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Abstract

Despite recent success in applying large lan-
guage models (LLMs) to electronic health
records (EHR), most systems focus primar-
ily on assessment rather than treatment plan-
ning. We identify three critical limitations
in current approaches: they generate treat-
ment plans in a single pass rather than fol-
lowing the sequential reasoning process used
by clinicians; they rarely incorporate patient-
specific historical context; and they fail to ef-
fectively distinguish between subjective and
objective clinical information. Motivated by
the SOAP methodology (Subjective, Objective,
Assessment, Plan), we introduce MEDPLAN, a
novel framework that structures LLM reason-
ing to align with real-life clinician workflows.
Our approach employs a two-stage architec-
ture that first generates a clinical assessment
based on patient symptoms and objective data,
then formulates a structured treatment plan in-
formed by this assessment and enriched with
patient-specific information through retrieval-
augmented generation. Comprehensive eval-
uation demonstrates that our method signifi-
cantly outperforms baseline approaches in both
assessment accuracy and treatment plan qual-
ity. Our demo system and code are available at
https://github.com/JustinHsu1019/MedPlan.

1 Introduction

Deploying large language models (LLMs) for elec-
tronic health records (EHR) (Evans, 2016) analysis
in high-stakes medical environments presents sig-
nificant opportunities for enhancing patient care
through automation and improved clinical deci-
sion support (Yang et al., 2022; Zhang et al., 2024;
Sakai and Lam, 2025; Ding et al., 2024). Despite
recent progress in adapting LLM to medical do-
main (Tang et al., 2025; Jiang et al., 2025; Restrepo
et al., 2025), most existing LLM systems (Palepu
et al., 2025; Fan and Tao, 2024) for EHR focus

*Equal contribution

Figure 1: Compare the existing approach (left) with
our proposed MEDPLAN (right). We adopt the SOAP
protocol and simulate the doctor diagnosis process with
LLM for medical plan generation.

largely on diagnostic assessment tasks, neglecting
the crucial subsequent step of structured, patient-
specific treatment planning (Sarker et al., 2021;
Curtis et al., 2017). Effective LLM-based planning
could significantly reduce physician cognitive load,
standardize care protocols, decrease treatment vari-
ability, and enable more personalized interventions.

Enabling LLM with trustworthy and person-
alized treatment planning capabilities introduces
unique challenges—models must generate med-
ically sound interventions, tailor recommenda-
tions to individual patient needs, and maintain
a clear rationale connecting diagnosis to treat-
ment (Qiu et al., 2025). Ideally, these systems
should align with real-life clinical reasoning pro-
cesses employed by healthcare professionals. The
SOAP methodology (Subjective, Objective, As-
sessment, Plan) represents one of medicine’s fun-
damental cognitive frameworks (Sorgente et al.,
2005; Shechtman, 2002), systematically organiz-
ing clinical information into a structured sequen-
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tial decision-making process. Under this protocol,
clinicians first gather subjective patient-reported
symptoms (S) and objective clinical data such as
laboratory tests and physical examination findings
(O). These elements provide the basis for a clinical
assessment (A), subsequently informing a struc-
tured treatment plan (P).

However, our analysis identifies several critical
limitations in current approaches. First, the few
existing works on medical treatment planning with
LLMs (Liu et al., 2024; Chen et al., 2025) attempt
to generate treatment plans directly from clinical
data in a single pass, failing to mirror the sequen-
tial cognitive process physicians adopt, where clin-
icians first reach diagnostic conclusions before de-
veloping actionable interventions tailored to each
patient’s unique circumstances. This collapsed
reasoning process risks producing treatment rec-
ommendations disconnected from their diagnostic
foundations—a critical failure in medical decision-
making where transparent causal relationships be-
tween findings and interventions are essential.

Second, current approaches rarely incorporate
patient-specific historical context—such as medical
history, previous treatment responses, and longitu-
dinal trends—that physicians naturally consider
when making treatment decisions. This neglect of
personalized context leads to generic treatment rec-
ommendations that fail to account for individual
patient factors crucial to treatment success. Fi-
nally, most systems don’t effectively distinguish
between subjective patient narratives and objec-
tive clinical measurements, despite this distinction
being fundamental to clinical practice where a pa-
tient’s subjective experience ("my chest hurts when
I breathe") is weighed differently from objective
findings (elevated troponin levels) in formulating
both diagnoses and treatment plans.

