
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 1102–1112
July 28-30, 2025 ©2025 Association for Computational Linguistics

Synthesizing and Adapting Error Correction Data for
Mobile Large Language Model Applications

Yanxiang Zhang∗, Zheng Xu*, Shanshan Wu∗, Yuanbo Zhang, Daniel Ramage
Google

{zhangyx, xuzheng, shanshanw, zyb, dramage}@google.com

Abstract

Error correction is an important capability
when applying large language models (LLMs)
to facilitate user typing on mobile devices. In
this paper, we use LLMs to synthesize a high-
quality dataset of error correction pairs to eval-
uate and improve LLMs for mobile applica-
tions. We first prompt LLMs with error cor-
rection domain knowledge to build a scalable
and reliable addition to the existing data syn-
thesis pipeline. We then adapt the synthetic
data distribution to match the mobile applica-
tion domain by reweighting the samples. The
reweighting model is learnt by predicting (a
handful of) live A/B test metrics when deploy-
ing LLMs in production, given the LLM per-
formance on offline evaluation data and scores
from a small privacy-preserving on-device lan-
guage model. Finally, we present best prac-
tices for mixing our synthetic data with other
data sources to improve model performance on
error correction in both offline evaluation and
production live A/B testing.

1 Introduction

Modern typing applications on mobile devices use
many machine learning models, e.g., language
models (LMs) (Ouyang et al., 2017; Liu et al.,
2024b). The generative capacity of LMs can signif-
icantly improve user experience by (automatically)
correcting various errors and predicting next words
to facilitate typing. Recent advancement in large
language models (LLMs) have achieved impres-
sive performance on many language tasks (Ope-
nAI, 2024; Google, 2024; Meta, 2024), opening
new opportunities for rewriting in mobile applica-
tions (Gunter et al., 2024; Liu et al., 2024b). In
practice, LLMs can be deployed on mobile devices
or on servers in datacenters. However, mobile de-
vices have limited resources that currently only
support moderate-sized LLMs (often less than 10

*Equal contribution. Reverse alphabetical order.

billion parameters). Even for LLMs on servers,
moderate-sized models are preferred for mobile ap-
plications because of the considerations of latency,
privacy and serving cost.

Error correction (EC) is an important capacity
of LLMs for mobile applications (see examples
in Fig. 1). As LLMs’ general capacity can de-
crease with the model size (Wei et al., 2022; Cho
et al., 2024), it is important to evaluate and im-
prove moderate-sized models for mobile applica-
tions. Moreover, the data distribution of mobile
applications can differ from commonly collected
public web data (Hard et al., 2018; Xu et al., 2023;
Wu et al., 2024); typing on mobile touchscreens
introduce more errors (Shi et al., 2025) in addition
to common grammatical errors (Bryant et al., 2023;
Stahlberg and Kumar, 2021). Such EC data for
mobile applications differs from much of current
LLMs’ training data.

Post-training with high-quality data is commonly
used to align LLMs with users (Wei et al., 2021;
Chung et al., 2022; Ouyang et al., 2022) and bridge
the domain shift (Cho et al., 2024). Low-Rank
Adaptation (LoRA) method, which only trains a
small subset of parameters, is efficient for fine-
tuning models for mobile applications (Hu et al.,
2022). LoRA additionally provides the flexibil-
ity to fine-tune a set of different adapters to cus-
tomize for various downstream tasks, useful for
deploying LLMs on mobile devices (Gunter et al.,
2024). However, collecting high-quality data for
post-training for mobile applications is challenging
because of the domain shift and privacy considera-
tions on user data.

Production LLM mobile applications have devel-
oped pipelines to synthesize error correction data.
Liu et al. (2024b) collects public web data, and
then uses trained task-specific models (Lichtarge
et al., 2020) to detect grammatical errors. A typing
simulator adds more mobile-specific errors to con-
struct EC pairs based on the web data with detected

1102

Figure 1: Examples of mobile LLM applications for error correction. User typing data has a domain shift compared to public
web data. LLMs rewrite and correct highly corrupted text based on the context of the input itself.

grammar errors. These EC data pairs are split into
training and validation datasets. This data pipeline
extracts only a small set of EC data from a large
collection of web data due to the detection and se-
lection process. Moreover, the data distribution of
web data differs from the mobile user distribution,
as discussed in (Wu et al., 2024). Indeed, we ob-
serve a discrepancy between offline evaluation on
validation data and live A/B test metrics in produc-
tion.

