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Abstract

Enterprise search systems often struggle to re-
trieve accurate, domain-specific information
due to semantic mismatches and overlapping
terminologies. These issues can degrade the
performance of downstream applications such
as knowledge management, customer support,
and retrieval-augmented generation agents. To
address this challenge, we propose a scal-
able hard-negative mining framework tailored
specifically for domain-specific enterprise data.
Our approach dynamically selects semantically
challenging but contextually irrelevant docu-
ments to enhance deployed re-ranking models.

Our method integrates diverse embedding mod-
els, performs dimensionality reduction, and
uniquely selects hard negatives, ensuring com-
putational efficiency and semantic precision.
Evaluation on our proprietary enterprise corpus
(cloud services domain) demonstrates substan-
tial improvements of 15% in MRR@3 and 19%
in MRR@10 compared to state-of-the-art base-
lines and other negative sampling techniques.
Further validation on public domain-specific
datasets (FiQA, Climate Fever, TechQA) con-
firms our method’s generalizability and readi-
ness for real-world applications.

1 Introduction

Accurate retrieval of domain-specific information
significantly impacts critical enterprise processes,
such as knowledge management, customer sup-
port, and Retrieval Augmented Generation (RAG)
Agents. However, achieving precise retrieval re-
mains challenging due to semantic mismatches,
overlapping terminologies, and ambiguous abbre-
viations common in specialized fields like finance,
and cloud computing. Traditional lexical retrieval
techniques, such as BM25 (Robertson and Walker,
1994), struggle due to vocabulary mismatches, lead-
ing to irrelevant results and poor user experience.

* The authors contributed equally to this work.

Recent dense retrieval approaches leveraging
pre-trained language models, like BERT-based en-
coders (Karpukhin et al., 2020; Xiong et al., 2020;
Guu et al., 2020), mitigate lexical limitations by
capturing semantic relevance. Nevertheless, their
performance heavily relies on the negative sam-
ples—documents incorrectly retrieved due to se-
mantic similarity but lacking contextual relevance.
Models trained with negative sampling methods
(e.g., random sampling, BM25-based static sam-
pling, or dynamic methods like ANCE (Xiong
et al., 2020), STAR (Zhan et al., 2021)) either
lack sufficient semantic discrimination or incur
high computational costs, thus limiting scalability
and practical enterprise deployment. For instance,
given a query such as "Steps to deploy a MySQL
database on Cloud Infrastructure," most negative
sampling techniques select documents discussing
non-MySQL database deployments. Conversely,
our method strategically selects a hard negative dis-
cussing MySQL deployment on-premises, which
despite semantic overlap, is contextually distinct
and thus poses a stronger training challenge for the
retrieval and re-ranking models.

Our proposed framework addresses these by in-
troducing a novel semantic selection criterion ex-
plicitly designed to curate high-quality hard nega-
tives. By uniquely formulating two semantic con-
ditions that effectively select negatives that closely
resemble query semantics but remain contextually
irrelevant, significantly minimizing false negatives
encountered by existing techniques. The main con-
tributions of this paper are:

1. A negative mining framework for dynamically
selecting semantically challenging hard neg-
atives, leveraging diverse embedding models
and semantic filtering criteria to significantly
improve re-ranking models in domain-specific
retrieval scenarios.

2. Comprehensive evaluations demonstrating
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consistent and significant improvements
across both proprietary and publicly available
datasets, verifying our method’s impact and
broad applicability across domain-specific
usecases.

3. In-depth analysis, of critical challenges in han-
dling both short and long-form enterprise doc-
uments, laying a clear foundation for targeted
future improvements.

Our work directly enhances the semantic dis-
crimination capabilities of re-ranking models, re-
sulting in 15% improvement in MRR@3 and
19% improvement in MRR@10 on our in-house
cloud-services domain dataset. Further evaluations
on public domain-specific benchmarks (FiQA, Cli-
mate Fever, TechQA) confirm generalizability and
tangible improvements of our proposed negative
mining framework.

2 Related Work

2.1 Hard Negatives in Retrieval Models

The role of hard negatives in training dense re-
trieval models has been widely studied. Static
negatives, such as BM25 (Robertson and Walker,
1994), provide lexical similarity but fail to capture
semantic relevance, often leading to overfitting (Qu
et al., 2020). Dynamic negatives, introduced in
ANCE (Xiong et al., 2020) and STAR (Zhan et al.,
2021), adapt during training to provide more chal-
lenging contrasts but require significant computa-
tional resources due to periodic re-indexing. Our
framework addresses these limitations by dynam-
ically identifying semantically challenging nega-
tives using clustering and dimensionality reduction,
ensuring scalability and adaptability.

