9296 0.8656 0.8946 0.8824 0.9066 0.8962
~wlo a-entmax  0.9309  0.8904 0.8887 0.7016 0.9773 " 0.8231 0.7892  0.8105 0.8282
w/o GMM 0.9128 0.8209 0.8644 0.7443 0.8131 0.7722 0.7534 0.8676 0.8053

Table 2: The performance of different models on the three datasets, and the best model in each column is in bold.

BGL—Th
Pre

0.7225
0.4998
0.7517
0.7120
0.8249
0.6843
0.7847
0.7629
0.8277

derbird Th
Rec Pre

0.7368 0.7253
1.0000 0.5005
0.8602 0.7297
0.8040 0.6473
0.7322 0.7580
0.7336 0.7367
0.7916 0.8163
0.7292 0.8532
0.8314 0.9404

derbird—BGL
Rec

0.6817
1.0000
0.8029
0.9042
0.7838
0.7831
0.8247
0.8390
0.9635

DeepLog
Dagmm
LogAnomaly
LogRobust
LogTAD
PLELog
LogBERT
CAT
MLAD

Table 3: The transfer performance of the models on two
similar datasets (BGL and Thunderbird).

Removing the GMM component most significantly
degraded performance on BGL and Thunderbird
datasets, while having minimal impact on HDFS.
This difference correlates with template complexity
- BGL (138 templates with 35 in the test only) and
Thunderbird (1,291 templates with 243 in the test
only) have substantially more templates than HDFS
(44 templates with 25 in the test only), demonstrat-
ing GMM’s importance for learning sparse key-
word representations.

We evaluated the effectiveness of a—entmax by
testing values {1.0 < o < 1.6,Aa = 0.1} as
shown in Fig. 5. The model performed optimally
with o between 1.2-1.5, where a—entmax effec-
tively sparsified the dense vector space, enhancing
the differentiation between normal and abnormal
samples. At a=1 (equivalent to softmax), perfor-
mance was mediocre, while values above 1.5 intro-
duced excessive sparsity, generating zero-valued
keyword weights that caused the model to ignore
important features. The sparse transformation re-
mains essential for improving prediction accuracy
across tested datasets.

5.2 Effect on Multi-System Datasets

To evaluate cross-system performance, we com-
bined BGL and Thunderbird datasets (both pre-
processed using fixed-window mode) into a unified
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dataset. As shown in Fig. 6, MLAD maintained ro-
bust performance while baseline models struggled
with the increased generalization requirements of
the combined dataset. This highlights the ability of
MLAD to detect anomalies that might go unnoticed
when systems are analyzed separately. Our abla-
tion experiments revealed that removing Sentence-
BERT caused minimal performance degradation
on single-system logs but significant losses on
multi-source logs. This confirms the importance of
sentence-level semantic features for cross-system
generalization. The self-attention mechanism ef-
fectively captured semantic relationships between
words, allowing the model to identify semantically
similar anomalous patterns despite different word-
ing. For instance, "error”" and "exception" were
recognized as semantically related indicators of
anomalies, even when followed by different vari-
ables.

5.3 Effect of Transferred Knowledge

To validate the model’s cross-system performance,
we conduct a transfer learning experiment for log
anomaly detection using two similar datasets: BGL
and Thunderbird. We evaluate the models in terms
of Precision and Recall, with results presented in
Table 3.

BGL—Thunderbird: Models are trained on
BGL and tested on Thunderbird. = Dagmm,



DeepLog, and PLELog perform poorly on Thunder-
bird, with Dagmm failing to detect any anomalies,
highlighting its lack of cross-system adaptability.
In contrast, LogRobust, LogAnomaly, LogTAD,
LogBERT, and CAT exhibit better transfer learning
due to effective semantic processing, though their
performance is limited by shared words between
the two datasets, requiring improved reasoning for
unseen terms.

Thunderbird—BGL: Training on Thunderbird
and testing on BGL yields better results, primarily
due to: (1) Thunderbird’s larger dataset, allow-
ing for more comprehensive learning, and (2) the
higher proportion of shared words between the two
datasets, with BGL containing 261 shared terms,
representing a larger portion of its test set compared
to Thunderbird.