Privacy-preserving methods are required to ac-
cess in-domain user data to improve the model
performance. Federated learning (FL), where de-
vices collaboratively learn a model without transfer-
ring user data, and differential privacy (DP), where
model is mathematically guaranteed not to memo-
rize training data, are combined to privately fine-
tune LMs (Xu et al., 2023; Choquette-Choo et al.,
2024; McMahan et al., 2024). However, produc-
tion DP FL systems on mobile devices only reli-
ably train models with 10 million parameters (Daly
et al., 2024). Differentially private synthetic data is
another promising approach to collect high-quality
privacy-preserving data (Kurakin et al., 2023; Yue
et al., 2023). However, DP synthetic data genera-
tion requires iterative interaction between LLMs
and private data, such as fine-tuning LLMs as data
generators. The quality of synthetic data also de-
creases with the generator model size. These meth-
ods are not yet applied to training moderate-sized
LLMs with billions of parameters for production
mobile applications.

In this paper, we synthesize error correction data
to improve LLMs with billions of parameters for
mobile applications. In a production data pipeline,
we incorporate human knowledge of the mobile

application domain and grammar errors to care-
fully design prompts, and use LLMs instead of
grammar error detectors to scalably and reliably
synthesize EC pairs (Sec. 2). To further overcome
the discrepancy between offline evaluation on (syn-
thetic) EC data and live A/B test metrics for model
deployment in practice, we propose to adapt the
data distribution to match the mobile application
domain by reweighting the samples (Sec. 3). Small
LMs with less than 100 million parameters are
fine-tuned by federated learning with differential
privacy on user data. These small LMs are used to
generate initial scores for each offline evaluation
sample. A reweighting model is parameterized to
predict a final score for each sample based on the
initial small LM scores. As the number of intial LM
scores is small, the lightweight reweighting model
is learnt by reweighting per-sample evaluation to
predict only a handful of A/B test metrics col-
lected during model deployment. We demonstrate
that the reweighting model, together with privacy-
preserving small LMs, effectively predicts live A/B
test metrics. Finally, we present best practices for
mixing our synthetic data with other data sources
to improve the model performance (Sec. 4). LoRA
method is used to further fine-tune an LLM with bil-
lions of parameters that is already post-trained for
general purpose instruction following. A continue
training strategy, where the model is first fine-tuned
on our large-scale synthetic data, followed by fine-
tuning on a mixture of existing smaller dataset and
reweighted synthetic data, achieves superior perfor-
mance on various offline evaluations, and 2.47%
to 7.18% relative improvements on key metrics in
production live A/B test.

1103

2 Synthesizing Error Correction Data

In this section, we discuss prompting LLMs as an
addition to error correction data pipeline for effi-
ciency and effectiveness, and show its advantage in
scalability and domain adaptation. Following Wu
et al. (2024), we synthesize an initial dataset in the
domain of typing text on mobiles, by filtering and
transforming public web data (i.e., C4 (Raffel et al.,
2020) dataset), and collecting LLM generations
with carefully crafted prompts of human knowl-
edge. The initial dataset contains more than 100
million documents of conversation-like text, and
even a small subset (about 0.2%) is much larger
than the original EC dataset in production. We sub-
sample the initial typing text dataset to reduce the
subsequent processing costs from prompting LLM
to add grammar and typing errors. To ensure good
diversity and coverage during sampling, we first
embed the documents using the Gecko (Lee et al.,
2024) text embedding model, run k-means cluster-
ing to obtain 20k clusters. See Fig. 2 for statistics
of clustering. We then sample 10 data points per
cluster, resulting in a dataset contains about 200k
documents, which has 2M examples where each
example is either a sentence, or a user’s utterance.
Each example is relatively short similar to the ex-
amples in our target distribution, i.e., texts typed
by users using their mobile keyboards in chatting
or search applications. Majority of these texts are
clean (i.e., error-free).

0 4000 8000 12000 16000 20000
Cluster Index (Sorted)

102

103

104

Cl
us

te
r S

ize

(a)

0 10000 20000 30000 40000
Cluster Size

100

101

102

103

Nu
m

be
r o

f C
lu

st
er

s

(b)

Figure 2: The statistics of the 20k clusters for 100 million
documents. The mean with standard deviation of cluster sizes
is 5225± 2972.

To synthesize the EC text pairs, we add two
types of errors to the clean texts: grammar error,
and typing error. The grammar error is added by
Gemini Ultra model (Google, 2024), and Table 3
shows the template of our prompt and an exam-
ple. We experiment with different model sizes and
find that Gemini Ultra performs best for analyzing
and adding grammar errors. For high-quality data
generation, the LLM is prompted to perform two
more tasks in addition to generating the ungram-

matical texts: (1) The first task is to describe the
added grammar errors. This allows us to perform a
global analysis of the added grammar errors, and
confirm our data cover all the grammar error types
from (Bryant et al., 2017). The top 4 error cate-
gories (and its percentage in our synthetic data)
are related to verb (52%), missing words (15%),
plural (10%), and capitalization (5%). In terms of
the number of grammar error per example, 12%
examples have 1 error, while more than 80% exam-
ples have 2 or 3 errors. (2) The second task is to
correct the ungrammatical texts with LLM added
grammar errors. We only keep examples when the
corrected text and the original clean text are equal.
This filtration process removes around 40% of the
data. After adding the grammar errors, we next
add typing errors that simulate the behavior of real
users typing with mobile keyboard. This is done by
heuristic rules that add various typing errors, such
as transposition, omission, repetition, and spatial
errors (Liu et al., 2024b).