Further studies have explored advanced meth-
ods for negative sampling in cross-encoder mod-
els (Meghwani, 2024). Localized Contrastive Es-
timation (LCE) (Guo et al., 2023) integrates hard
negatives into cross-encoder training, improving
the reranking performance when negatives align
with the output of the retriever. Similarly, (Pradeep
et al., 2022) demonstrated the importance of hard
negatives even when models undergo advanced pre-
training techniques, such as condenser (Gao and
Callan, 2021). Our work builds on these efforts by
offering a scalable approach, which can be applied
to any domain-heavy enterprise data.

2.2 Negative Sampling Strategies

Effective negative sampling significantly affects the
performance of the retrieval model by challenging
the model to differentiate between relevant and
irrelevant examples. Common strategies include:

• Random Negatives: Efficient but lacking se-
mantic contrast, leading to suboptimal perfor-
mance (Karpukhin et al., 2020).

• BM25 Negatives: Leverage lexical similar-
ity, but often introduce biases, particularly
in semantically rich domains (Robertson and
Walker, 1994).

• In-Batch Negatives: Computationally ef-
ficient but limited to local semantic con-
trasts, often underperforming in dense re-
trieval tasks (Xiong et al., 2020).

Our framework complements these approaches
by dynamically generating negatives that balance
semantic similarity and contextual irrelevance,
avoiding the pitfalls of static or random methods.

2.3 Domain-Specific Retrieval Challenges

Enterprise retrieval systems face unique challenges,
such as ambiguous terminology, overlapping con-
cepts, and private datasets (Meghwani, 2024).
General-purpose methods such as BM25 or dense
retrieval models (Qu et al., 2020) fail to capture
domain-specific complexities effectively. Our ap-
proach addresses these gaps by curating hard nega-
tives that align with enterprise-specific semantics,
improving retrieval precision and robustness for
proprietary datasets.
We further discuss negative sampling techniques in
Appendix A.1.

3 Methodology

To effectively train and finetune reranker models
for domain-specific retrieval, it is essential to sys-
tematically handle technical ambiguities stemming
from specialized terminologies, overlapping con-
cepts, and abbreviations prevalent within enterprise
domains.

We propose a structured, modular framework
that integrates diverse embedding models, dimen-
sionality reduction, and a novel semantic criterion
for hard-negative selection. Figure 1 illustrates the
high-level pipeline, components and their interac-
tions. The re-ranking models fine-tuned using the
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Figure 1: Overview of the methodology pipeline for training reranker models, including embedding generation,
PCA-based dimensionality reduction and hard negative selection for fine-tuning.

hard negatives generated by our framework are di-
rectly deployed in downstream applications, such
as RAG, significantly improving the resolution of
customer queries through enhanced retrieval.

Our approach begins by encoding queries and
documents into semantically rich vector represen-
tations using an ensemble of state-of-the-art bi-
encoder embedding models. These embeddings are
strategically selected based on multilingual sup-
port, embedding quality, training data diversity,
context length handling, and performance (details
provided in Appendix A.2. To manage embed-
ding dimensionality and improve computational
efficiency, Principal Component Analysis (PCA)
(Maćkiewicz and Ratajczak, 1993) is utilized to
project the concatenated embeddings onto a lower-
dimensional space, maintaining 95% of the original
variance.

We then define two semantic conditions (Eq. 5
and Eq. 6) to dynamically select high-quality hard
negatives, addressing semantic similarity chal-
lenges and minimizing false negatives. Together,
these two equations ensure that the selected hard
negative is not only close to the query (Eq. 5) but
also contextually distinct from the true positive,
minimizing the risk of selecting topic duplicates
or noisy positives (Eq. 6). For example, a query
about deploying MySQL on Oracle Cloud, PD is a
guide on that topic, and D is a doc about MySQL
on-premise — semantically close to Q, but distant
from PD.

Below we detail each methodological compo-
nent, emphasizing their contributions to enhancing
retrieval precision in domain-specific or enterprise
retrieval tasks.

Total Train Test

< Q,PD > 5250 1000 4250

Table 1: Dataset distribution of queries (Q) and positive
documents (PD).

3.1 Dataset Statistics
Our experiments leverage a proprietary corpus con-
taining 36,871 unannotated documents sourced
from over 30 enterprise cloud services. Addition-
ally, we prepared 5250 annotated query-positive
document pairs (< Q,PD >) for training and
testing. Notably, we adopted a non-standard train-
test split (as summarized in Table 1), allocating
four times more data to testing than training to
rigorously evaluate model robustness against vary-
ing training data volumes (additional analyses in
Appendix A.4). To further validate generaliz-
ability, we conduct evaluations on publicly avail-
able domain-specific benchmarks: FiQA (finance)
(TheFinAI, 2018), Climate Fever (climate science)
(Diggelmann et al., 2021), and TechQA (technol-
ogy) (Castelli et al., 2019). Detailed dataset statis-
tics are provided in Appendix A.2.1.