5.4 Effect of Large Language Model

We evaluated large language models’ ability to de-
tect log anomalies using a Chain-of-Thought (Wei
et al., 2022) approach rather than direct classifica-
tion. This two-step process first guides the model
to generate templates from log sequences, then
identify anomalies based on these templates. Ta-
ble 4 compares results with and without Chain-of-
Thought processing. The findings show that LLMs
like ChatGPT struggle with complex log anomaly
detection despite the improved reasoning approach.
This underperformance stems from their limited
domain-specific training and inability to capture
the subtle patterns and contextual nuances in sys-
tem logs. The inherent complexity and variability
of operational logs often exceed these models’ gen-
eralization capabilities.

Method HDFS BGL  Thunderbird
ChatGPT w/ CoT  0.7369  0.7221 0.7738
ChatGPT w/o CoT ~ 0.6721  0.6542 0.7132

Table 4: F} between ChatGPT with/without CoT.

Generation Prompt: Please determine if there are any
anomaly in logs, and directly give the answer: Yes or No.

6 Visualization

We evaluated classification performance using t-
SNE visualization on 800 balanced BGL sam-
ples (normal/abnormal=1:1). As shown in Fig. 7,
MLAD achieves clearer class separation than
LogAnomaly, which exhibits significant overlap
between categories. This improvement is attributed

88

Chain-of-Thought Prompt
2023-08-02 10:30:00 DEBUG:
Checking server availability.
2023-08-02 10:30:15 ERROR: Net-
workException - Unable to establish
connection to server.

Step 1: Log Parsing
Extract the templates of log se-
quences while replacing the vari-
ables with < * >

1. < * > ERROR: NetworkExcep-
tion - < * > to establish connection
to server.

2. < * > DEBUG: Checking server
availability.
Step 2: Anomaly Detection
Two-Step Prompt:

log contents:

One-Step Prompt:

Templates:

According to the log sequences, Tem-
plates:, the relationship between
Templates: and variables, determine
if there are any exceptions in tem-
plates and variables, and directly
give the answer: Yes or No.

Answer:  Yes or No.

(a) LogAnomaly (b) MLAD

Figure 7: Samples in 2-dimensional space learned by
LogAnomaly and MLAD. The red dots e are samples
from the normal logs, and the blue triangles /\ are sam-
ples from the abnormal logs, the (FP)
indicate normal samples that the model incorrectly pre-
dicts, and conversely, the violet crosses x (FN) indicate
abnormal samples that the model incorrectly predicts.

to the a-entmax function’s enhanced spatial dis-
crimination capability.

Table 2 reveals two key findings: (1) Removing
GMM reduces recall while increasing precision, ex-
posing the Transformer’s vulnerability to identical
shortcut learning; (2) The 30% lexical gap between
training and test sets underscores the persistent
challenge of detecting rare keywords in anomaly
detection.

7 Conclusion

We propose MLAD, a unified log anomaly detec-
tion model combining Transformer and GMM ad-
dressing the "identical shortcut” problem. Trans-
former captures semantic relations, while GMM
models complex distributions and handles rare key-
word uncertainty through covariance. Experiments
on three datasets demonstrate the effectiveness.



Limitations

Hyperparameter Tuning. The hyperparameters
used in this study were not fully optimized. Fur-
ther adjustments and fine-tuning are necessary to
better explore the capabilities of model and ensure
optimal performance across various experimental
settings.

Ethical Considerations

Our method utilizes publicly available log datasets
without sensitive user information. However, prac-
tical deployment should ensure data privacy and
handle potential false alarms carefully to avoid neg-
ative impacts on operational reliability.

Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China (Grant Nos.
62276017, 62406033, U1636211, 61672081), and
the State Key Laboratory of Complex & Critical
Software Environment (Grant No. SKLCCSE-
20247X-18).

References

Jonathan T. Barron. 2017. Continuously differentiable
exponential linear units. CoRR, abs/1704.07483.