1000 2000 3000 4000
Training Steps

60

62

64

66

68

70

Or
ig

 To
p

1
Go

od
 R

at
io

orig
van_synth

synth

(a)

1000 2000 3000 4000
Training Steps

60

70

80

90

Sy
nt

h
To

p
1

Go
od

 R
at

io
orig
van_synth

synth

(b)

Figure 3: Good ratio for error correction on the (a) original
validation data and (b) synthetic validation data. The models
are trained with the original training data, synthetic training
data, and vanilla sampling of synthetic data without clustering.
LLMs are used to judge whether the EC output is acceptable to
compute good ratio. Our large-scale LLM assisted synthetic
data works well on both domains even if there is potential
distribution shift from the original dataset collected by error
detection on public web data.

2.1 Evaluation Setup and Preliminary
Results

Our synthetic EC dataset has about 1.2M exam-
ples. Each example is a pair of (corrupted, clean)
sentences. We random sample a small subset
of our synthetic data for validation, and use the
rest of data for LoRA fine-tuning a Gemini Nano
model (Google, 2024). Both the training and val-
idation dataset are much larger than the original
dataset synthesized by the previous production data
pipeline. Figs. 3, 6 and 7 shows the results of train-
ing and evaluation with the small original produc-
tion dataset, and our large synthetic dataset, respec-
tively. We provide an additional ablation curve

1104

on our synthetic data with vanilla subsampling in-
stead of clustering-based subsampling. Fig. 6 (in
App. B) measures the error correction performance
by sequence accuracy, i.e., the exact match between
corrected sentence and the target clean sentences,
and shows that fine-tuning help while too many
steps on small dataset may quickly degrade util-
ity. Our evaluation on error correction matches
previous observation on dialogue generation and
summarization tasks (Cho et al., 2024).

We further use Gemini Pro models as judges to
measure whether the corrected sentence is a high-
quality rewrite of the target sentence even if they
do not exact match for each word, and report the
good ratio for the top 1 output and the best of top
3 outputs from our fine-tuned LLMs, in Figs. 3
and 7. Good ratio mimics the user behavior on
selecting rewritten text from mobile applications.
We select a small number of models from train-
ing steps {600, 1000, 2000, 4000} for evaluation
to reduce the cost of LLM judges. Models from
two different training runs are evaluated to com-
pute standard deviation for error bars. The trend of
the sequence accuracy and good ratios align well
Figs. 3, 6 and 7. We observe performance discrep-
ancy between the original production dataset and
our synthetic dataset, which suggests a potential
domain difference. Fine-tuning on our large-scale
synthetic data is more robust compared to the small
original dataset, and achieves competitive model
performance even when evaluated on the original
validation set. The clustering-based subsampling
achieves comparable results on the original evalua-
tion, and better results on the synthetic evaluation,
compared to vanilla subsampling. In the rest of the
paper, we will use the synthetic data subsampled
with the clusters.

3 Privacy-Preserving Domain
Adaptation by Reweighting

We have synthesized a large-scale error correction
dataset in Sec. 2 by carefully prompting LLMs
to simulate typing text and systematically add er-
rors. However, Wu et al. (2024) suggests public
LLMs and human prior knowledge in prompt may
not be sufficient to bridge the potential domain
shift. When deploying previously trained models,
we observe misalignment in offline evaluation on
the original validation set, and live A/B test metrics.
We also observe the discrepancy between original
validation set and our synthetic validation set in

Fig. 3a. As our synthetic data explicitly guided
LLMs with prior knowledge on mobile typing for
synthesis, is it closer to the domain of mobile appli-
cations in practice? In this section, we developed
a privacy-preserving approach for domain adapta-
tion by reweighting samples in the dataset. The
reweighting model is built upon a small LM trained
with DP FL, and a handful of live A/B test metrics
tracked in previous model deployment.

