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Abstract

Fine-tuning large language models (LLMs) for
specific tasks requires diverse, high-quality
training data. However, obtaining sufficient
relevant data remains a significant challenge.
Existing data synthesis methods either depend
on extensive seed datasets or struggle to bal-
ance task relevance and data diversity. To ad-
dress these challenges, we propose Attribute-
guided multI-hop Data Expansion (AIDE), a
novel data synthesis framework that uses a
multi-hop process to expand very few seed
data points while ensuring data diversity and
task relevance. AIDE extracts the main topic
and key knowledge attributes from the seeds
to guide the synthesis steps. The process re-
peats for K hops, using the generated data as
seeds. To prevent irrelevant data generation as
the hop depth increases, AIDE incorporates a
residual connection mechanism. Our empiri-
cal results show that AIDE enables fine-tuning
of Mistral-7B, Llama-3.1-8B and Llama-3.2-
3B from 10 seeds, surpassing the models fine-
tuned on human curated data. Furthermore,
AIDE outperforms state-of-the-art data synthe-
sis methods, such as Evol-Instruct, by over 30%
in task-specific fine-tuning. Code is available
at https://github.com/Code4Graph/AIDE.

1 Introduction

Fine-tuning with task-specific training data is es-
sential because it allows a pre-trained model to
adapt and optimize for a specific task, resulting in
better performance in that domain. However, task-
specific data is insufficient or unavailable for many
use cases, and manually curating the data is labor
intensive (Gandhi et al., 2024).

To overcome the limitation, an approach
from (Wei et al., 2022; Xu et al., 2022) sam-
ples task-specific training data from public NLP
datasets, but the sampling often covers limited in-
formation. Another category of recent methods

*Work was done during an internship at AWS.

leverages the capabilities of LLMs to automatically
generate large-scale synthetic data, enabling the
training of advanced models in specific task do-
mains. For example, Prompt2Model (Viswanathan
et al., 2023) and DataTune (Gandhi et al., 2024)
rely on several candidate datasets to synthesize
task-specific data for fine-tuning LLMs. However,
these methods either require a large set of seed data
for rewriting or produce synthetic data that lacks
task relevance and diversity, as they do not maintain
sufficient control over the synthesis process.

To address these challenges, we propose AIDE
(Attribute-guided multI-hop Data Expansion), a
novel data synthesis framework that generates abun-
dant training data from a small set of seed in-
puts, as shown in Figure 1. Our framework fo-
cuses on maintaining high task relevance, diversity,
and quality in the synthetic data for specific tasks.
AIDE uses LLMs as key players via a multi-hop
synthesis process. Each hop in AIDE begins by
extracting the main topic and important knowledge
attributes from a seed sample using a LLM. This
builds knowledge triplets, and AIDE traverses these
triplets (each consisting of a topic, relationship, and
attribute) to synthesize new data points. In the next
hop, each newly generated data point becomes a
seed, and the process repeats until reaching a depth
of K hops. This multi-hop mechanism allows for
recursive data synthesis along all paths of a process
tree, enabling the generation of large-volume data
from just a few seeds. Extracted attributes act as
control nodes in the multi-hop tree, ensuring the
generated data points remain relevant to the target
task. We also introduce personas as new key at-
tributes, enhancing the generation of diverse data.
As the depth of the recursive synthesis increases,
the relevance of the synthetic data may diminish.
To address this, we propose a residual connection
mechanism to reduce irrelevance.

To validate AIDE, we conduct experiments with
three pretrained models (Mistral-7B, Llama-3.1-
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8B, and Llama-3.2-3B). We evaluate the perfor-
mance of these models when fine-tuned with syn-
thetic data generated by AIDE, comparing the re-
sults against models fine-tuned with human-curated
(gold) data and synthetic data from state-of-the-art
(SOTA) methods. Our evaluations span a range
of tasks from well-known benchmarks, including
industrial datasets like MedQA (Jin et al., 2020)
and FinBen (Xie et al., 2024), as well as BIG-
Bench (bench authors, 2023), MMLU (Hendrycks
et al., 2021), ARC-Challenge (Clark et al., 2018),
GSM8K (Cobbe et al., 2021), and TruthfulQA (Lin
et al., 2022). For comparison, we include SOTA
data synthesis methods such as Evol-Instruct (Xu
et al., 2024), DataTune (Gandhi et al., 2024), and
Prompt2Model (Viswanathan et al., 2023). Our
main contributions are as follows:

• We introduce AIDE, a novel data synthesis
framework that has a multi-hop synthesis,
guided by attributes and personas, to gener-
ate abundant, task-relevant, diverse, and high-
quality data from only a few of seed inputs.

• We design a residual connection mechanism
to mitigate the irrelevance as the depth of hop
increases during the multi-hop synthesis.

• In zero-shot prompting, Mistral-7B fine-tuned
with synthetic data from AIDE achieves
average relative improvements of over 6%
and 30% across tasks, compared to Mistral-
7B fine-tuned with gold training data and
SOTA data synthesis methods. Additionally,
AIDE enhances the performance of Llama-
3.1-8B and Llama-3.2-3B, yielding average
relative improvements of approximately 0.7%
and 1.5% across tasks, respectively, compared
to fine-tuning with gold data.

2 Related Work

Data synthesis for fine-tuning LLMs targets two
primary problems. The first is open-domain gener-
ation, which synthesizes data across a wide range
of topics and complexity levels. The second is
task-specific generation, where synthetic data is
tailored to a particular task. One can use the syn-
thetic data in fine-tuning LLMs through techniques,
such as instruction tuning, preference tuning, and
their variations. This paper focuses on synthesiz-
ing training data for instruction tuning to enhance
the performance of LLMs for specific tasks. We

discuss related methods for data synthesis in both
open and task-specific domains in Appendix A.

Our approach AIDE differs from related meth-
ods as follows: For each data point, AIDE extracts
a topic, attributes, and their relationships in the
form of knowledge triplets. These triplets then
guide the generation of synthetic data relevant to a
specific task. AIDE also has a residual connection
mechanism to maintain the relevance of synthetic
data as synthesis depth increases. Additionally,
AIDE introduces personas to expand attributes, and
uses a self-reflection technique to improve diversity
and quality of the synthetic task-specific data.

3 Proposed Method: Attribute-Guided
Multi-Hop Data Expansion (AIDE)

In the section, we discuss the details of AIDE. We
define the seed data in a specific task as Dseed =
{(Xi, Yi)}ni=1 where n is the number of data points
in Dseed, Xi is the i-th question and Yi is the corre-
sponding answer to Xi. We aim to automatically
synthesize abundant data within the specific do-
main by expanding Dseed into D = {(Xi, Yi)}mi=1,
where n ≪ m and m is the size of synthetic dataset.
We use the synthetic dataset to fine-tune a model,
improving its performance in the specific domain.