These gaps motivate our research questions:

• How can we structure LLM reasoning pro-
cesses to mirror the sequential SOAP pro-
tocol used by clinicians, and does this im-
prove treatment plan generation?

• How can we incorporate patient-specific
contexts to better support individualized
care decisions?

To address these challenges, we introduced
MEDPLAN, a novel framework that explicitly struc-
tures LLM reasoning to mirror the SOAP clinical

workflow. Our approach operates in two clinically-
grounded stages that parallel physician cognitive
processes: (1) a diagnostic phase where we gener-
ate an assessment (A) based on patient symptoms
and clinical data (S and O), completing the diagnos-
tic reasoning before proceeding, and (2) a therapeu-
tic phase where we formulate a structured treatment
plan (P) directly informed by the assessment and
tailored to patient-specific factors. This two-stage
architecture faithfully replicates how clinicians rea-
son—first establishing what is happening before
determining what should be done. We enhanced the
planning phase through patient-specific retrieval-
augmented generation (RAG) (Lewis et al., 2020),
allowing the model to consider longitudinal patient
information—mirroring how physicians integrate
medical history into their treatment decisions.

Our contributions are three-fold:

• We introduced MEDPLAN, a novel SOAP-
inspired two-stage LLM framework for EHR
data that structures clinical reasoning to
match physician workflows, providing reli-
able patient-specific assessments and plans.

• We conducted a comprehensive evaluation
showing our method significantly outper-
formed baseline methods on various metrics
in both clinical assessment and treatment plan
generation.

• We released a fully functional system that tests
our approach in a real clinical environment, al-
lowing physicians to efficiently generate struc-
tured, patient-specific plans integrated with
existing EHR workflows.

2 Related Work

The SOAP framework has been widely recognized
as a standard for clinical documentation and rea-
soning (Cameron and Turtle-Song, 2002). Sev-
eral computational approaches have attempted to
structure medical notes according to SOAP ele-
ments (Castillo et al., 2019), but they typically treat
these elements as documentation categories rather
than as steps in a diagnosis reasoning process. Due
to the success of LLMs, such as GPT-4, LLaMA,
and Mistral-7B, these models have significantly
impacted healthcare, particularly in medical doc-
umentation, clinical summarization, and decision
support. Studies have demonstrated LLMs’ poten-
tial in automating discharge note generation, ex-
tracting key clinical information from EHRs, and
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summarizing medical evidence, though challenges
such as factual inconsistency and hallucinations
remain (Alkhalaf et al., 2024; Tang et al., 2023).

Recent research used patient physical informa-
tion and examination results as input to make Chat-
GPT generate a series of initial diagnostic informa-
tion, examination results, and recommended mea-
sures to create reports (Zhou, 2023). Additionally,
RAG was used to improve the efficiency of medi-
cal document retrieval and integration of external
knowledge (Alkhalaf et al., 2024) or enhance the
accuracy of LLMs in EHR summaries and medi-
cal note generation (Yang et al., 2025). However,
current RAG applications primarily focus on data
retrieval and aggregation without truly enhancing
the internal generation process of LLMs, particu-
larly when processing complex and large quantities
of diagnostic reports to generate personalized di-
agnostic report plans. In this work, we provide a
structured LLM retrieval process that incorporates
multiple clinical text information while addressing
past patient historical records using a two-stage
pipeline for medical planning generation.