When evaluating an error correction model M
on a dataset {(xi, yi)}Ni=1 of N (corrupted, clean)
samples, a measurement χ(M(xi), yi) ∈ {0, 1}
is generated for each sample by comparing the
model output M(xi) and corresponding target
yi. We have offline metric for evaluating the
model by taking the average over all samples, i.e.,∑N

i=1 χ(M(xi), yi)/N , which becomes sequence
accuracy in Fig. 6 when χ(·, ·) is exact match, and
good ratio in Figs. 3 and 7 when χ(·, ·) is judged
by LLMs. To reweight samples for domain adapta-
tion, we first train two small LMs Sp, Sf of about
8 million parameters for scoring samples. Model
Sp is trained on public C4 dataset, and model Sf
is further fine-tuned from Sp on user data in a pro-
duction FL system (Xu et al., 2023; Wu et al.,
2024). Model Sf is a privacy-preserving model
with formal DP guarantee ε < 10, and captures
the domain information from mobile application.
We define a reweighting model parameterized by
θ = (θf , θp, θb) as

w(θ, yi) =Cmin + (Cmax − Cmin

)σ(θfSf (yi) + θpSp(yi) + θb),
(1)

where Cmin, Cmax are constants determining the
minimum and maximum value of the reweight-
ing scores, σ(·) is the sigmoid function, and
Sf (·), Sp(·) represent the average log likelihood
on predicting words in the target sentence yi.

When deploying K models {Mj(·)}Kj=1 in prac-
tice, we collect corresponding live A/B test met-
rics {vj}Kj=1. We consider key metrics like click
through rate and accept rate for error correction in
mobile applications, and hence each vj ∈ Rd is a
vector representing multiple metrics. We optimize
the objective below to learn the reweighting model,

min
θ,α

R(θ, α) + λ‖ 1
N

N∑

i=1

w(θ, yi)− 1‖2, (2)

R(θ, α) =
K∑

j=1

‖α1

N

N∑

i=1

w(θ, yi)χ(M(xi), yi) + α0 − vj‖2

1105

where α = (α1, α0) is regression parameter to
predict live metrics from offline evaluation; per-
sample reweighting score w(θ, yi) is defined in
Eq. (1) to adapt offline data to mobile applica-
tion domain to achieve small regression residual
R(θ, α); λ is a hyperparameter on the regularizer
of the reweighting scores.

10 8 6 4 2 0
Public Pre-trained Model Score Sp

10

8

6

4

2

0

DP
 F

in
e-

tu
ne

d
M

od
el

 S
co

re
 S

f

0.0

0.2

0.4

0.6

0.8

1.0

(a)

10 8 6 4 2 0
Public Pre-trained Model Score Sp

10

8

6

4

2

0
DP

 F
in

e-
tu

ne
d

M
od

el
 S

co
re

 S
f

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)

Figure 4: Comparing the (a) heuristic {0, 1} reweighting
in (Wu et al., 2024) and (b) our reweighting model w(θ, ·) =
0.01+1.99σ(40.64Sf−30.44Sp−1.59). Both methods use
public pre-trained small LM Sp and the same model further
fine-tuned with DP FL Sf . The learnt scores in (b) have large
overlap with manual selection in (a) from (Wu et al., 2024).

We use auto differentiation and L-BFGS opti-
mizer in JAX (Bradbury et al., 2018) to optimize
Eq. (2) to learn regression parameters α ∈ R2d and
reweighting parameters θ ∈ R3. The dimensional-
ity of θ, α is relatively small, and they can be learnt
from a handful of live metrics {vj}Kj=1 collected
during launching different error correction models.
We collected two sets of live metrics, the training
set evaluated 10 models with live A/B test, and the
validation set evaluated 5 models. We use top-3
good ratio as in Fig. 7 for offline evaluation on the
original dataset. Due to production test configu-
ration, the two sets of live metrics have different
scales and hence we cannot use the same regres-
sion parameter. We set the range of reweighting
scores as Cmax = 2, Cmin = 0.01, and regularizer
strength λ = 0.01. Tab. 1 summarizes residuals
for training, cross-validation and validation, and
reweighting achieves smaller residual when pre-
dicting live metrics across different settings. The
absolute value of cross-validation and validation
residuals are smaller than training ressiduals as
training is the summation over all live metric sam-
ples in Eq. (2).

After training, our reweighting model param-
eters are (θf , θp, θb) = (40.64,−30.44,−1.59),
which suggests the reweighting score is positively
correlated with the fine-tuned model output Sf (·)
calibrated by pre-trained model output Sp(·). The
difference of the two model outputs represent the
likelihood discrepancy, which has also been used
for inference time domain adaption (Liu et al.,

2024a) and training data detection (Kandpal et al.,
2024). Wu et al. (2024) discusses a heuristic filter-
ing strategy for domain adaptation that is effective
for selecting data to train small LMs for mobile
applications. The heuristic filtering is equivalent
to setting w(yi) = 1 when Sf (yi) > Sp(yi) and
Sf (yi) > −5, and w(yi) = 0 otherwise. This
heuristic approach often helps predicting live A/B
test metrics compared to uniform weighting, but
fails sometimes, and generally achieves higher
residual than our reweighting score. Fig. 4 shows
the difference between our reweighting model and
(Wu et al., 2024) for different pre-trained and fine-
tuned model scores.