3.1 Multi-Hop Synthesis
To synthesize abundant data, we propose a multi-
hop synthesis approach, with an example illustrated
in Figure 8 of Appendix B.

Definition 3.1 (Multi-hop synthesis). Given a seed
data point X(0)

i where 1 ≤ i ≤ n, multi-hop syn-
thesis involves recursively generating data from
X

(0)
i until reaching depth K. At depth K, mK

denotes the number of K-hop neighbors X(K)

of X(0)
i , where X(K) = {X(K)

1 , X
(K)
2 , ..., X

(K)
mK }.

Each X
(K)
i for 1 ≤ i ≤ mK is a synthetic data

point. The total size of synthetic data after multi-
hop synthesis is m = n(m1 + m2 + ... + mK),
where m1, m2 and mK correspond to the number
of synthetic data at the depth 1, 2, K, respectively.

3.2 Multi-Hop Synthesis Guided by
Attributes and Persona

During the multi-hop synthesis, we need to ensure
the generated data remains relevant to the seed data
within the specific task domain. One approach is to
use operations as paths in the multi-hop synthesis
to create data by rewriting the previous data. How-
ever, manually enumerating all possible paths is
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Figure 1: Overview of the workflow of AIDE. X(0)
i denotes the i-th task-related seed data point. AIDE includes four steps.

(1) a LLM extractor extracts a topic t, knowledge attributes a1 and a2 with relationships r1 and r2 of a data point. (2) During
the multi-hop synthesis at the depth of hop j, a LLM acts as a synthesizer with task demonstrations DT to generate data X

(j)
1 ,

X
(j)
2 and X

(j)
3 along paths of synthesis with a predefined operation Op (i.e., adding constraints). (3) To enhance the diversity of

synthesis, we expand attributes by retrieving a persona p1 from a persona hub with t. Finally, a LLM as an annotator generates
the label of synthetic data. We describe the technical details of AIDE in Section 3.

Variables Content
X

(0)
i Generate a list of ten items a person might need for a camping trip.

Task demonstration DT What are the packages pepole needs to prepare for a bike ride through parks or countryside?
< t1, r1, a1 > <Outdoor activities, Involves, Camping>
< t1, r2, a2 > <Outdoor activities, Needs, Camping gears>

Persona p1 An adventurous senior citizen who can recall some related experiences of living in high elevation.
Predefined operation Op Adding constraint

X
(1)
1

What are the top essential items recommended by a survival expert for
a successful camping trip in harsh weather conditions?

X
(1)
2

Generate a list of ten essential items required for a multi-day camping expedition,
ensuring that the list includes both shelter and food.

X
(1)
3

Generate a list of ten essential items a person might need for a camping trip,
ensuring each item is crucial for outdoor activities and aligns with basic camping gear requirements.

Table 1: The 1-hop synthesis in Figure 9 of Appendix C uses an input data point X(0)
i to generate a representation of the data

point A(0)
i with triplets < t1, r1, a1 > and < t1, r2, a2 >. We retrieve the persona P1 according to t1. Through the triplets,

task demonstrations DT , the persona p1 and the predefined operation Op, we synthesize X
(1)
1 , X(1)

2 and X
(1)
3 by combining

X
(0)
i with its corresponding task category and related examples.

infeasible, limiting the volume of synthetic data.
Furthermore, introducing operations without con-
trolling content along the paths can lead to irrele-
vant data. To address this, we propose a multi-hop
synthesis method guided by attributes and personas,
introduced in Sections 3.2.1 and 3.2.2, which en-
hances data diversity while maintaining relevance
to the task-related seed data.

3.2.1 Multi-Hop Synthesis Guided by
Attributes for Relevance

For a given seed data point, we can extract its
main topic, related attributes, and their relation-
ships. Using in-context learning (ICL) (Wen et al.,
2024; Melnyk et al., 2022; Jin et al., 2023), a
LLM can represent a data point X(K)

i as A(K)
i =

{⟨t, r, a⟩(K)
i |r ∈ R; t, a ∈ E}, where t, r and a

represent the topic, relations and attributes, respec-
tively. R is the set of relations while E contains

the topic and attributes. The process of extracting
the A(K)

i for the i-th data X
(K)
i is as follows,

A(K)
i = LLM(X

(K)
i ). (1)

We show the prompt of how to extract A(K)
i from

X
(K)
i in Appendix I. Using X

(K−1)
i and a triplet

⟨t, r, a⟩(K−1)
i from A(K−1)

i based on Eq. (1), a
LLM synthesizes X(K)

i with task demonstrations
DT . The task demonstrations DT includes task-
related examples to guide the process of synthesis.
To improve data complexity, we apply operations
Op (i.e., adding constraints, reasoning, and con-
creteness) during synthesis to enhance the quality
of synthetic data (Xu et al., 2024). This process is
summarized as:

X
(K)
i = LLM(X

(K−1)
i , ⟨t, r, a⟩(K−1)

i , Op,DT ).
(2)
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Prompts for the synthesis process are shown in Ap-
pendix J. A multi-hop synthesis example is demon-
strated in Figure 9 in Appendix C and Table 1.

3.2.2 Multi-Hop Synthesis Guided by
Personas for Diversity

Song et al. (2024) shows that fine-tuning LLMs
with diverse data improves performance. However,
generating diverse data at scale by LLMs requires
varied prompts (Chan et al., 2024). To address this,
we leverage Persona Hub (Chan et al., 2024) to en-
hance synthetic data diversity. For each data point,
we retrieve the top-P personas by using cosine sim-
ilarity between its topic embedding and personas
embeddings. The retrieved personas pi ∈ P guide
multi-hop synthesis paths. Given a persona pi, a
data point X(K−1)

i , task demonstrations DT , and a
predefined operation Op, we synthesize X

(K)
i as,

X
(K)
i = LLM(X

(K−1)
i , t, pi, Op,DT ). (3)

Prompts for persona-guided synthesis are shown
in Appendix K. Combining multi-hop synthesis
with attributes and personas increases the volume
of diverse, task-relevant synthetic data.

3.3 Residual Connection Mechanism for
Maintaining Task Relevance

Multi-hop synthesis guided by attributes and per-
sonas generates diverse, relevant data, but rele-
vance decreases as hop depth K increases. For
instance, synthesizing 10-hop neighbors introduces
unrelated themes (Figure 15 in Appendix L). To
address this drift from the original input at deeper
synthesis depths, we introduce residual connections
between a seed data point and its neighbors. Specif-
ically, for any depth d where 1 < d ≤ K, we build
the connections when d ≤ L where L is the depth
of residual connection within the range (1,K],

X
(d)
i =

{
LLM(X

(d−1)
i , ⟨t, r, a⟩(d−1)

i , Op,DT ), L < d

LLM(X
(d−1)
i , ⟨t, r, a⟩(d−1)

i , Op,DT , X
(0)
i ), d ≤ L.