3.2 Embedding Generation
Embeddings for queries, positive documents, and
the corpus are computed via six diverse, high-
performance bi-encoder models E1, E2, . . . , E6,
each selected strategically for capturing comple-
mentary semantic perspectives:

Ek(x) ∈ Rdk (1)

where dk is the embedding dimension of the kth
model for textual input x. Concatenation of these
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embeddings yields a comprehensive representation:

Xconcat = [e1(x); e2(x); . . . ; e6(x)] (2)

where Xconcat ∈ R
∑6

k=1 dk represents the con-
catenated embedding for the input x.

3.3 Dimensionality Reduction
To alleviate the computational overhead arising
from high-dimensional concatenated embeddings,
we apply PCA to reduce dimensionality while pre-
serving semantic richness:

XPCA = XconcatP, (3)

where P represents the PCA projection matrix.
We specifically select PCA due to its computational
efficiency, and scalability, essential given our large
enterprise corpus and high-dimensional embedding
space. While we empirically evaluated nonlinear
dimensionality reduction methods such as UMAP
(McInnes et al., 2020) and t-SNE (Van der Maaten
and Hinton, 2008), they offered negligible perfor-
mance improvements over PCA but incurred sub-
stantially higher computational costs, making them
impractical for deployment at scale in enterprise
systems.

3.4 Hard Negative Selection Criteria
We propose two semantic criteria to identify high-
quality hard negatives. PCA-reduced embeddings
XPCA are organized around each query Q. For each
query-positive document pair (Q,PD), candidate
documents D from the corpus are evaluated via
cosine distances:

d(Q,PD), d(Q,D), d(PD,D) (4)

A document D is selected as a hard negative
only if it satisfies both criteria:

d(Q,D) < d(Q,PD) (5)

d(Q,D) < d(PD,D) (6)

Equation (5) ensures that the candidate negative
document is semantically closer to the query than
the actual positive document, making it a challeng-
ing negative example that potentially confuses the
reranking model. Equation (6), ensures that the se-
lected hard negative is not just query-confusing but
also sufficiently dissimilar from the actual positive
(avoiding near-duplicates or false negatives).

The candidate document DHN with minimal
d(Q,D) satisfying these conditions is chosen as

the primary hard negative. Additional hard nega-
tives can similarly be selected based on semantic
proximity rankings.

Figure 2: Hard negative selection on the first two PCA
components (78% variance). Q act as centroids, PD
guide selection of hard negatives; which are chosen
based on semantic proximity.

Figure 2 illustrates an example embedding space,
clearly depicting the query Q, positive document
PD, and selected hard negative DHN , visualizing
the semantic selection criteria. In cases where no
documents satisfy these conditions, no hard nega-
tives are selected for that particular query. Further
details on our embedding model & fine-tuning us-
ing these hard negatives are provided in Appendix
A.2.

4 Experiments & Results

To evaluate the effectiveness of our proposed hard-
negative selection framework, we conduct exten-
sive experiments on our internal cloud-specific en-
terprise dataset, as well as domain-specific open-
source benchmarks. We systematically compare
our approach against multiple competitive negative
sampling methods and perform detailed ablation
studies to understand the contribution of individual
framework components. Complete details on exper-
imental setups and hyperparameters are provided
in Appendix A.3.

4.1 Results & Discussion
Comparative Analysis of Negative Sampling
Strategies Table 3 presents a detailed compar-
ison of of our negative sampling technique against
several established methods, including Random,
BM25, In-batch, STAR, and ADORE+STAR. The
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Re-ranker (Fine-tuned w/)
Internal FiQA Climate-FEVER TechQA

MRR@3 MRR@10 MRR@3 MRR@10 MRR@3 MRR@10 MRR@3 MRR@10

Baseline (No Fine-tuning) 0.42 0.45 0.45 0.48 0.44 0.46 0.57 0.61
In-batch Negatives 0.47 0.52 0.46 0.52 0.44 0.47 0.57 0.62
STAR 0.53 0.56 0.51 0.54 0.47 0.49 0.61 0.63
ADORE+STAR 0.54 0.57 0.52 0.54 0.48 0.52 0.63 0.66
Our Proposed HN 0.57 0.64 0.54 0.56 0.52 0.55 0.65 0.69

Table 2: Comparative performance benchmarking of our in-house reranker across multiple domain-specific datasets.
The reranker is fine-tuned (FT) with different negative sampling techniques, highlighting the effectiveness of our
proposed hard-negative mining method (HN).