1000 2000 3000 4000
Training Steps

76

78

80

82

84

86

Or
ig

 To
p

3
Go

od
 R

at
io

synth
synth_lb
mix
mix_fil

synth(w)
synth_lb(w)
mix(w)
mix_fil(w)

(a)

1000 2000 3000 4000
Training Steps

90

92

94

Sy
nt

h
To

p
3

Go
od

 R
at

io

synth
synth_lb
mix
mix_fil

synth(w)
synth_lb(w)
mix(w)
mix_fil(w)

(b)

Figure 5: Good ratio for the best of top 3 candidates for error
correction on the (a) original validation data and (b) synthetic
validation data. Solid lines reweight the samples by thew(θ, ·)
model learnt to fit live A/B test metrics in Sec. 3. The models
are trained with synthetic training data with the same setting
as in Fig. 7; ×4 increased batch size (synth_lb); mixture of
original and synthetic data; and mixture of original and filtered
byw(θ, ·) (mix_fil). LLMs are used to judge whether the error
correction output is acceptable to compute good ratio.

Finally, we further apply a defense in depth strat-
egy when using our reweighting models for privacy-
preserving domain adaptation. We use a standard
production PII detection pipeline to remove any
possible sensitive information in the synthetic data,
even if they are hallucinated by LLMs. And our
fine-tuned LLMs are equipped with another layer
of safety and privacy safeguarding when deploying
in practice.

4 Mixing Data for Fine-tuning

Based on our synthetic dataset in Sec. 2 and
domain-adaptive reweighting model in Sec. 3, we
improve Gemini Nano (Google, 2024) for error cor-
rection by LoRA fine-tuning (Hu et al., 2022). By
combining the original dataset and the large-scale
(reweighted) synthetic dataset in a continue train-
ing strategy, the model performance is improved
in both offline evaluation and live A/B test in pro-
duction. Unless otherwise specified, our experi-
ments use the same configuration for training pre-
vious production models with the original data, as

1106

R(θ, α) w = 1 w(yi) ∈ {0, 1} (Wu et al., 2024) Our w(θ, yi)
Train 1.51× 10−4 1.41× 10−4 1.19× 10−4

CrossVal (5.26± 2.76)× 10−5 (4.23± 2.42)× 10−5 (3.99± 3.15)× 10−5

Val (3.51± 4.15)× 10−6 (5.44± 7.10)× 10−5 (2.07± 2.56)× 10−6

Table 1: Regression residual R for different reweighting strategies. Smaller residual suggests reweighting helps predicting live
metrics. We report mean and standard deviation for predicting each live metrics vj in held-one out cross validation. We also use
held-one out for validation set to fit only regression parameters with fixed reweighting.

described in Sec. 2. As Gemini Nano is already
post-trained with general purpose instructions, our
fine-tuning is a continuous post-training. During in-
ference after model deployment, our model is only
effective for mobile applications when our fine-
tuned LoRA module is applied to the base Gemini
Nano model.

We discuss our model training practices and
observations. (1) Increasing batch size. Our
synthetic dataset is much larger than the original
dataset. As shown in Figs. 3, 6 and 7, at 4000 steps,
the model performance trained on synthetic data
still increases on synthetic validation data, while
only starts to saturate on original validation data.
In fact, 4000 steps do not complete a single epoch
on our synthetic training data. We increase the
batch size to ×4, which is the largest batch size
without requesting more resources. We found our
LoRA fine-tuning is relatively robust for learning
rate between ×1 and ×4 of the original learning
rate, and hence fixed the learning rate to be ×1.
As shown in Figs. 5, 8 and 9, large batch training
achieves comparable performance on original val-
idation data, while improves the performance on
synthetic validation data. We use large batch train-
ing in following experiments. (2) Simple mixing
the small original dataset and the large scale syn-
thetic data improves the performance on original
validation data, but slightly degrades the perfor-
mance on synthetic validation data. There is a
trade-off on the ratio of the mixture: while it is
relatively robust when we have original and syn-
thetic ratio in the range of 1 : 1 and 1 : 8, ratio
1 : 4 achieves good balance and is used in the fol-
lowing mixing experiments. (3) Reweighting for
training and evaluation. Reweighting model in
Sec. 3 is used to adapt the offline data distribution
to the mobile application distribution. The trend
in reweighted metrics in Figs. 5 and 9 generally
align with the uniform weighted counterparty. In
addition to reweighting to bring offline evaluation
closer to live A/B test metrics, we further explore
reweighting for domain adaptation in training. We
filter the synthetic data set and only keep samples
with reweighting scores w(θ, yi) ≥ wt. We choose

the threshold wt = 1 as w(θ, yi) is in the range
of Cmin = 0.01 and Cmax = 2, and about half of
the samples in the synthetic dataset have reweight-
ing scores passed the threshold. We only filter
our synthetic dataset as the original dataset is al-
ready very small. Mixing the filtered synthetic data
with the original dataset for training achieves good
reweighted metrics even if the uniform weighted
metrics slightly degrades compared to mixing with
the full synthetic data. (4) Continue training. As
our synthetic data is large, we propose a continue
training strategy: first fine-tune on the full synthetic
dataset for 1000 steps (about one epoch), and then
continue training on the original data (ContOrig),
the mixture of original and synthetic dataset (Cont-
Mix), and the mixture of the original and filtered
synthetic data (ContMixFil), see Tab. 2. For each
training method, we select the best model from
steps {600, 1000, 2000, 4000}, and run training at
least twice to compute the standard deviation.