We illustrate the detail of residual connection in
Appendix D. Figure 16 demonstrates a 10-hop syn-
thesis using residual connections. Compared to
Figure 15, the 10-hop neighbor in Figure 16 re-
mains focused on the relevant topic.

4 Experiment

We evaluate AIDE to answer the following research
questions (RQs): (RQ1) Can AIDE enable the fine-
tuning of pretrained models that outperform those

fine-tuned on human-curated data and data gener-
ated by SOTA synthesis methods? (RQ2) How
does AIDE affect pretrained models’ performance
under different settings? (RQ3) Does the data from
AIDE maintain relevance and diversity?

4.1 Experiment Setup

Datasets. We evaluate all methods across 5 tasks
from BIG-Bench, 5 tasks from MMLU, 1 task
from FinBen, as well as MedQA, ARC-Challenge,
GSM8K, and TruthfulQA. Details of the bench-
marks and statistics of the synthetic data from
AIDE are provided in Appendix H and F.
Baselines. We use fine-tuned Mistral-7B, Llama-
3.1-8B, and Llama-3.2-3B with human-generated
(gold) data as baselines for comparison with the
models fine-tuned using synthetic data from AIDE.
We also compare AIDE with SOTA synthesis meth-
ods (Evol-Instruct, DataTune, and Prompt2Model)
by fine-tuning Mistral-7B. A fine-tuned Mistral-7B
using 250K synthetic data from Evol-Instruct 1 is
utilized as Mistral-7B with Evol-Instruct. Details
about the setups are provided in Appendix E.
Metrics. We evaluated all models using zero-shot
accuracy as the primary metric on the benchmarks.
For GSM8K, we report 8-shot maj@8 performance
using prompts from Wang et al. (2023).

4.2 Performance and Analysis (RQ1)

In Table 2, the pretrained models fine-tuned with
AIDE demonstrate comparable or superior perfor-
mance to those fine-tuned with gold data. For ex-
ample, on MMLU tasks, models fine-tuned with
AIDE data outperform those trained on gold data
by an average of > 1.4%. In the CFA task, syn-
thetic data from AIDE improves Mistral-7B and
Llama-3.1-8B by at least > 1.6% compared to
gold data. On ARC-Challenge, the Llama series
fine-tuned with AIDE surpasses their counterparts
fine-tuned on gold data. In GSM8K, pretrained
models fine-tuned with AIDE perform comparably
to those fine-tuned with gold data. On TruthfulQA,
models fine-tuned with AIDE exceed those trained
on gold data by an average of > 15.0%. Simi-
larly, on MedQA, AIDE improves pretrained mod-
els by more than > 8.2% on average. In Table 3
(BIG-Bench without training sets), Mistral-7B with
AIDE significantly outperforms itself fine-tuned us-
ing Evol-Instruct, Prompt2Model and DataTune by
> 20.0%, and its pretrained model by > 40.0%.

1https:/huggingface.co/dreamgen/WizardLM-2-7B
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Fine-tuning with
Data Source

MMLU FinBen ARC-
Challenge GSM8K TruthfulQA MedQA Avg. (↑) Avg. ∆ (↑)

Bio. CS Phi. EE Market. CFA
# Seed Data Points in AIDE 10 10 10 10 10 10 10 10 10 10 10

Pretrained Mistral-7B
AIDE (Ours) 75.5% 57.0% 72.2% 60.7% 89.3% 41.0% 74.7% 59.1% 69.2% 44.0% 64.3% 7.0%

Gold training data 73.2% 56.0% 71.1% 60.0% 85.9% 35.0% 79.4% 53.4% 49.9% 37.0% 60.1% NA

Pretrained Llama-3.1-8B
AIDE (Ours) 74.2% 47.0% 63.0% 49.7% 82.1% 62.0% 69.8% 65.8% 69.2% 56.0% 63.9% 0.7%

Gold training data 74.7% 48.1% 60.5% 50.1% 82.3% 61.0% 69.6% 68.2% 66.1% 54.0% 63.7% NA

Pretrained Llama-3.2-3B
AIDE (Ours) 58.7% 43.4% 56.6% 54.5% 71.4% 54.0% 56.8% 45.1% 67.6% 51.0% 55.9% 1.5%

Gold training data 60.2% 45.0% 55.6% 48.3% 70.7% 54.0% 56.5% 45.5% 64.9% 50.0% 55.1% NA

Table 2: AIDE-generated data vs. human-curated training data for fine-tuning. We evaluate the performance of various
zero-shot learning methods across MMLU, FinBen, ARC-Challenge, GSM8K (8-shot with maj@8), TruthfulQA, and MedQA.
We highlight the best and runner-up performances. "Avg." represents the average performance across all benchmarks. For
GSM8K, we fine-tune the models using 3.2K gold training data, matching the amount of synthetic data from AIDE. Results are
obtained using the same parameter settings. Avg. ∆(↑) represents the relative average improvement of models compared to
those fine-tuned with gold data. "NA" indicates no difference from models fine-tuned with gold data.

Pretrained
Model

Fine-tuning with
Data Source

BIG-Bench
Avg. (↑)

Code C&E Impl. Math Time

Mistral-7B

AIDE (Ours) 91.7% 99.2% 67.9% 21.0% 90.3% 74.2%

Prompt2Model 84.5% 41.2% 48.0% 4.7% 2.0% 36.1%

DataTune 73.4% 33.8% 44.0% 8.1% 16.9% 35.2%

Evol-Instruct 73.3% 73.2% 65.1% 14.1% 45.2% 54.2%

Pretrained Model 46.7% 47.7% 61.1% 11.6% 1.4% 33.7%

Table 3: AIDE vs. SOTA Data Synthesis Methods. We com-
pare the performance of various zero-shot learning approaches
in Mistral-7B fine-tuned with AIDE and SOTA synthesis meth-
ods across five BIG-Bench tasks. The table follows a setup
similar to Table 2. Notably, Evol-Instruct fine-tunes Mistral-
7B with 250K synthetic data points.

Attributes Personas Residual Connections Fine-tuned
Mistral-7B

✔ ✘ ✘ 60.1%
✘ ✔ ✘ 49.3%
✔ ✔ ✘ 72.2%
✔ ✘ ✔ 75.0%
✔ ✔ ✔ 90.3%

Table 4: Different core components of AIDE contribute to
the synthetic data, improving the performance of Mistral-7B
on the Time task from BIG-Bench. We highlight the best
performance and the base performance is in Table 3.