Negative Sampling Method MRR@3 MRR@10

Baseline 0.42 0.45
FT with Random Neg 0.47 0.51
FT with BM25 Neg 0.49 0.54
FT with In-batch Neg 0.47 0.52
FT with BM25+In-batch Neg 0.52 0.54
FT with STAR 0.53 0.56
FT with ADORE+STAR 0.54 0.57
FT with our HN 0.57 0.64

Table 3: Comparison of negative sampling methods for
fine-tuning(FT) in-house cross-encoder reranker model.
The proposed framework achieves 15% and 19% im-
provements in MRR@3 and MRR@10, respectively,
over baseline methods.

baseline is defined as the performance of our inter-
nal reranker model without any fine-tuning. Our
method achieves notable relative improvements of
15% in MRR@3 and 19% in MRR@10 over this
baseline. The semantic nature of our hard nega-
tives allows the reranker to distinguish contextually
irrelevant but semantically similar documents effec-
tively. In contrast, simpler baselines like Random
or BM25 negatives suffer due to no semantic con-
sideration, while advanced methods like STAR and
ADORE+STAR occasionally miss subtle seman-
tic nuances that our formulated selection criteria
address effectively.

Generalization Across Open-source Models To
validate the robustness and versatility of our frame-
work, we evaluated various open-source embed-
ding and reranker models (Table 4), clearly demon-
strating improvements across all models when fine-
tuned using our proposed negative sampling com-
pared to ADORE+STAR and baseline (no fine-
tuning). Notably, rerankers with multilingual ca-
pabilities, such as the BGE-Reranker and Jina
Reranker, demonstrated pronounced improvements,
likely benefiting from our embedding ensemble’s
multilingual semantic richness. Similarly, larger
models like e5-mistral exhibit significant gains, re-

flecting their capacity to exploit nuanced semantic
differences provided by our negative samples. This
analysis underscores the general applicability and
model-agnostic benefits of our approach.

Model Baseline ADORE+STAR Ours

Alibaba-NLP
(gte-multilingual-reranker-base) 0.39 0.42 0.45
BGE-Reranker
(bge-reranker-large) 0.44 0.47 0.52
Cohere Embed English Light
(Cohere-embed-english-light-v3.0) 0.32 0.34 0.38
Cohere Embed Multilingual
(Cohere-embed-multilingual-v3.0) 0.34 0.37 0.40
Cohere Reranker
(rerank-multilingual-v2.0) 0.42 0.45 0.49
IBM Reranker
(re2g-reranker-nq) 0.40 0.43 0.46
Infloat Reranker
(e5-mistral-7b-instruct) 0.35 0.38 0.42
Jina Reranker v2
(jina-reranker-v2-base-multilingual) 0.45 0.48 0.53
MS-MARCO
(ms-marco-MiniLM-L-6-v2) 0.41 0.43 0.46
Nomic AI Embed Text
(nomic-embed-text-v1.5) 0.33 0.36 0.39
NVIDIA
NV-Embed-v2 0.38 0.41 0.44
Salesforce
SFR-Embedding-2_R 0.37 0.40 0.43
Salesforce
SFR-Embedding-Mistral 0.36 0.39 0.42
T5-Large 0.41 0.44 0.47

Table 4: Performance benchmarking (MRR@3) of
reranker and embedding models using the proposed
hard negative selection framework, compared with
ADORE+STAR and baseline methods.
Effectiveness on Domain-specific Public
Datasets We further tested our method’s
adaptability across diverse public domain-specific
datasets (FiQA, Climate-FEVER, TechQA), as
shown in Table 2. Each dataset presents distinct
retrieval challenges, ranging from technical jargon
in TechQA to complex domain-specific reasoning
in Climate-FEVER. Fine-tuning with our generated
hard negatives consistently improved retrieval
across these varied datasets. FiQA exhibited
significant gains, likely due to the semantic
differentiation required in finance-specific queries.
These results demonstrate that our negative
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sampling method is not only effective within our
internal enterprise corpus but also valuable across
diverse, domain-specific public datasets, indicating
broad applicability and domain independence.

Model MRR@3 MRR@10

Short Documents Baseline 0.481 0.526
FT w/ proposed HN 0.61 0.662

Long Documents Baseline 0.423 0.477
FT w/ proposed HN 0.475 0.521

Table 5: Performance comparison of the in-house
reranker without fine-tuning (Baseline) versus fine-
tuned (FT) with our proposed hard negatives (HN), eval-
uated separately on short and long documents.

Performance Analysis on Short vs. Long Docu-
ments An explicit analysis of short versus long
documents (Table 5) revealed differential perfor-
mance gains. Short documents (under 1024 to-
kens) experienced substantial performance im-
provements (MRR@3 improving from 0.481 to
0.61), attributed to minimal semantic redundancy
and tokenization constraints. Conversely, long
documents showed more moderate improvements
(MRR@3 from 0.423 to 0.475), primarily due to
embedding truncation that causes loss of context
and increased semantic complexity. Future re-
search should focus explicitly on developing hi-
erarchical or segment-based embedding methods
to address these limitations.