In Tab. 2, ContMix and ContMixFil achieve best
or close to best results on both original validation
data and synthetic validation data. They achieve
higher good ratio on the original validation data
than model trained on the original data only, or
the mixture of original and synthetic data. They
are comparable to the best performance on syn-
thetic validation data achieved by training on syn-
thetic data only with large batches. As ContMix-
Fil achieves better performance on the reweighted
metrics that better reflects the mobile application
domain, we further compare the model trained by
Original and ContMixFil in production live A/B
test. Compared to Original, ContMixFil achieves
2.47% to 7.18% relative improvement on key pro-
duction metrics like click through rate and accept
rate.

5 Conclusion

This paper presents a method to enhance error cor-
rection in mobile LLMs by creating a high-quality
synthetic dataset using LLM prompts enriched with
domain knowledge. We further adapt the pub-
lic (synthetic) data to better match the domain
of production mobile applications by developing

1107

Training Original Data Eval (%) Synthetic Data Eval (%)
Method Top-1 Top-1 (w) Top-3 Top-3 (w) Top-1 Top-1 (w) Top-3 Top-3 (w)
Original 68.74±0.38 71.16±0.54 79.34±0.02 80.38±0.26 71.35±0.31 76.24±0.11 82.96±0.30 86.24±0.26

SynthLB 66.64±1.28 68.25±1.26 77.4±0.91 77.93±0.72 87.5±0.12 90.29±0.07 92.75±0.05 94.30±0.21

Mix 70.22±0.94 72.91±0.31 80.9±1.22 82.57±0.61 85.37±0.13 88.71±0.30 91.71±0.15 93.77±0.07

ContOrig 68.82±0.14 71.21±0.27 79.34±0.54 80.66±0.13 77.40±0.34 80.78±0.15 86.49±0.57 89.35±0.64

ContMix 69.22±0.26 71.52±0.26 79.86±0.26 81.33±0.19 86.04±0.32 88.88±0.06 92.03±0.29 93.69±0.19

ContMixFil 70.48±0.00 73.31±0.10 80.78±0.46 82.28±0.87 85.78±0.20 89.51±0.02 91.71±0.25 93.90±0.14

Table 2: Good ratio for error correction on the original validation data and synthetic validation data. Top-3 evaluates the best of
three model outputs. Columns with “(w)” reweight the samples by the w(θ, ·) model learnt to fit live A/B test metrics in Sec. 3.
The models are trained by the original dataset as in Fig. 3; the synthetic data with large batches, mixture of original and synthetic
data as in Fig. 5; and three continue training strategies. Continue training gets the best, or close to best performance on offline
evaluation of both original and synthetic validation data.

a privacy-preserving reweighting model, using a
small LM trained with federated learning and differ-
ential privacy, alongside a few live A/B test metrics.
Our experiments show that fine-tuning a billion-
size LLM with a mixture of the original dataset and
the reweighted synthetic data, especially via con-
tinue training, significantly improves performance
in offline evaluations and live A/B tests.

Acknowledgements

The authors thank Felix Stahlberg, Shankar Ku-
mar, and Michael Xuelin Huang for discussions in
the early stage of the project; Zachary Garrett and
Shumin Zhai for reviewing an early draft.

References
James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 793–805, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of
the state of the art. Computational Linguistics,
49(3):643–701.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and
Gauri Joshi. 2024. Heterogeneous low-rank approx-
imation for federated fine-tuning of on-device foun-
dation models. EMNLP.

Christopher A Choquette-Choo, Arun Ganesh, Ryan
McKenna, H Brendan McMahan, John Rush,
Abhradeep Guha Thakurta, and Zheng Xu. 2024.

(amplified) banded matrix factorization: A unified
approach to private training. Advances in Neural In-
formation Processing Systems, 36.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, and
1 others. 2022. Scaling instruction-finetuned lan-
guage models. arXiv preprint arXiv:2210.11416.

Katharine Daly, Hubert Eichner, Peter Kairouz, H Bren-
dan McMahan, Daniel Ramage, and Zheng Xu.
2024. Federated learning in practice: reflections
and projections. In 2024 IEEE 6th International
Conference on Trust, Privacy and Security in Intel-
ligent Systems, and Applications (TPS-ISA), pages
148–156. IEEE.