This is because Prompt2Model focuses on gen-
erating task-specific data with limited diversity,
whereas Evol-Instruct, despite its multi-hop syn-
thesis structure, generates data without targeting a
specific task.

4.3 Ablation and Sensitivity Studies (RQ2)
We conduct ablation studies to empirically explore
AIDE with pretrained models.
Effectiveness of Core Designs. Table 4 (Time
task) demonstrates how AIDE’s core components
- attributes, personas, and residual connection -
boost Mistral-7B’s performance by enhancing the
relevance and diversity of synthetic data. To pre-
serve synthesis paths in multi-hop synthesis, we
include either attributes or personas. Using only
attributes or personas increases Mistral-7B’s accu-

Figure 2: The effect of varying the number of seed data w/
and w/o task demonstration on the Time task from BIG-Bench.

racy from 1.4% to 60.1% and 49.3%, respectively.
With all three components combined, AIDE en-
ables Mistral-7B to achieves 90.3% accuracy, the
best performance by preserving synthesis paths and
enhancing the relevance of synthetic data.
Effect of Seed Data and Task Demonstra-
tion. The amount of seed data affects initial
synthetic data diversity, while task demonstration
provide task-related examples to guide synthe-
sis. Therefore, we analyze how the amount of
seed data and inclusion of task demonstrations im-
pact AIDE’s synthetic data quality by fine-tuning
Mistral-7B on equal amounts of data. In Figure
2, we show that increasing seed data in AIDE im-
proves Mistral-7B’s performance on the Time task
through fine-tuning. Furthermore, including task
demonstration in AIDE boosts Mistral-7B’s accu-
racy by > 10% through fine-tuning, compared to
using AIDE without task demonstrations.
Scaling with Data Quantity using Different
Depth K. The multi-hop depth K determines the
amount of AIDE’s synthetic data, directly influenc-
ing fine-tuned model performance. Figure 3 shows
increasing K from 2 to 4 significantly enhances
Mistral-7B’s performance on the code task after
fine-tuning on AIDE data. However, for other tasks,
performance gains gradually decrease with higher
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Figure 3: Effect of data quantity with different number of K
values in multi-hop synthesis based on the BIG-Bench.
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Figure 4: The effect of varying the depth of residual connec-
tions (L) when we fix the hop depth K as 4.

K values due to the inherent ability gap between
the pretrained model and the LLM synthesizer.
Effect of Residual Connection. We use a con-
tract task from LegalBench (Guha et al., 2023),
setting the hop depth K to 4 while varying the
depth of residual connections L. By synthesizing
5,682 training data points from 6 seeds, we analyze
their impact on fine-tuning models. Figure 4 shows
that as the multi-hop synthesis depth increases, a
higher residual connection depth L improves the
task relevance of the synthetic data, resulting in
better model performance during fine-tuning.
Effect of Capability of LLMs. We investigate the
impact of using different LLMs as components in
AIDE by conducting experiments on 5 BIG-Bench
tasks, using Claude Sonnet 3.5 and GPT-3.5-Turbo
separately to synthesize data. As shown in Table 5,
fine-tuning Mistral-7B with AIDE’s synthetic data,
generated with either Claude Sonnet 3.5 or GPT-

Model Synthetic
method

BIG-Bench Benchmark
Avg.

Code C&E Impl. Math Time

Mistral-7B

AIDE (Ours)
Claude Sonnet 3.5 91.7% 99.2% 67.9% 21.0% 90.3% 74.0%

AIDE (Ours)
GPT-3.5-Turbo 91.7% 86.3% 82.5% 34.6% 85.2% 76.1%

- 46.7% 47.7% 61.1% 11.6% 1.4% 33.7%

Table 5: The performance of Mistral-7B fine-tuned with
synthetic data from AIDE using different LLMs as synthesizer.

50 100 500
# Sampled synthetic data

0
1
2
3
4
5
6
7
8
9

10

Re
le

va
nc

e 
sc

or
e

Code
C&E

Impl.

Figure 5: The relevance score related to the sampled
synthetic data and task-related seed data from the Code
task, the C&E task and the Impl. task.

3.5-Turbo as components, enhances the pretrained
model Mistral-7B’s performance by > 40.0%.

4.4 Relevance and Diversity (RQ3)

We empirically investigate the relevance and di-
versity of synthetic data from AIDE. Appendix G
provides details on synthetic data complexity.
Analysis of Relevance. Since the seed data is
task-specific, the synthetic data should also be task-
relevant if it closely aligns with the seed data. To
evaluate this, we randomly sample 10 synthetic
data points per task from the Code, C&E, and Impl.
tasks in the BIG-Bench benchmark. We use the
Jina embedding model (Günther et al., 2023) to
encode all data points, and compute the similarity
between each synthetic data point and its corre-
sponding seed data. As shown in Figure 6, the
synthetic data exhibits strong relevance to the seed
data, with an average similarity score above 0.5.

Additionally, we employ Claude Sonnet 3.5 to
assess the relevance of synthetic data to the seed
data across the three tasks. Claude assigns a rele-
vance score from 0 to 10, with 10 indicating the
highest relevance. As shown in Figure 5, the av-
erage scores range from 5 to 9, further confirming
the task alignment of the synthetic data. The stan-
dard deviation arises because the samples contain
data points with significant diversity, yet remain
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(a) Synthetic data for the Code task (b) Synthetic data for the C&E task (c) Synthetic data for the Impl. task

Figure 6: For exploring the relevance of synthetic data with the seed data, we compute the similarity between the
randomly sampled 10 synthetic data and the seed data per task. The tasks include Code, Impl. and C&E.

(a) Synthetic data for the Code task (b) Synthetic data for the C&E task (c) Synthetic data for the Impl. task

Figure 7: We assess the diversity of knowledge by randomly sampling 20 synthetic data points generated by
AIDE for the Code, C&E, and Impl. tasks from BIG-Bench.

Benchmarks Task Name Diversity of
Synthetic Data (AIDE) Diversity of

Gold Data

BIG-Bench

Code 0.59 0.50
C&E 0.21 0.15
Impl. 0.43 0.40
Math 0.49 0.50
Time 0.70 0.91

MMLU

Bio. 0.41 0.29
CS 0.66 0.24
Phi. 0.49 0.30
EE 0.60 0.18

Market. 0.44 0.25
ARC-Challenge - 0.43 0.18

GSM8K - 0.43 0.21
TruthfulQA - 0.67 0.20

Table 6: Quantitative comparison of diversity between
synthetic data from AIDE for different tasks and gold
data from different tasks. We highlight lower Self-
BLEU scores, which implies higher diversity.

relevant to the corresponding task.
Analysis of Diversity. AIDE expands attributes
through using topics to retrieve personas from Per-
sona Hub, which diversifies the data synthesis. To
verify the diversity of synthetic data, we randomly
sample 20 synthetic data per task from the Code,
C&E, and Impl. tasks. Using the prompt shown in
Figure19, we employ Claude Sonnet 3.5 to assess
the diversity of the synthetic data based on rele-
vant knowledge. As illustrated in Figure 7a, the

sampled synthetic data for the Code task covers
a variety of programming topics and operations.
In the C&E and Impl. tasks, we observe that the
synthetic data spans a wide range of knowledge
domains, as shown in Figures 7b and 7c.