Ablation Studies To clearly understand the im-
pact of the individual components of the frame-
work, we conducted systematic ablation studies
(Table 6). Training with positive documents alone
produced only slight gains (+0.03 MRR@3), reaf-
firming the critical role of high-quality hard nega-
tives. Evaluating individual embedding models sep-
arately indicated varying performance due to their
differing semantic representations and underlying
training. However, the concatenation of diverse
embeddings provided significant performance im-
provements (+0.15 MRR@3), clearly highlighting
the advantages of capturing semantic diversity.

Additionally, PCA-based dimensionality reduc-
tion analysis identified the optimal variance thresh-
old at 95%. Lower thresholds resulted in marked
semantic degradation, reducing retrieval perfor-
mance. This trade-off highlights PCA as an essen-
tial efficiency-enhancing step for the framework.

Collectively, these detailed analyses underscore
our method’s strengths, limitations, and method-

ological rationale, providing clear empirical justifi-
cation for each design decision.

# Proposed Strategies MRR@3 MRR@10
1 Baseline 0.42 0.45

Positive Document (PD) Only
2 Fine-tuning with PD Only 0.45 0.51

Hard Negative(HN) with Embedding Ek

3a HN with E1 + PD 0.45 0.51
3b HN with E2 + PD 0.47 0.53
3c HN with E3 + PD 0.51 0.55
3d HN with E4 + PD 0.45 0.52
3e HN with E5 + PD 0.48 0.51
3f HN with E6 + PD 0.49 0.52
3g HN with Xconcat + PD 0.57 0.64

XPCA Variance Impact + PD
4a HN with XPCA (99% Variance) 0.57 0.64
4b HN with XPCA (95% Variance) 0.57 0.64
4c HN with XPCA (90% Variance) 0.55 0.63
4d HN with XPCA (80% Variance) 0.51 0.58
4e HN with XPCA (70% Variance) 0.49 0.56

Table 6: Results of ablation study showing the impact
of embeddings, PCA variance thresholds, and positive
documents on MRR, on the in-house re-ranker model.

4.2 Case Studies: Examples of Hard Negative
Impact

Figure 3 shows how similar topics in the domain
of cloud computing. To demonstrate the qualitative
benefits of the proposed framework, we present
two case studies where the baseline and fine-tuned
models produce different ranking results. These
examples highlight the significance of hard neg-
atives in distinguishing semantically similar but
contextually irrelevant documents.

Figure 3: Illustrations of similar topics in the domain of
Cloud Computing

Case Study 1: Disambiguating Technical
Acronyms.

• Query (Q): "What is VCN in Cloud Infras-
tructure?"
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• Positive Document (PD): A document ex-
plaining "Virtual Cloud Network (VCN)" in
Cloud Infrastructure, detailing its setup and
usage.

• Hard Negative (HN): A document discussing
"Virtual Network Interface Card (VNIC)" in
the context of networking hardware.

Baseline Result: The baseline model incorrectly
ranks the hard negative above the positive docu-
ment due to overlapping terms such as "virtual"
and "network."
Proposed Method Result: The fine-tuned model
ranks the positive document higher, correctly iden-
tifying the contextual match between the query
and the description of VCN. This improvement
is attributed to the triplet loss training with hard
negatives.

Case Study 2: Domain-Specific Terminology.

• Query (Q): "How does the CI WAF handle
incoming traffic?"

• Positive Document (PD): A document ex-
plaining the Web Application Firewall (WAF)
in CI, its configuration, and traffic filtering
mechanisms.

• Hard Negative (HN): A document discussing
general firewall configurations in networking.

Baseline Result: The baseline model ranks the
hard negative higher due to lexical overlap between
the terms "firewall" and "traffic."
Proposed Method Result: The proposed frame-
work ranks the positive document higher, leverag-
ing domain-specific semantic representations.

These case studies illustrate the practical ad-
vantages of training with hard negatives, espe-
cially in domains with overlapping terminology
or acronyms.

Additional detailed analyses, illustrative prac-
tical implications for enterprise applications, and
explicit future directions are discussed in detail in
A.4, and A.5.

5 Conclusion

We introduced a scalable, modular framework lever-
aging dynamic ensemble-based hard-negative min-
ing to significantly enhance re-ranking models in
enterprise and domain-specific retrieval scenarios.

Our method dynamically curates semantically chal-
lenging yet contextually irrelevant negatives, allow-
ing re-ranking models to effectively discriminate
subtle semantic differences. Empirical evaluations
on proprietary enterprise data and diverse public
domain-specific benchmarks demonstrated substan-
tial improvements of up to 15% in MRR@3 and
19% in MRR@10 over state-of-the-art negative
sampling techniques, including BM25, In-Batch
Negatives, STAR, and ADORE+STAR.