3 Methodology

To obtain accurate and personalized clinical plan-
nings that align with physician workflow, we
present MEDPLAN, a trustworthy clinical decision
support system that employs a two-stage genera-
tion pipeline, mirroring the natural progression of
clinical planning. To get high-quality planning, we
propose to first generate an assessment based on the
patient data, then create the treatment plan based on
both the patient data and the generated assessment.
This separation follows the established SOAP pro-
tocol, where clinicians first analyze symptoms and
findings to form a diagnosis before determining
appropriate interventions. We also explicitly sep-
arate S and O components in our prompts (see
Appendix C), allowing the model to distinctly
process patient-reported symptoms versus clinical
observations—a key distinction that enhances clin-
ical relevance. To enhance the personalization and
accuracy of the generated plannings, we further
leverage two types of references during generation:
(1) self-history references—the patient’s previous
SOAP records, and (2) cross-patient references—
similar cases from other patients. Specifically, for
the i-th patient, we retrieve their latest Nhist SOAP
records as self-history references, formulated as
Rhisti = (Sj,Oj , Aj , Pj) | j ∈ 1, 2, ..., Nhist. Fur-

thermore, to better align with the clinical reasoning
patterns, we incorporate instruction tuning on the
models that generate A and P before deploying our
two-stage pipeline. Figure 2 illustrates the overall
architecture of our inference workflow.

3.1 Assessment Generation Stage
In the Assessment Generation Stage, we integrated
the patient’s current S and O information with both
self-history references Rhist and cross-patient refer-
ences RSOA = {(Sj , Oj , Aj)}Nref

j=1. To identify the
most relevant cross-patient references, we employ
a two-step retrieval process. First, we retrieve Nsim
candidate references RSOA

sim via hybrid retrieval (Ma
et al., 2020; Bruch et al., 2023; Hsu and Tzeng,
2025) combining BM25 (Robertson et al., 1995)
and bi-encoder semantic search (Karpukhin et al.,
2020), leveraging both keyword matching and se-
mantic similarity. Then, we refined this selection
using a more computationally intensive but more
accurate cross-encoder re-ranking model (Nogueira
and Cho, 2020) that evaluates the fine-grained clin-
ical relevance by jointly encoding the query and
each candidate:

RSOA = Top-Nref

(
ReR

(
{S,O},RSOA

sim
))

,

where ReR({S,O},RSOA
sim ) represents the cross-

encoder re-ranking function that scores each refer-
ence in RSOA

sim based on its relevance to the current
case {S,O}. After obtaining the refined references,
we combine the current (S,O) with both RSOA

and Rhist to generate the assessment:

Agen = fθA(S,O,RSOA,Rhist),

where Agen denotes the generated assessment and
fθA represents the medical language model for as-
sessment generation.

3.2 Plan Generation Stage
In the Plan Generation Stage, we utilized the gen-
erated assessment Agen along with the original S
and O to retrieve and generate an appropriate treat-
ment plan. Mirroring the clinical practice where
physicians formulate treatment plans based on their
diagnostic assessment and patient information, we
employed another retrieval process to find relevant
plan references RSOAP = {(Sj , Oj , Aj , Pj)}Nref

j=1.
Similar to the previous stage, we use a two-step
retrieval approach. First, we retrieve Nsim candi-
date references RSOAP

sim via hybrid retrieval combin-
ing BM25 and bi-encoder semantic search. Then,
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Figure 2: Overall architecture of the proposed MEDPLAN framework.

we refined this selection using a cross-encoder re-
ranking model:

RSOAP = Top-Nref

(
ReR

(
{S,O,Agen},RSOAP

sim
))

,

where ReR({S,O,Agen},RSOAP
sim ) represents the

cross-encoder re-ranking function that evaluates
each reference in RSOAP

sim based on its relevance
to the current case with the generated assessment.
After obtaining the refined references, we com-
bined the current (S,O,Agen) with both RSOAP

and Rhist to generate the treatment plan:

Pgen = fθP (S,O,Agen,RSOAP ,Rhist),

where Pgen denotes the generated plan and fθP
represents the medical language model for plan
generation.

3.3 Information Alignment
To align the models with the clinical reasoning
pattern of our dataset, we instruction-tuned both the
assessment generation model and plan generation
model using the following objectives:

θA = argmin
θ

N∑

i=1

L(fθ(Si, Oi,RSOA
i ,Rhist

i ), Ai),

θP = argmin
θ

N∑

i=1

L(fθ(Si, Oi, Ai,RSOAP
i ,Rhist

i ), Pi),

where L is the loss function, N is the number of
training samples, and Ai and Pi are the ground
truth assessment and plan, respectively. This train-
ing process ensures that our models can properly
interpret and utilize the medical context specific to
our dataset.