Additionally, following prior work (Ye et al.,
2022a), we compute Self-BLEU (Zhu et al., 2018)
to quantitatively assess the diversity of both syn-
thetic and gold data. The results in Table 6 show
that the synthetic data generated by AIDE achieves
Self-BLEU scores comparable to those of gold data
across most tasks, demonstrating its effectiveness
in producing diverse synthetic data.

5 Conclusion

Existing data synthesis methods struggle to gener-
ate synthetic data that is both task-relevant and di-
verse for fine-tuning or require large seed datasets.
In this paper, we introduce AIDE, a novel frame-
work that enables task-relevant, diverse, and high-
quality data expansion from few seed examples. It
features multi-hop synthesis guided by attributes
and personas, along with a residual connection to
mitigate irrelevance at deeper hops. Our experi-
ments show that fine-tuning Mistral-7B and Llama
models with AIDE outperforms the models fine-
tuned with gold data and SOTA synthesis methods.
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A Detailed Related Work

Data Synthesis for Instruction Tuning in Open
Domains. OpenAI has utilized human annotators
to develop diverse instruction-response datasets for
training InstructGPT (Ouyang et al., 2022). Simi-
larly, Alpaca (Taori et al., 2023) and Vicuna (Chi-
ang et al., 2023) explore open-domain instruction
tuning using the Llama model. Evol-Instruct (Xu
et al., 2024) offers fine control over instruction
complexity, while Tree-Instruct (Zhao et al., 2024c)
underscores the significance of complexity in LLM
alignment. CodecLM (Wang et al., 2024) adapts
instructions for various tasks. However, these meth-
ods lack domain specificity, often introducing ir-
relevant data. For instance, mixing medical and
coding data can negatively impact the fine-tuning
process for medical question-answering tasks.
Data Synthesis for Instruction Tuning in Task-
specific Domains. Recent research has focused on
generating diverse and relevant datasets through
data synthesis. For example, ZeroGen (Ye et al.,
2022a) synthesizes data from task-specific prompts,
though challenges arise in domains like multiple-
choice, where the label set can be infinite. Meth-
ods such as DataTune (Gandhi et al., 2024) and
Prompt2Model (Viswanathan et al., 2023) trans-
form existing datasets based on task descriptions,
but they rely on large pre-existing collections. Ap-
proaches like Self-Guide (Zhao et al., 2024a) and
ProGen (Ye et al., 2022b), which use limited exam-
ples for guiding synthesis, lack sufficient diversity
in the generated data.

B Multi-Hop Synthesis

The Figure 8 shows an example of the multi-hop
synthesis, which the seed data X

(0)
i is used to syn-

thesize its 1-hop neighbors X(1)
1 and X

(1)
2 during

the 1-hop synthesis. Similarly, each 1-hop neighbor
can be applied to generate 2-hop neighbors of X(0)

i .
For each input data X

(0)
i where 1 ≤ i ≤ n, we

recursively synthesis data using the same pattern
until reaching the depth of K.

C An Example of Unfolded Multi-Hop
Synthesis

Figure 9 illustrates an example of unfolded multi-
hop synthesis. In this example, we set K =

2. X
(0)
i is one of the seed data point and

X(1) = {X(1)
1 , X

(1)
2 , ..., X

(1)
m1} represents syn-

thetic data from 1-hop synthesis while X(2) =

{X(2)
1 , X

(2)
2 , ..., X

(2)
m2} represents synthetic data

from 2-hop synthesis. r is the relation between
a topic t and knowledge attribute a. The prede-
fined operation Op is the abbreviation of operation.
Green area includes a path of synthesis showing
the relevance between two data points. Orange area
shows a path to synthesize data with diversity and
relevance. We zoom in one of the branches related
to X

(1)
3 in 2-hop synthesis. Table 1 demonstrates

an example of the synthesis.

D Residual Connection

We introduce residual connections between a seed
data point and its neighbors. Specifically, for any
depth d where 1 < d ≤ K, we establish connec-
tions when d ≤ L where L is the depth of residual
connection within the range (1,K]. For example,
in Figure 9, when K = 2, setting L = 2 allows
connections between the seed data and all neigh-
bors at hop depth 2, ensuring seed information is
available for generating the neighbors.

Experiments in Figure 4 demonstrate that when
the hop depth K is large, applying residual connec-
tions with a greater depth L enhances the relevance
of the synthetic data, leading to improved perfor-
mance in the fine-tuned model. However, as hop
depth K increases, removing low-relevance neigh-
bors instead of using residual connections to retain
them can lead to a reduction in the amount of syn-
thetic data.

E Detailed Experimental Setup

Data Synthesis Setup. We configure the SOTA
data synthesis methods using their default settings.
Since BIG-Bench lacks a training set, we sample
10 task-related seed data points per task from Hug-
ging Face datasets to generate synthetic data. For

𝑿𝟒
(𝟐)
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(𝟐)

𝑿𝟐
(𝟐)𝑿𝟏
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𝟏-hop 

synthesis

𝟐-hop 

synthesis𝑲-hop 

synthesis

……
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(𝟎)

Synthesizer

𝑿𝟏
(𝟏)

𝑿𝟐
(𝟏)

Synthesizer Synthesizer

Figure 8: Multi-hop synthesis with the depth of hop K
use a seed data point to synthesize new data points. The
data points with yellow color represent synthetic data
while we use red color to denote a seed data point.
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Figure 9: An example of unfolded multi-hop synthesis when K = 2.

the remaining benchmarks, we similarly sample
10 seed data points per task from their respective
training sets to produce synthetic data. We set the
depth of hop K = 2 in the multi-hop synthesis. We
employ Claude Sonnet 3.5 as the LLM generator,
the LLM synthesizer, the LLM grader and the LLM
annotator in AIDE. We require the LLM to gener-
ate A(K) of a data point X(K)

i , which consists of
1 topic and 3 most related attributes. Each triplet
in A(K) followed by 3 operations: concretizing,
adding constraint and adding reasoning. With a
topic, we retrieve top-5 related personas to diver-
sify attributes.