Our approach offers clear practical benefits in
real-world deployments, benefiting downstream ap-
plications such as knowledge management, cus-
tomer support systems, and Retrieval-Augmented
Generation (RAG), where retrieval precision di-
rectly influences user satisfaction and Generative
AI effectiveness. The strong performance and gen-
eralizability across various domains further under-
score the framework’s readiness for industry-scale
deployment.

Future work will focus on extending our frame-
work to handle incremental updates of enterprise
knowledge bases and exploring real-time negative
sampling strategies for continuously evolving cor-
pora, further enhancing the adaptability and robust-
ness required in practical industry settings.

6 Limitations

While our approach advances the state of hard
negative mining and encoder-based retrieval, sev-
eral limitations remain that open avenues for fu-
ture research. One key challenge is the perfor-
mance disparity between short and long documents.
Addressing this requires more effective document
chunking strategies and the development of hier-
archical representations to preserve context across
segments. Additionally, the retrieval of long doc-
uments is complicated by semantic redundancy
and truncation, warranting deeper analysis of their
structural complexity. Our current use of embed-
ding concatenation for ensembling could also be
refined—future work should evaluate alternative
fusion techniques such as weighted averaging or
attention-based mechanisms. Moreover, extending
the retrieval framework to support cross-lingual and
multilingual scenarios would enhance its utility in
globally distributed applications.
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A Appendix

A.1 Extended Related Work
Hard Negatives in Retrieval Models Static and
dynamic hard negatives have been extensively stud-
ied. Static negatives, such as those generated

by BM25 (Robertson and Walker, 1994) or Pas-
sageBM25 (Nguyen et al., 2022), provide challeng-
ing lexical contrasts but risk overfitting due to their
fixed nature (Qu et al., 2020). Dynamic negatives,
as introduced in ANCE (Xiong et al., 2020) and
ADORE (Zhan et al., 2021) adapt during training,
other effective methods like positive-aware mining
(de Souza P. Moreira et al., 2024), theme-enhanced
negatives (Li et al., 2024) offers relevant chal-
lenges but incurring high computational costs due
to periodic re-indexing and bigger embedding di-
mension. Our framework mitigates these issues by
leveraging clustering and dimensionality reduction
to dynamically identify negatives without requiring
re-indexing.

Localized Contrastive Estimation (LCE) (Guo
et al., 2023; AGARWAL, 2021) further demon-
strated the effectiveness of incorporating hard nega-
tives into cross-encoder training, improving rerank-
ing accuracy when negatives align with retriever
outputs. Additionally, (Pradeep et al., 2022) high-
lighted the importance of hard negatives even in
advanced pretraining setups like Condenser (Gao
and Callan, 2021), which emphasizes their neces-
sity for robust optimization.

Advances in Dense Retrieval and Cross-
Encoders Dense retrieval models like
DPR (Karpukhin et al., 2020) and REALM (Guu
et al., 2020) encode queries and documents into
dense embeddings, enabling semantic matching.
Recent advances in dense retrieval and ranking
include GripRank’s generative knowledge-driven
passage ranking (Bai et al., 2023), Dense
Hierarchical Retrieval’s multi-stage framework
for efficient question answering (Liu et al., 2021;
Pattnayak et al., 2025a,c,b; Patel et al., 2025), and
TriSampler’s optimized negative sampling for
dense retrieval (Yang et al., 2024), collectively
enhancing retrieval performance.Cross-encoders,
such as monoBERT (Nogueira et al., 2019;
Nogueira and Cho, 2019), further improve retrieval
precision by jointly encoding query-document
pairs but require high-quality training data,
particularly challenging negatives (MacAvaney
et al., 2019; Panda et al., 2025b). Techniques such
as synthetic data generation (Askari et al., 2023;
Agarwal et al., 2024a, 2025) augment training
datasets but lack the realism and semantic depth
provided by our hard negative mining approach.

Dimensionality Reduction in IR Clustering
methods have been used to group semantically
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similar documents, improving retrieval efficiency
and training data organization (Mehta et al., 2024;
Jasila et al., 2023; Dua et al., 2025; Panda et al.,
2025a). Dimensionality reduction techniques like
PCA (Wold et al., 1987) enhance scalability by re-
ducing computational complexity. Our framework
uniquely combines these techniques to dynamically
identify negatives that challenge retrieval models
in a scalable manner.

Synthetic Data in Retrieval Recent
work (Askari et al., 2023; Agarwal et al.,
2024a,b; Patel et al., 2024; Dua et al., 2024; Pabolu
et al., 2024a,b) has explored using large language
models to generate synthetic training data for
retrieval tasks. While effective in low-resource
settings, synthetic data often struggles with factual
inaccuracies and domain-specific relevance. In
contrast, our framework relies on real-world data
to curate semantically challenging negatives,
ensuring high-quality training samples without
introducing synthetic biases.