. Bridle. 1989. Probabilistic interpretation of feedfor-
ward classification network outputs, with relation-
ships to statistical pattern recognition. Neurocomput-
ing : Algorithm, architectures, and applications.

Varun Chandola, Arindam Banerjee, and Vipin Kumar.
2009. Anomaly detection: A survey. ACM Comput.
Surv., 41(3):15:1-15:58.

Xuanhao Chen, Liwei Deng, Yan Zhao, and Kai Zheng.
2023a. Adversarial autoencoder for unsupervised
time series anomaly detection and interpretation. In
Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, WSDM ’23,
page 267-275, New York, NY, USA. Association for
Computing Machinery.

Xuanhao Chen, Liwei Deng, Yan Zhao, and Kai Zheng.
2023b. Adversarial autoencoder for unsupervised
time series anomaly detection and interpretation. In
Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, WSDM ’23,
page 267-275, New York, NY, USA. Association for
Computing Machinery.

Yufu Chen, Meng Yan, Dan Yang, Xiaohong Zhang,
and Ziliang Wang. 2022. Deep attentive anomaly
detection for microservice systems with multimodal
time-series data. In 2022 IEEE International Confer-
ence on Web Services (ICWS), pages 373-378.

89

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017a. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS, pages
1285-1298.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017b. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS, pages
1285-1298.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Log-
bert: Log anomaly detection via BERT. In Interna-
tional Joint Conference on Neural Networks, [ICNN
2021, Shenzhen, China, July 18-22, 2021, pages 1-8.
IEEE.

Hongcheng Guo, Yuhui Guo, Jian Yang, Jiaheng Liu,
Zhoujun Li, Tieqiao Zheng, Liangfan Zheng, We-
ichao Hou, and Bo Zhang. 2023a. Loglg: Weakly
supervised log anomaly detection via log-event graph
construction. In Database Systems for Advanced Ap-
plications - 28th International Conference, DASFAA
2023, Tianjin, China, April 17-20, 2023, Proceedings,
Part IV, volume 13946 of Lecture Notes in Computer
Science, pages 490-501. Springer.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Jiaqi
Bai, Boyang Wang, Zhoujun Li, Tieqiao Zheng,
Bo Zhang, Junran Peng, and Qi Tian. 2024. Log-
former: A pre-train and tuning pipeline for log
anomaly detection. In Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2024, Fourteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 135-143. AAAI Press.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang,
Linzheng Chai, Jiaqi Bai, Junran Peng, Xiaorong Hu,
Chao Chen, Dongfeng Zhang, Xu Shi, Tieqiao Zheng,
Liangfan Zheng, Bo Zhang, Ke Xu, and Zhoujun
Li. 2023b. OWL: A large language model for IT
operations. CoRR, abs/2309.09298.

Xiao Han and Shuhan Yuan. 2021. Unsupervised cross-
system log anomaly detection via domain adaptation.
In Proceedings of the 30th ACM International Con-
ference on Information and Knowledge Management,
page 3068-3072.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R.
Lyu. 2017. Drain: An online log parsing approach
with fixed depth tree. In 2017 IEEE International
Conference on Web Services, ICWS, pages 33—40.

Shaohan Huang, Yi Liu, Carol J. Fung, Rong He, Yin-
ing Zhao, Hailong Yang, and Zhongzhi Luan. 2020.
Hitanomaly: Hierarchical transformers for anomaly
detection in system log. IEEE Trans. Netw. Serv.
Manag., 17(4):2064-2076.


https://doi.org/10.1145/3539597.3570371
https://doi.org/10.1145/3539597.3570371
https://doi.org/10.1145/3539597.3570371
https://doi.org/10.1145/3539597.3570371
https://doi.org/10.1109/ICWS55610.2022.00062
https://doi.org/10.1109/ICWS55610.2022.00062
https://doi.org/10.1109/ICWS55610.2022.00062
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1609/AAAI.V38I1.27764
https://doi.org/10.1609/AAAI.V38I1.27764
https://doi.org/10.1609/AAAI.V38I1.27764

Huber and Peter]. 2009. Robust statistics / 2nd ed.