Fine-tuning Setup. We applied the LoRA (Hu
et al., 2022) to fine-tune Mistral-7B. We randomly
split 10% of the synthetic data as validation set
while the rest of synthetic data as training set. The
process was carried out over 10 epochs with batch
size equal to 10. We select learning rate 5e−5 with
LoRA’s α parameter as 16 and choose the run with
the lowest validation loss at any point. We used the
AdamW optimizer (Loshchilov and Hutter, 2019)
and set LoRA r = 8. We conduct our training on a
server with 8 NVIDIA A100 GPUs.

Self-Reflection for Synthetic Data To ensure the
correctness, relevance, and diversity of synthetic
data, we apply existing self-reflection techniques
(Madaan et al., 2023; Pan et al., 2024) after synthe-
sis (Figure 1). A LLM grades synthetic data X

(K)
i

on these aspects, providing a score (from 1 to 10)
and feedback. Data exceeding a score threshold
(i.e., threshold equal to 5) is added to the dataset;
otherwise, it undergoes limited re-synthesis itera-
tions. A LLM annotator then labels the data, with
self-reflection ensuring labeling correctness. Re-
lated prompts are shown in Appendix N.

Benchmarks Task Name Depth of K Amount of
seed Data

Quantity of
Synthetic Data

BIG-Bench

Code 2 10 3.0K
C&E 2 10 3.2K
Impl. 2 10 3.1K
Math 2 10 3.1K
Time 2 10 3.2K

MMLU

Bio. 2 10 3.4K
CS 2 10 3.2K
Phi. 2 10 3.4K
EE 2 10 3.0K

Market. 2 10 3.3K
ARC-Challenge - 2 10 3.3K

GSM8K - 2 10 3.2K
TruthfulQA - 2 10 3.1K

FinBen CFA 2 10 893
MedQA - 2 10 2.2K

Table 7: Statistics of synthetic data. Note that we adapt
the self-reflection mechanism to enhance data quality,
which also filters out some synthetic data.

F Statistics of Synthetic Data

In Table 7, we demonstrate the amount of seed data
used and the quantity of data synthesized in AIDE.
Specifically, using K = 2 and 10 seed data points
for each task, AIDE generates approximately 3K
new data points in about 20 hours when adapting
the self-reflection mechanism to improve the qual-
ity of new data.

G Detailed Analysis of Relevance,
Diversity and Complexity (RQ3)

We conduct experiments to assess whether the syn-
thetic data generated by AIDE preserves its com-
plexity.

G.1 Analysis of Complexity

Similar to Evol-Instruct (Xu et al., 2024) using 5
predefined operations to expand the complexity of
synthetic data, AIDE utilizes 3 predefined opera-
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(a) Synthetic data for the Code task (b) Synthetic data for the C&E task (c) Synthetic data for the Impl. task

Figure 10: The complexity of randomly sampling 500 synthetic data from AIDE based on different domains,
including code, cause and effect and implicatures. We also compare the complexity of randomly sampling 500
synthetic data from the state-of-the-art data synthesis methods including Alpaca and Evol-Instruct.

tions including reasoning, constraint and concrete
following triplets from A to expand the complex-
ity during data synthesis. For verifying the com-
plexity of synthetic data from AIDE, we randomly
sample 500 synthetic data from different synthetic
methods including Alpaca, Evol-Instructs and our
AIDE. Then we apply Claude Sonnet 3.5 to evalu-
ate the complexity of synthetic data using the same
prompt as that from Evol-Instruct. We plot the dis-
tribution of score of complexity ranging from 1 to
10, shown on Figure 10. We find that most of syn-
thetic data from AIDE and Evol-Instruct obtain the
score of complexity higher than 5, when comparing
with that from Alpaca. It is worth mentioning that
AIDE only uses 3 predefined operations less than
the operations applied in Evol-Instruct while hav-
ing the synthetic data with comparable complexity.

G.2 Visualization

We follow the approach in (Zhao et al., 2024b)
and analyze the coverage of synthetic data from
AIDE in the embedding space. Specifically, we
use the jina-embeddings-v2-base-code (Günther
et al., 2023) to embed data points about coding
while employ jina-embeddings-v2-base-en to en-
code other text data. With the embeddings, we
utilize t-SNE (van der Maaten and Hinton, 2008) to
project embeddings into a two-dimensional space.
We adopt the real data from the code line descrip-
tion task and the C&E task as baselines to demon-
strate the coverage of synthetic data from AIDE.

In Figure 11a, we observe that the embedding
clusters of synthetic data via AIDE and the embed-
dings of all real data from the Code task appear to
be largely disjoint. Figure 11b demonstrates that
the synthetic data has a larger range which covers
all real data from the C&E task. This supports a

conclusion that AIDE with few seed data related
to specific tasks systematically cover different dis-
tributions of the target task space, and therefore
fine-tuning Mistral-7B with synthetic data from
AIDE leads to a positive effect on the improvement
of performance of Mistral-7B in specific tasks.

H Benchmark Statistics

The details of the benchmarks we employ in the
paper are included below:

• BIG-Bench (bench authors, 2023) includes
over 200 tasks that are currently challenging
for language models, encompassing a wide
range of categories. We selected the code line
description task, cause and effect task, impli-
catures task, elementary math task and tem-
poral sequence task, totally 5 tasks, which in-
volve coding understanding, causal reasoning,
logical reasoning. The selected tasks without
training sets include 60, 153, 492, 7.688k and
1k data points in their test sets, respectively.

• MMLU (Hendrycks et al., 2021) is designed
to evaluate the broad capabilities of language
models across 57 tasks. We select 5 tasks
from the benchmark, including high school bi-
ology, college computer science, philosophy,
electrical engineering and marketing, which
respectively contain 310, 100, 311, 145 and
234 data point in the test sets.

• ARC (Clark et al., 2018) is a set of grade-
school science questions, which are designed
to test a model’s ability to perform complex
reasoning. We select ARC-Challenge with the
more difficult questions that are particularly
challenging for AI models because they often
require multiple steps of reasoning, inference,
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(a) Synthetic data (Code task) (b) Synthetic data (C&E task)

Figure 11: We observe that randomly sampling 600 synthetic data generated by AIDE using the seed data covers the
all real test data from two tasks in the regions of embedding space, after projecting to two dimensions via t-SNE.

and external knowledge beyond the text pro-
vided in the question. We apply 1.17k testing
data points in this task to test LLMs.

• GSM8K (Cobbe et al., 2021) is a dataset of
8.5K high quality linguistically diverse grade
school math word problems. The dataset was
created to support the task of question answer-
ing on basic mathematical problems that re-
quire multi-step reasoning. We select the main
subset which has 7.47k training data points
and 1.32k testing data points.