Summary of Contributions While previous
works address various aspects of negative sampling,
hard negatives, and synthetic data, our approach
bridges the gap between static and dynamic strate-
gies. By dynamically curating negatives using clus-
tering and dimensionality reduction, we achieve
a scalable and semantically precise methodology
tailored to domain-specific retrieval tasks.

A.2 Extended Methodology
A.2.1 Dataset Statistics

Figure 4: Length Distribution of queries in the dataset.

Queries Length Distribution In this section we
analyze the distribution of queries length in our

enterprise dataset. Figure 4 shows that the length
of queries ranges from 1 to 25 words, with some
queries having very few words. This highlights that
user queries can sometime be just 2-3 words about
a topic, increasing the probability of retrieving doc-
uments mentioning those topics or concepts which
can be contextually different. Therefore, when
we select hard negatives, it is crucial to consider
not only the relationship between the query and
documents but also the relationship between the
positive document and other documents, ensuring a
comparison with texts on similar topics and similar
lengths.

Model (Ek) Params (M) Dimension Max Tokens

stella_en_400M_v5 435 8192 8192
jina-embeddings-v3 572 1024 8194
(multilingual)
mxbai-embed-large-v1 335 1024 512
bge-large-en-v1.5 335 1024 512
LaBSE 471 768 256
(multilingual)
all-mpnet-base-v2 110 768 514
(multilingual)

Table 7: Embedding models used to construct Xconcat,
combining diverse semantic representations for queries
(Q), positive documents (PD), and corpus documents
(D).

Figure 5: Shows document length distribution in Enter-
prise corpus.

Document Length Distribution As shown in
Figure 5 , document lengths are significantly longer
than query lengths. This disparity in context length
affects the similarity scores, potentially reducing
the accuracy of retrieval systems. In our in-house
dataset, each query is paired with a single correct
document (though its not limited by number of
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positive-negative document per query). This posi-
tive document is crucial for identifying challenging
hard negatives and hence helpful for encoder-based
model training.

A.2.2 Embedding Models
Table 7 lists the embedding models (Zhang, 2024;
Sturua et al., 2024; Li and Li, 2023; Xiao et al.,
2023; Feng et al., 2022; Reimers and Gurevych,
2019; Zhang et al., 2024) used to construct Xconcat,
combining diverse semantic representations for
queries (Q), positive documents (PD), and cor-
pus documents (D). These models were selected
for their performance, model size, ability to han-
dle multilingual context, providing complemen-
tary strengths in dimensionality and token cover-
age. By integrating embeddings from these models,
the framework captures nuanced semantic relation-
ships crucial for reranker training.

A.2.3 Unified Contrastive Loss
The unified contrastive loss is designed to improve
ranking precision for both bi-encoders and cross-
encoders, by ensuring that positive documents
(PD) are ranked closer to the query (Q) than hard
negatives (DHN ) by a margin m. The loss is de-
fined as:

L =

N∑

i=1

max (0,m+ d(Qi, PDi)− d(Qi, DHNi))

(7)
where:

• PDi: Positive document associated with
query Qi.

• DHNi : Hard negative document, semantically
similar to PDi but contextually irrelevant.

• d(Qi, Di): Distance metric measuring rele-
vance between Qi and Di.

• m: Margin ensuring PDi is closer to Qi than
DHNi by at least m, encouraging the model
to distinguish between relevant and irrelevant
documents effectively.

For bi-encoders, the distance metric is defined as:

d(Qi, Di) = 1− cosine(eQi , eDi), (8)

where eQi and eDi are the embeddings of the query
and document, respectively. For cross-encoders,
the distance metric is:

d(Qi, Di) = −s(Qi, Di), (9)

where s(Qi, Di) is the cross-encoder’s relevance
score for the query-document pair.

This formulation leverages the triplet of (Q, PD,
DHN ) to minimize d(Qi, PDi), pulling positive
documents closer to the query, while maximizing
d(Qi, DHNi), pushing hard negatives further away.
By emphasizing semantically challenging exam-
ples, the model learns sharper decision boundaries
for improved ranking precision.

A.3 Experimental Setup
Datasets We evaluate our framework extensively
using both proprietary and public datasets:

• Internal Proprietary Dataset: Consisting
of approximately 5250 query-document pairs,
on cloud services like computing, networking,
firewall, ai services. It includes both short (<
[1024 tokens]) and long documents (>= [1024
tokens]).

• FiQA Dataset: A financial domain-specific
dataset widely used for retrieval benchmark-
ing.

• Climate-FEVER Dataset: An environment-
specific fact-checking dataset focused on
climate-related information retrieval.

• TechQA Dataset: A technical question-
answering dataset emphasizing software engi-
neering and technology-related queries.

Training and Fine-tuning All re-ranking mod-
els are fine-tuned using a triplet loss with margin
with same hyper-parameters. Early stopping is em-
ployed based on validation MRR@10 scores to
prevent overfitting.