4 Experiments

4.1 Datasets
This study utilized 350,684 outpatient and emer-
gency EHR SOAP notes from 55,890 patients col-
lected at Far Eastern Memorial Hospital (FEMH)
in 2021. All data were de-identified prior to analy-
sis. We preprocessed all SOAP notes by removing
records shorter than two characters and normaliz-
ing text (eliminating newlines, redundant spaces,
and consecutive punctuation).

Unlike disease-specific approaches, our dataset
encompasses general cases, ensuring broader ap-
plicability across clinical scenarios. To achieve
this, we selected patients with three or more vis-
its and employed a patient-centric sampling strat-
egy. Specifically, records from 6,000 patients
constituted our RAG knowledge base embedding,
while an additional 3,000 randomly selected patient
records were allocated into training and testing sets.

4.2 Metrics
For evaluation metrics, we used BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004), and BERTScore (Zhang et al.,
2019) using an independent inference script. Lex-
ical similarity is evaluated using METEOR (Met-
ric for Evaluation of Translation with Explicit Or-
dering) and BLEU (Bilingual Evaluation Under-
study), with METEOR considering stemming and
synonyms. ROUGE, which is the abbreviation
of Recall-Oriented Understudy for Gisting Eval-
uation scores, compares the produced and refer-
ence summaries for the longest common subse-
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quence (ROUGE-L) and n-gram overlaps (ROUGE-
1, ROUGE-2). In order to properly evaluate text co-
herence and meaning, BERTScore balances recall
and accuracy by using contextual embeddings to es-
timate semantic similarity beyond precise matches.

4.3 Implementation Details
We utilized prompt engineering techniques
and applied LoRA for parameter-efficient fine-
tuning. Specifically, we instruction-tuned
several open-source LLMs—Medical-Llama3-
8B (Vsevolodovna, 2024a), Medical-Mixtral-7B-
v2k (Vsevolodovna, 2024b), and Bio-Medical-
Llama3-8B (ContactDoctor, 2024)—using the Un-
sloth framework (Daniel Han and team, 2023). To
support long-context retrieval in our RAG-based
design, we adopted OpenAI’s text-embedding-3-
large model (OpenAI, 2024) for semantic similarity
search, and used VoyageAI Reranker-2 (VoyageAI,
2024) as a cross-encoder model to re-rank the re-
trieved candidates. For baseline comparison, we
additionally evaluated two general-purpose models:
o1 (OpenAI, 2024b) and GPT-4o (OpenAI, 2024a),
without domain-specific adaptation.

We set Nhist = 20 and Nref = 10 for our RAG
module, retrieving Nsim = 80 initial candidates
based on semantic similarity. To evaluate MED-
PLAN, we simulated clinical diagnostic processes
by using the first N−2 visits as history Rhist and
the second-to-last visit as the training target for
patients with N visits, while the first N−1 vis-
its and the most recent visit were used as history
and evaluation target respectively during testing.
We conducted ablation experiments with various
configurations by selectively enabling components
in our pipeline, including: Self-history, Instruc-
tion Tuning, Cross-patient References, Direct
Plan Generation, and a Two-step Approach with
Pre-plan Assessment. Additional implementation
details, including training environment and hyper-
parameter settings, are provided in Appendix A.1.

4.4 Results
Does MEDPLAN help improve clinical plan-

ning? In Table 1, our SOAP-inspired MEDPLAN

(S+O→A→P) outperforms the baseline approach
(S+O→P) across all backbone models and evalua-
tion metrics. For example, on the Medical-Llama3-
8B model, MEDPLAN increases BLEU from 0.307
to 0.315 and METEOR from 0.501 to 0.516. This
is likely because MEDPLAN structures LLM rea-
soning in a manner that mirrors real-world clinical

workflows, leading to more reliable planning.