• TruthfulQA (Lin et al., 2022) is a benchmark
to measure whether a language model is truth-
ful in generating answers to questions. We
select the multiple choice sets which contains
817 questions for testing.

• MedQA (Jin et al., 2020) is a comprehen-
sive resource designed to enhance medical
question-answering systems. It comprises
10,178 multiple-choice questions sourced
from medical exams across the United States,
Mainland China, and Taiwan. Each question
is accompanied by several answer options,
with the correct answer clearly indicated. We
select 1,956 data points for the training set
and 217 for the validation set. Additionally,
we sample 10 seed data points to synthesize
2,173 data points through AIDE.

• FinBen (Xie et al., 2024) is part of the PIXIU
project (Xie et al., 2023), an open-source ini-
tiative aimed at developing, fine-tuning, and

Task Name Abbreviation # Test data
Code Line Descriptions Code 60

Cause and Effect C&E 153
Implicatures Impl. 492

Elementary Math Math 7,688
Temporal Sequence Time 1,000

High School Biology Bio. 300
College Computer Science CS 100

Philosophy Phi. 311
Electrical Engineering EE 145

Marketing Market. 234
Flare-cfa CFA 100

ARC-Challenge - 1,170
GSM8k - 1,320

TruthfulQA - 817
MedQA - 100

Table 8: Data statistic of selected tasks from BIG-Bench,
MMLU, ARC-Challenge, GSM8K and Truthful QA.

evaluating large language models (LLMs) in
the financial domain. PIXIU encompasses var-
ious components including FinBen, a financial
language benchmark. The CFA task consists
of 1.03k data points, which we divide as fol-
lows: 100 data points for the test set, 804 as
gold training data, 89 for the validation set,
and 10 as seed data points to synthesize 893
additional data points through AIDE.

I Prompt for Extracting a Topic and
Knowledge Attributes

We utilize Claude Sonnet 3.5 as the LLM extractor
in AIDE, as shown in Figure 1. In Figure 12, we
demonstrate a prompt used in the LLM extractor to
extract a topic and knowledge attributes.
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J Prompt for Synthesizing Data Points
with a Triplet and an Operation

We apply Claude Sonnet 3.5 as the LLM synthe-
sizer in AIDE, as illustrated in Figure 1. Figure 13
provides an example of a prompt used by the LLM
synthesizer to generate a new data point, incorpo-
rating a triplet and a constraint operation.

K Prompt for Synthesizing Data Points
with a Topic and Personas

We use Claude Sonnet 3.5 as the LLM synthesizer
to generate new data points based on a persona and
a constraint operation. Figure 14 demonstrates a
prompt provided to the LLM synthesizer, incorpo-
rating both a persona and a constraint operation.

L An Example of 10-hop Synthesis
without Residual Connection

Figure 15 presents an example of 10-hop synthesis
without applying the residual connection. In multi-
hop synthesis, when the hop depth K becomes
large (e.g., K = 10), the synthetic data tends to
include more irrelevant information.

M An Example of 10-hop Synthesis with
Residual Connection

We introduce the residual connection mechanism in
AIDE , as detailed in Section 3.3 and Figure 9. Fig-
ure 16 illustrates an example of 10-hop synthesis
incorporating the residual connection.

N Prompt for Self-Reflection

During the self-reflection, when multi-hop synthe-
sis synthesizes data through knowledge attributes
for maintaining relevance, we apply a LLM as
grader to check the relevance of the synthetic data
and obtain a relevance score. Similarly, while we
generate synthetic data through multi-hop synthesis
using persona to expand diversity, a LLM grader
checks the diversity of the synthetic data and return
a diversity score. We show the prompt about check-
ing relevance and diversity in Figure 17. With a
self-reflection prompt in Figure 18, we collect the
score of diversity and relevance as the feedback to
process the synthetic data.

O Ethical Considerations

While AIDE is an effective framework for generat-
ing diverse, task-relevant data, it’s important to con-
sider the ethical implications. With only a few seed

data points, AIDE leverages LLMs to extract, syn-
thesize, grade, and annotate instruction-response
pairs. However, like human annotators, LLMs
can occasionally generate unethical, toxic, or mis-
leading content. Although we use self-reflection
techniques during synthesis, it’s essential to adopt
proven methods for detoxifying and reducing bias
in LLM outputs. Stricter inspection and filtering
rules should also be applied. Given AIDE’s flexibil-
ity, future advances in bias mitigation and fairness
can be integrated as additional modules.

P Limitations

We recognize AIDE ’s limitations in the following
two areas, which can serve as inspiration for future
research opportunities in the field of data synthesis.

Ethical Consideration. Since our method
AIDE relies on an LLM to serve as the extractor,
synthesizer, grader, and annotator, it may inherit bi-
ases and fairness issues from the underlying LLM.
However, AIDE stands to benefit from improved
LLMs that incorporate advanced techniques for
reducing bias and enhancing fairness.

Cognitive Process. While AIDE helps base mod-
els improve their performance in the Math task, the
zero-shot performance of the fine-tuned base mod-
els remain around 20%. In the future, a potential
future direction is to integrate Chain-of-Thought
techniques into AIDE, such that AIDE can provide
better synthetic data to enhance reasoning steps of
the base models though fine-tuning.
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Prompt for extracting a topic and knowledge attributes of a data point

I want you to act as an instruction analyzer.
Given an instruction, you should recognize its topic and knowledge attributes. You need to list at

most 2 knowledge attributes while each knowledge attributes should be transferable and concise
with one word or two words. Your should only output the topic within <Topic></Topic> XML tags
and output knowledge attributes within <Attributes></Attributes> XML tags.
Follow the examples below to analyze <The Given Instruction>
<Example>

<The Given Instruction> As a sports commentator, describe the winning play in the final seconds of
a championship game. </The Given Instruction>
<Topic> creative writing </Topic>
<Attributes> role-play, sports </Attributes>
</Example>
... Some examples ...
<The Given Instruction> {Here is instruction.} </The Given Instruction>

Figure 12: Prompt for extracting a topic and knowledge attributes.

Prompt for synthesis with a triplet and a constraint operation

I want you act as a Prompt Writer. Your objective is to rewrite a given prompt into a more complex
instruction to make those famous AI systems (e.g., chatgpt and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
You SHOULD generate the rewritten prompt within <Rewritten Prompt></Rewritten Prompt>
XML tags through complicating <The Given Prompt>, such that <Rewritten Prompt> meets the
following <EXPECTATIONS>
<EXPECTATION 1> The <Rewritten Prompt> SHOULD BE SIMILAR TO {a seed data point (a

residual connection)}.
</EXPECTATION 1>
<EXPECTATION 2> The <Rewritten Prompt> can be obtained by adding simple constraints into
content in <The Given Prompt>.
</EXPECTATION 2>
<EXPECTATION 3> The <Rewritten Prompt> is related to {topic} using {knowledge attribute}.
</EXPECTATION 3>
<EXPECTATION 4> Make the <Rewritten Prompt> become as SHORT as possible.
</EXPECTATION 4>
<EXPECTATION 5> <The Given Prompt>, <Rewritten Prompt>, ’given prompt’ and ’rewritten
prompt’ are not allowed to appear in <Rewritten Prompt>.
</EXPECTATION 5>

Follow the below examples to generate <Rewritten Prompt> by {adding constraints} into
<The Given Prompt>.