Max Landauer, Florian Skopik, and Markus Wurzen-
berger. 2024. A critical review of common log data
sets used for evaluation of sequence-based anomaly
detection techniques. Proceedings of the ACM on
Software Engineering, 1(FSE):1354-1375.

Mingrui Ma, Lansheng Han, and Chunjie Zhou. 2024.
Research and application of transformer based
anomaly detection model: A literature review. arXiv
preprint arXiv:2402.08975.

Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin
Zhang, Joanne Emmons, Brian Huntley, and Mark
Stockert. 2011. Rapid detection of maintenance in-
duced changes in service performance. In Proceed-
ings of the 2011 Conference on Emerging Networking
Experiments and Technologies, Co-NEXT 11, Tokyo,
Japan, December 6-9, 2011, page 13. ACM.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang,
Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang,
Shimin Tao, Pei Sun, and Rong Zhou. 2019a.
Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI, pages
4739-4745.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang,
Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang,
Shimin Tao, Pei Sun, and Rong Zhou. 2019b.
Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI, pages
4739-4745.

Adam J. Oliner and Jon Stearley. 2007. What super-
computers say: A study of five system logs. In The
37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN, pages 575—
584.

OpenAl. 2022. Chatgpt.

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Conference of the Association for
Computational Linguistics, ACL, pages 1504-1519.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP, pages 3980-3990.

Jing Su, Chufeng Jiang, Xin Jin, Yuxin Qiao, Tingsong
Xiao, Hongda Ma, Rong Wei, Zhi Jing, Jiajun Xu,
and Junhong Lin. 2024. Large language models for
forecasting and anomaly detection: A systematic lit-
erature review. arXiv preprint arXiv:2402.10350.

90

C. Tsallis. 1988. Possible generalization of boltzmann-
gibbs statistics. Journal of Statistical Physics, pages
479-487.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems, pages 5998—6008.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. In 3rd Inter-
national Conference on Learning Representations,
ICLR, Conference Track Proceedings.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 845-854.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlIPS.

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang,
Jiajun Jiang, Xuyuan Dong, and Wenbin Zhang.
2021. Plelog: Semi-supervised log-based anomaly
detection via probabilistic label estimation. In 43rd
IEEE/ACM International Conference on Software
Engineering: Companion Proceedings, ICSE, pages
230-231.

Xincheng Yao, Ruoqi Li, Zefeng Qian, Lu Wang, and
Chongyang Zhang. 2024. Hierarchical gaussian mix-
ture normalizing flow modeling for unified anomaly
detection. In European Conference on Computer
Vision, pages 92—108. Springer.

Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin
Lu, Yu Zheng, and Xinyi Le. 2022. A unified
model for multi-class anomaly detection. CoRR,
abs/2206.03687.

Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Hao-
tian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He.
2024. Deep learning or classical machine learning?
an empirical study on log-based anomaly detection.
In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1-13.

Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei
Cheng, Haifeng Chen, and Hui Xiong. 2022.
CAT: beyond efficient transformer for content-aware
anomaly detection in event sequences. In KDD ’22:
The 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022, pages 4541-4550. ACM.

Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu
Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang,
Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Ran-
dolph Yao, Jian-Guang Lou, Murali Chintalapati,


https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/2079296.2079309
https://openai.com/blog/chatgpt
https://doi.org/10.1145/3534678.3539155
https://doi.org/10.1145/3534678.3539155

Furao Shen, and Dongmei Zhang. 2019. Robust
log-based anomaly detection on unstable log data.
In Proceedings of the ACM Joint Meeting on Euro-
pean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE, pages 807-817.

Yin Zhang, Zihui Ge, Albert G. Greenberg, and Matthew
Roughan. 2005. Network anomography. In Internet
Measurement Conference, pages 317-330. USENIX
Association.

Bo Zong, Qi Song, Martin Rengiang Min, Wei Cheng,
Cristian Lumezanu, Dae-ki Cho, and Haifeng Chen.
2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In 6tk Inter-
national Conference on Learning Representations,
ICLR, Conference Track Proceedings.

91