Gemini Team Google. 2024. Gemini: A family
of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang,
Andy Narayanan, Aonan Zhang, Bowen Zhang,
Chen Chen, Chung-Cheng Chiu, David Qiu, and
1 others. 2024. Apple intelligence foundation lan-
guage models. arXiv preprint arXiv:2407.21075.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604.

Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Ry-
lan Conway, Trang Le, Adithya Sagar, Giulia Fanti,
and Daniel Lazar. 2024. Pre-text: Training language
models on private federated data in the age of llms.
ICML.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter
Kairouz, Christopher A Choquette-Choo, and Zheng
Xu. 2024. User inference attacks on large language
models. EMNLP.

1108

http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805

Alexey Kurakin, Natalia Ponomareva, Umar Syed,
Liam MacDermed, and Andreas Terzis. 2023. Har-
nessing large-language models to generate private
synthetic text. arXiv preprint arXiv:2306.01684.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen,
Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai
Meher Karthik Duddu, Gustavo Hernandez Abrego,
Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Pra-
teek Jain, Siddhartha Reddy Jonnalagadda, Ming-
Wei Chang, and Iftekhar Naim. 2024. Gecko: Ver-
satile text embeddings distilled from large language
models. Preprint, arXiv:2403.20327.

Jared Lichtarge, Chris Alberti, and Shankar Kumar.
2020. Data weighted training strategies for gram-
matical error correction. Transactions of the Associ-
ation for Computational Linguistics, 8:634–646.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A Smith. 2024a.
Tuning language models by proxy. COLM.

Renjie Liu, Yanxiang Zhang, Yun Zhu, Haicheng Sun,
Yuanbo Zhang, Michael Huang, Shanqing Cai, Lei
Meng, and Shumin Zhai. 2024b. Proofread: Fixes
all errors with one tap. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstra-
tions), pages 286–293, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

H Brendan McMahan, Zheng Xu, and Yanxiang Zhang.
2024. A hassle-free algorithm for strong differential
privacy in federated learning systems. EMNLP.

Llama Team Meta. 2024. The llama 3 herd of models.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and
1 others. 2022. Training language models to follow
instructions with human feedback. Advances in Neu-
ral Information Processing Systems.

Tom Ouyang, David Rybach, Françoise Beaufays, and
Michael Riley. 2017. Mobile keyboard input de-
coding with finite-state transducers. arXiv preprint
arXiv:1704.03987.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Danqing Shi, Yujun Zhu, Francisco Erivaldo Fernan-
des Junior, Shumin Zhai, and Antti Oulasvirta. 2025.
Simulating errors in touchscreen typing. arXiv
preprint arXiv:2502.03560.

Felix Stahlberg and Shankar Kumar. 2021. Syn-
thetic data generation for grammatical error correc-
tion with tagged corruption models. arXiv preprint
arXiv:2105.13318.

Bowen Tan, Zheng Xu, Eric P Xing, Zhiting Hu,
and Shanshan Wu. 2025. Synthesizing privacy-
preserving text data via finetuning without finetun-
ing billion-scale llms. In ICML.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, and
1 others. 2022. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682.

Shanshan Wu, Zheng Xu, Yanxiang Zhang, Yuanbo
Zhang, and Daniel Ramage. 2024. Prompt public
large language models to synthesize data for private
on-device applications. Conference on Language
Modeling (COLM).

Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth
Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Hao-
tian Jiang, Huishuai Zhang, Yin Tat Lee, and 1 oth-
ers. 2024. Differentially private synthetic data via
foundation model apis 2: Text. In Forty-first Inter-
national Conference on Machine Learning (ICML).

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christo-
pher Choquette, Peter Kairouz, Brendan Mcmahan,
Jesse Rosenstock, and Yuanbo Zhang. 2023. Fed-
erated learning of gboard language models with dif-
ferential privacy. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 5: Industry Track), pages 629–639,
Toronto, Canada.

Da Yu, Peter Kairouz, Sewoong Oh, and Zheng Xu.
2024. Privacy-preserving instructions for aligning
large language models. ICML.

Xiang Yue, Huseyin A Inan, Xuechen Li, Girish Ku-
mar, Julia McAnallen, Hoda Shajari, Huan Sun,
David Levitan, and Robert Sim. 2023. Synthetic
text generation with differential privacy: A simple
and practical recipe. ACL.

1109

https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://doi.org/10.18653/v1/2024.acl-demos.27
https://doi.org/10.18653/v1/2024.acl-demos.27
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://arxiv.org/abs/2303.08774

A Prompt in Sec. 2

LLM prompt template
Imagine that you are an English school teacher. Your goal is to teach high school student English grammar. Here are some
common grammartical errors: [...]

Given the following sentence(s):
[...original sentence...]

What grammartical errors are the students likely to make?