Does MEDPLAN help improve clinical assess-
ment? In Table 2, MEDPLAN method integrates
historical cross-patient assessments records, and
consistently promotes base versions of all back-
bones on all metrics. In particular, on the Medical-
Llama3-8B backbone, MEDPLAN improves ME-
TEOR by 2%, with ROUGE1 and ROUGE2 by
2% and 1.5%, respectively. Similar gains are also
observed in other models. This improvement likely
results from the inference-time knowledge augmen-
tation provided by the cross-patient information,
which enriches the contextual input and helps the
model generate more accurate and trustworthy as-
sessments.

How do we better support personalized plan-
ning? As shown in Table 1, integrating patient his-
tory and cross-patient information via RAG enables
our MEDPLAN to significantly enhance plan gener-
ation across all evaluated models. For instance,
adding RAG in the instruction-tuned Medical-
Llama3-8B model raises BLEU from 0.052 to
0.307 and METEOR from 0.173 to 0.501. This
might due to the enriched contextual input brought
by the RAG, which augments the knowledge in the
inference time and help the model to generate more
trustworthy clinical plans.

How do our generated treatment plans com-
pare qualitatively to baseline approaches? Fig-
ure 3 illustrates the qualitative improvement in clin-
ical decision support capabilities. When presented
with a complex patient case featuring multiple car-
diovascular risk factors (hyperlipidemia, hyperten-
sion, metabolic syndrome, and pre-diabetes), the
baseline Medical-Mixtral-7B-v2k model produced
only a simplistic "Keep current Rx" recommen-
dation—missing critical diagnostic and treatment
components necessary for evidence-based care. In
contrast, our approach generated a comprehensive
clinical recommendation: "Cardiac catheterization.
If symptoms persist, keep Kerlone, Cozaar, and
encourage exercise and diet control." This output
demonstrates enhanced capabilities to: (1) prior-
itize appropriate diagnostic procedures, (2) im-
plement condition-based medication management,
and (3) incorporate preventive lifestyle interven-
tions for modifiable risk factors.
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Table 1: Performance Comparison of Different Models and Settings for Plan Generation

Planning Method Model Self-history Instruction Tuning Cross-patient BLEU ↑ METEOR ↑ ROUGE1 ↑ ROUGE2 ↑ ROUGE_L ↑ Bertscore_F1 ↑

S+O→P

o1 ✓ 0.016399 0.140358 0.125431 0.046444 0.107900 0.817148
GPT-4o ✓ 0.028817 0.166348 0.154136 0.070183 0.139563 0.827025

Medical-Llama3-8B

✓ 0.052796 0.173414 0.220035 0.129617 0.214548 0.847451
✓ 0.178594 0.306591 0.343440 0.274914 0.340154 0.867276
✓ ✓ 0.291157 0.477312 0.535286 0.434203 0.531056 0.907823
✓ ✓ ✓ 0.307380 0.501418 0.559243 0.456576 0.554414 0.911653

Bio-Medical-Llama3-8B

✓ 0.061325 0.188050 0.235100 0.148139 0.228682 0.850004
✓ 0.112796 0.217000 0.235758 0.174116 0.230855 0.848391
✓ ✓ 0.299377 0.486631 0.544217 0.441678 0.539558 0.908784
✓ ✓ ✓ 0.309457 0.501485 0.557870 0.456750 0.553876 0.911572

Medical-Mixtral-7B-v2k

✓ 0.067164 0.196569 0.249694 0.156125 0.243456 0.852184
✓ 0.170338 0.311579 0.365305 0.285245 0.360484 0.869952
✓ ✓ 0.298256 0.482994 0.541785 0.442677 0.537791 0.910507
✓ ✓ ✓ 0.312393 0.510814 0.570339 0.464942 0.565761 0.914185

S+O→A→P
(MEDPLAN)

Bio-Medical-Llama3-8B ✓ ✓ ✓ 0.312238 0.516716 0.574780 0.467528 0.569738 0.915024
Medical-Llama3-8B ✓ ✓ ✓ 0.314718 0.516189 0.576113 0.469581 0.571199 0.915500
Medical-Mixtral-7B-v2k ✓ ✓ ✓ 0.318286 0.521312 0.581657 0.475762 0.577055 0.917194