... Some examples ...

<The Given Prompt>{Here is instruction.}</The Given Prompt>

Figure 13: Prompt for synthesis with a triplet and an operation
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Prompt for synthesis with a persona and a constraint operation

A persona is the aspect of someone’s character. You can use the given character to generate a
<Created Prompt>. Your goal is to use <The Given Persona> and an operation to create a <Created
Prompt> different from <The Given Prompt>.You SHOULD generate the <Created Prompt>
through the following actions:

<Action 1> <Created Prompt> should related to the topic {a topic}. </Action 1>
<Action 2> You need to use <The Given Prompt> and the character from <The Given Persona> to
generate <Created Prompt>. </Action 2>
<Action 3> <Created Prompt> should be different from <The Given Prompt>. </Action 3>
<Action 4> The <Created Prompt> can be obtained by adding simple constraints into the generated
content. </Action 4>
<Action 5> You should try your best not to make the <Created Prompt> become verbose. </Action
5>
Follow the examples below to generate <Created Prompt> and output the <Created Prompt> within
<Created Prompt></Created Prompt> XML tags.

... Some examples ...

<The Given Prompt> {Here is instruction.} </The Given Prompt>
<The Given Persona> {Here is a persona.}</The Given Persona>

Figure 14: Prompt for synthesis with persona and a constraint operation

An example of 10-hop synthesis without the residual connection

Input: Create an example of an economic and a political issue.
1-hop neighbor: Design a scenario that incorporates both an economic and a political quandary,
and introduce a critical factor that significantly influences the outcome.
......
10-hop neighbor: Construct a multifaceted narrative that intricately weaves together various
economic, political, and sociocultural elements, entwined with an unexpected turn of events that
dramatically shifts the trajectory, demanding a methodical strategy to maneuver through the complex
array of repercussions, emphasizing an in-depth exploration of ethical dilemmas, alongside an
additional dimension probing into the subconscious drivers behind the choices made by each
character, all while taking into account the impact of technological advancements and how they
shape the development of the storyline.

Figure 15: An example of 10-hop synthesis without the residual connection. When the depth of hop K is large in
multi-hop synthesis (i.e., K = 10), more irrelevant information can be introduced in the synthetic data.
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An example of 10-hop synthesis with the residual connection

Input: Create an example of an economic and a political issue.
1-hop neighbor: Develop a multifaceted scenario encompassing interconnected economic and
political challenges, each influencing the other in a complex and nuanced manner.
. . . . . .
10-hop neighbor: Craft an engaging narrative interlacing complex economic and political dilem-
mas, highlighting their symbiotic nature and profound impact on each other, necessitating a nuanced
comprehension of their intricate interdependencies for adept navigation.

Figure 16: An example of 10-hop synthesis with the residual connection shown in Figure 9.

Prompt in self-reflection for evaluating the relevance/diversity score of the synthetic data

I want you to act as a domain expert to rate the relevance of <The Given Prompt> and <The
Original Prompt>.

You should give an overall score on a scale of 1 to 10, where a higher score indicates the
<The Given Prompt> is more relevant to/different from <The Original Prompt>.
You must just give <Score> without any other reasons within the <Score></Score> xml tags.
Follow the examples below to analyze and rate relevance of <The Given Instruction> and <The
Original Prompt> in <Score>.

... N Examples ...

Your output should follow the format of examples, which means preserve the same for-
mat and show the score within <Score></Score> xml tags.
<The Original Prompt> {Here is the original instruction.} </The Original Prompt>
<The Given Prompt> {Here is the given prompt.} </The Given Prompt>

Figure 17: Prompt in the self-reflection can be used to evaluate the relevance score or diversity score of the synthetic
data
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Prompt for self-reflection to improve the synthetic data

I want you to act as a professional data generator.

The <Score> from grader shows that the <The Given Prompt> is not relevant to <Pre-
prompt> (or the <The Given Prompt> is highly similar to <Pre-prompt>).
You are asked to rewrite <The Given Prompt> as the <Improved Prompt> using the <Pre-prompt>.
Generate <Improved Prompt> that improves the <Score> of relevance (or <Score> of diversity) by
making <Improved Prompt> relevant to <Pre-prompt> (or by making <Improved Prompt> different
from <Pre-prompt>).
Must only generate <Improved Prompt> within the <Improved Prompt></Improved Prompt> XML
tags.

... N Examples ...

<Pre-prompt> {Here is the pre-prompt.} </Pre-prompt>
<The Given Prompt> {Here is the given prompt.} </The Given Prompt>
<Score> {Here is score.} </Score>

Figure 18: Prompt for self-reflection, which can be used to improve the relevance or diversity.

Prompt for a LLM judging the diversity of the synthetic data

You are a helpful AI assistant for evaluating and rating the difficulty and complexity of the
following question.

Given an instruction, you should recognize its related knowledge without any explanation.
List several most related knowledge, the knowledge should be transferable, so that LLM can
leverage them to answer similar questions.
Each knowledge should be concise with one word or two words.
Follow the examples below to analyze <The Given Instruction>.
<Example>
<The Given Instruction> As a sports commentator, describe the winning play in the final seconds of
a championship game. </The Given Instruction>
<Knowledge> sports </Knowledge>
</Example>

... N Examples ...

You must just give the knowledge within the <Knowledge></Knowledge> XML tags
without any other reasons.
<The Given Instruction> {Here is the given instruction} </The Given Instruction>

Figure 19: A LLM uses the prompt to judge the diversity of the synthetic data from the perspective of knowledge.
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Prompt for a LLM judging the relevance of the synthetic data

You are a helpful AI assistant for evaluating and rating the difficulty and complexity of the
following question.

We would like you to evaluate and rate the relevance of <Instruction1> and <Instruction2> .
You should give an overall score on a scale of 1 to 10, where a higher score indicates higher
relevance between two instructions. You must just give a score without any other reasons.
Put the score within the <Score></Score> XML tags.

... N Examples ...

<Instruction1> {Here is the Instruction1} </Instruction1>
<Instruction2> {Here is the Instruction2} </Instruction2>

Figure 20: A LLM uses the prompt to judge the relevance of the synthetic data from the perspective of knowledge.
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