Now apply these grammatical errors to the original sentence(s), and generate the ungrammatical sentence(s). Do not modify the
original sentence(s) except applying the grammatical errors.

The output should be in the following format: [...]

Finally, correct the grammatical errors in the generated ungrammatical sentence(s). Do not modify the sentence(s) except
correcting the grammatical errors. The output should be in the following format: [...]

Example
Original sentence : Yesterday I went to a store that has nice furniture.

LLM output :
Ungrammatical sentences: Yesterday I went to a store that have nice furnitures.
Error 1: Subject-verb agreement error: “have” should be “has” to agree with the singular subject “store”.
Error 2: Plurization error: “furnitures” should be “furniture” as it is an uncountable noun.
Corrected sentences: Yesterday I went to a store that has nice furniture.

Table 3: Our LLM prompt for adding grammar errors and an example output. The prompt starts with a role
(i.e., school teacher), analyzes the original sentence, and adds potential grammar errors, followed by correcting all
errors. The [...] parts are omitted for simplicity.

1110

B Additional results in Sec. 2

0 2000 4000 6000
Training Steps

10

15

20

25

30

35
Or

ig
 S

eq
 A

cc
orig
van_synth

synth

(a)

0 2000 4000 6000
Training Steps

10

20

30

40

Sy
nt

h
Se

q
Ac

c

orig
van_synth

synth

(b)

Figure 6: Sequence accuracy of error correction on the (a) original validation data and (b) synthetic validation data. The models
are trained with the original training data, synthetic training data, and vanilla sampling of synthetic data without clustering.

1000 2000 3000 4000
Training Steps

70

72

74

76

78

80

Or
ig

 To
p

3
Go

od
 R

at
io

orig
van_synth

synth

(a)

1000 2000 3000 4000
Training Steps

70

75

80

85

90

95

Sy
nt

h
To

p
3

Go
od

 R
at

io

orig
van_synth

synth

(b)

Figure 7: Good ratio for the best of top 3 candidates for error correction on the (a) original validation data and
(b) synthetic validation data. The models are trained with the original training data, synthetic training data, and
vanilla sampling of synthetic data without clustering. LLMs are used to judge whether the error correction output
is acceptable to compute good ratio.

1111

C Additional results in Sec. 4

0 1000 2000 3000 4000
Training Steps

10

15

20

25

30

35
Or

ig
 S

eq
 A

cc

synth
synth_lb

mix
mix_fil

(a)

0 1000 2000 3000 4000
Training Steps

10

20

30

40

Sy
nt

h
Se

q
Ac

c

synth
synth_lb

mix
mix_fil

(b)

Figure 8: Sequence accuracy of error correction on the (a) original validation data and (b) synthetic validation data. The models
are trained with synthetic training data with the same setting as in Fig. 7; ×4 increased batch size (synth_lb); mixture of original
and synthetic data; and mixture of original and filtered by w(θ, ·) (mix_fil).

1000 2000 3000 4000
Training Steps

66

68

70

72

74

76

Or
ig

 To
p

1
Go

od
 R

at
io

synth
synth_lb
mix
mix_fil

synth(w)
synth_lb(w)
mix(w)
mix_fil(w)

(a)

1000 2000 3000 4000
Training Steps

82

84

86

88

90

Sy
nt

h
To

p
1

Go
od

 R
at

io

synth
synth_lb
mix
mix_fil

synth(w)
synth_lb(w)
mix(w)
mix_fil(w)

(b)

Figure 9: Good ratio for error correction on the (a) original validation data and (b) synthetic validation data. Solid lines reweight
the samples by the w(θ, ·) model learnt to fit live A/B test metrics in Sec. 3. The models are trained with synthetic training data
with the same setting as in Fig. 7; ×4 increased batch size (synth_lb); mixture of original and synthetic data; and mixture of
original and filtered by w(θ, ·) (mix_fil). LLMs are used to judge whether the error correction output is acceptable to compute
good ratio.

D Limitation and Future Work

Our preliminary exploration on reweighting suggests combining live data from production applications
and LLMs in a privacy-preserving manner is promising, and there are a lot of possibilities with the
limited accessible information. Our usage of reweighting scores in training by filtering samples considers
the trade-off of effectiveness, easy-to-implement, and future maintenance in production. There are
many other potential domain adaptation methods for future experiments. Finally, We leverage a small
privacy-preserving LM to capture domain information from mobile applications, while other forms of
information such as histogram (Xie et al., 2024; Hou et al., 2024; Yu et al., 2024; Tan et al., 2025) are
worth considering, especially given the flexibility of the next generation FL systems in trusted execution
environments (Daly et al., 2024). With more data generated from the interaction of LLMs and users in
production deployment, our approach can become more powerful for not only domain adaptation but also
other improvement such as personalization and agency, enabled by privacy-preserving methods.

1112