Table 2: Comparison Performance in Patient-Specific Assessments Generation

Model Self-history Instruction Tuning Cross-patient BLEU ↑ METEOR ↑ ROUGE1 ↑ ROUGE2 ↑ ROUGE_L ↑ Bertscore_F1 ↑

Medical-Mixtral-7B-v2k
✓ 0.302052 0.469219 0.535851 0.437234 0.532359 0.905538
✓ ✓ 0.484695 0.653686 0.704872 0.606026 0.700879 0.940547
✓ ✓ ✓ 0.493051 0.665725 0.715743 0.616415 0.712651 0.942709

Bio-Medical-Llama3-8B
✓ 0.234989 0.35864 0.378168 0.310427 0.372989 0.872104
✓ ✓ 0.479665 0.645509 0.697491 0.596622 0.693297 0.938073
✓ ✓ ✓ 0.490539 0.664329 0.717387 0.61274 0.713025 0.942353

Medical-Llama3-8B
✓ 0.303517 0.431265 0.466276 0.401507 0.463519 0.889349
✓ ✓ 0.474254 0.641288 0.692784 0.594512 0.68923 0.937197
✓ ✓ ✓ 0.487554 0.658435 0.713324 0.610607 0.710027 0.941513

5 Clinical Application Demo and System
Design

To demonstrate the real-world applicability of our
Plan generation system, we developed a clinical
prototype that has been reviewed by practicing
physicians for viability in actual healthcare settings.
An overview of the clinical interface is shown in
Figure 4. Our system works as follows: The physi-
cian first inputs the patient’s S and O, and the sys-
tem generates A and P based on these inputs. At
the same time, physicians can modify A according
to their clinical judgment and regenerate P, while
our system can update retrievals through RAG,
which leverages a knowledge base of patient SOAP
notes. The more specific technical architecture of
the backend system is shown in Figure 2. The
frontend is developed using React, the backend is
based on FastAPI service, and communication be-
tween frontend and backend is conducted through
RESTful API. The core of the system includes two
specialized LLMs, responsible for generating A
and P respectively. The system uses Microsoft
SQL (MSSQL) database to store patient histori-
cal data, and enhances semantic retrieval and case
matching through vector embedding using Weavi-
ate database.

The detailed system architecture is provided in
Appendix A.

6 Conclusion

In this study, we introduced MEDPLAN, a novel
approach leveraging LLMs with RAG to produce
personalized treatment plans following the SOAP
methodology. By structuring LLM reasoning into a
two-stage process mirroring physician workflows,
MEDPLAN generates assessments before formu-
lating plans informed by patient-specific context.
Empirical evaluation on an in-house dataset demon-
strated promising outcomes and potential for future
LLM diagnostic generation research work.
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A System Architecture

Our system architecture is designed for real-world
deployment, ensuring robustness and efficiency
when handling large-scale requests in the future.
As illustrated in Figure 5, the backend is imple-
mented using FastAPI, designed for high concur-
rency and efficient request handling. Instead of
synchronous API calls, which may lead to memory
overload or timeouts, we adopt an asynchronous
task management approach. Upon receiving input,
the backend assigns a unique task ID and forwards
the request to the LLM. Once processing is com-
pleted, the system returns the results alongside the
task ID, ensuring a seamless experience without
blocking other requests.

MEDPLAN integrates two databases to support
its functionality. Microsoft SQL Server stores struc-
tured patient data, allowing efficient retrieval of the
latest consultation records using MRN (Medical
Record Number) as a key. Additionally, Weavi-
ate, a vector database, is employed to store a large
repository of past patient records. These enable
retrieval-augmented generation (RAG), allowing
the system to identify cross-patient similar cases
and provide physicians with relevant contextual
information.

The user interface is developed using React, pro-
viding an intuitive web-based platform for physi-
cians to interact with the system. The underlying
LLM is deployed on our GPU server, which is
equipped with NVIDIA hardware, ensuring effi-
cient real-time inference and responsiveness.