Evaluation Metrics Model performance is eval-
uated using standard retrieval metrics: Mean Recip-
rocal Rank (MRR) at positions 3 and 10 (MRR@3
and MRR@10), which measure retrieval quality
and ranking precision. Each reported metric is
averaged across three experimental runs for robust-
ness.

A.4 Extended Results & Ablation
Impact of Training Data Size As shown in Ta-
ble 8, both MRR@3 and MRR@10 improve as the
training data size increases, with more pronounced
gains in MRR@10. MRR@3 shows gradual im-
provement, from 0.42 at the baseline to 0.57 with
100 examples, highlighting the model’s enhanced
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Strategy Training Data MRR@3 MRR@10

Baseline 0 0.42 0.45

Finetuned with
Hard Negatives
(Ours)

100 0.46 0.49
200 0.48 0.51
300 0.50 0.53
400 0.52 0.56
500 0.52 0.58
600 0.54 0.60
700 0.54 0.62
800 0.56 0.63
900 0.57 0.64
1000 0.57 0.64

Table 8: Comparison of Strategies with Varying Train-
ing Data Sizes

ability to rank relevant documents within the top 3.
MRR@10, on the other hand, shows more signif-
icant improvement, from 0.45 to 0.64, indicating
that the model benefits more from additional data
when considering the top 10 ranked documents.

Our method shows promising results even with
smaller training sets, demonstrating the effective-
ness of incorporating hard negatives early in the
training process. This suggests that hard negatives
significantly enhance the model’s ability to distin-
guish relevant from irrelevant documents against
a given query, even when data is limited. This ap-
proach is particularly beneficial in enterprise con-
texts, where annotated data may be scarce, enabling
quicker improvements in domain-specific retrieval
performance.

Models in the Study In our study we com-
pared the performance of other finetuned re-ranker
(Glass et al., 2022; Wang et al., 2023; Raffel et al.,
2020) and embedding models (Zhang et al., 2024;
Nussbaum et al., 2024) using hard negatives gen-
erated by our proposed framework in Table 4.
We benchmarked the BGE-Reranker (Xiao et al.,
2023), NV-Embed (Lee et al., 2024) Salesforce-
SFR (Rui Meng*, 2024; Rui Meng, 2024) , jina-
reranker (AI, 2023) and Cohere-Reranker (Cohere,
2023a,b),

A.4.1 Analysis of Long vs. Short Documents
Table 5 reveals a consistent disparity in MRR
scores between short and long documents, with
long documents showing lower performance. Here,
we analyze potential reasons and propose mitiga-
tion strategies.

Challenges with Long Documents.

• Semantic Redundancy: Long documents of-

ten contain repetitive or tangential content,
diluting their relevance to a specific query.

• Context Truncation: Fixed-length tokeniza-
tion (e.g., 512 or 1024 tokens) truncates long
documents, potentially discarding critical in-
formation.

• Query-to-Document Mismatch: Short
queries may not provide sufficient context to
match the nuanced information spread across
a lengthy document.

Potential Solutions.

• Chunk-Based Retrieval: Split long doc-
uments into smaller, semantically coherent
chunks and rank them individually.

• Hierarchical Embeddings: Use hierarchical
models to aggregate sentence- or paragraph-
level embeddings for better context represen-
tation.

• Query Expansion: Enhance short queries
with additional context using techniques like
query rewriting or pseudo-relevance feedback.

This analysis highlights the need for future work
to address the inherent challenges of ranking long
documents effectively.

A.5 Practical Implications for Enterprise
Applications

The proposed framework has significant practical
implications for enterprise information retrieval
systems, particularly in retrieval-augmented gener-
ation (RAG) pipelines.

Improved Ranking Precision. By training with
hard negatives, the model ensures that the most
relevant documents are retrieved for each query.
This is particularly critical for enterprise use cases
such as:

• Technical Support: Retrieving precise docu-
mentation for customer queries, reducing res-
olution times.

• Knowledge Management: Ensuring that em-
ployees access the most relevant internal re-
sources quickly.

1025



Enhanced Generative Quality. High-quality re-
trieval directly improves the factual accuracy and
coherence of outputs generated by large language
models in RAG pipelines. For example:

• Documentation Summarization: Sum-
maries generated by models like GPT are
more reliable when based on top-ranked, ac-
curate sources.

• Customer Interaction: Chatbots generate
more contextually relevant responses when
fed precise retrieved documents.

Scalability and Adaptability. The framework’s
modular design, including the use of diverse embed-
dings and clustering-based hard negative selection,
allows it to adapt to:

• Different industries (e.g., healthcare, finance,
manufacturing).

• Multi-lingual or cross-lingual retrieval tasks.

These practical implications underscore the ver-
satility and enterprise readiness of the proposed
framework.
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