A.1 Implementation Details

We instruction-tuned three domain-specific
LLMs—Medical-Llama3-8B (Vsevolodovna,
2024a), Medical-Mixtral-7B-v2k (Vsevolodovna,
2024b), and Bio-Medical-Llama3-8B (Con-
tactDoctor, 2024)—using the Unsloth frame-
work (Daniel Han and team, 2023) for efficient
adaptation with long-context support. All mod-
els were trained on NVIDIA RTX 6000 Ada
Generation GPUs with Low-Rank Adaptation
(LoRA), dynamically adjusted for each model’s
architecture. A maximum sequence length of
65,536 tokens was used to accommodate extended
patient histories and cross-patient references.
The training employed the AdamW optimizer in
8-bit precision, along with a cosine learning rate
scheduler and a warm-up phase equal to 1.6% of
the total steps.

For semantic retrieval, we used OpenAI’s text-
embedding-3-large model (OpenAI, 2024), which
supports high-dimensional dense representations
suitable for medical content. As our cross-encoder
model, we employed the VoyageAI Reranker-
2 (VoyageAI, 2024), which was used to re-rank
the semantically retrieved candidates in our RAG
pipeline. All experiments were conducted under
consistent hardware and software configurations to
ensure comparability.

B Generation Samples

Figure 3 demonstrates a significant improvement
in clinical decision support capabilities between
the best baseline Medical-Mixtral-7B-v2k model
and MEDPLAN with the Medical-Mixtral-7B-v2k
model as the base model. The baseline model only
produced the simple result, “Keep current Rx”,
while dealing with a complicated patient scenario
that included several cardiovascular risk factors,
such as hyperlipidemia, hypertension, metabolic
syndrome, and pre-diabetes. This result indicates a
troubling missing core diagnostic and treatment
components necessary for evidence-based treat-
ment.

In contrast, our approach produced a comprehen-
sive, clinically sound recommendation that aligns
remarkably with expert human physician judgment.
Our model’s output “Cardiac catheterization. If
symptoms persist, keep Kerlone, Cozaar, and en-
courage exercise and diet control” demonstrates the
model’s enhanced capacity to (1) prioritize appro-
priate diagnostic procedures for suspected coronary
artery disease, (2) implement condition-based med-
ication management strategies, and (3) incorporate
preventive lifestyle interventions addressing modi-
fiable risk factors.

When a subset of the generated samples was pre-
sented to physicians at Far Eastern Memorial Hos-
pital (FEMH) for evaluation, the proposed method
demonstrated approximately 66% improvement in
clinical assessments compared to the baseline ap-
proach.

These findings highlight how combining RAG
with two-stage targeted instruction tuning of LLMs
can substantially improve AI clinical reasoning ca-
pabilities, potentially enhancing model utility in
real-world medical decision support systems. Our
proposed approach exhibits precise clinical reason-
ing, addressing both urgent diagnostic needs and
long-term illness management concerns, suggest-
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Figure 5: MEDPLAN System Architecture.

ing promising directions for medical AI applica-
tions in healthcare settings.

C Prompt Template

We present our prompt template (Figure 6) to guide
the generation by the LLMs. The left figure out-
lines the Assessment Generation template, while
the right figure introduces the Plan Generation tem-
plate. Each template contains three key sections:

• Role & Instruction: Directs an AI Medi-
cal Assistant to synthesize patient data using
chain-of-thought reasoning.

• User Prompt: Provides structured query for-
mats with placeholders for patient-specific in-
formation.

• Generation: Designates space for AI-
generated content ([A_latest] or [P_latest]).

D Limitation

The main limitation of this study lies in the data
source and applicability. Our models are trained
on EHR SOAP records from a specific hospital,
which may limit its generalizability to other medi-
cal institutions or specialties. Additionally, while
MEDPLAN employs retrieval-augmented genera-
tion (RAG) to enhance accuracy, it is still subject
to inherent biases in language models, potentially

leading to generating content that does not fully
align with medical standards. These limitations
highlight the need for continuous improvements
and rigorous evaluation in real-world settings.
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Figure 6: Prompt Template for Generation
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