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Abstract

Large Language Models (LLMs) enable natural
language to SQL conversion, allowing users to
query databases without SQL expertise. How-
ever, generating accurate, efficient queries is
challenging due to ambiguous intent, domain
knowledge requirements, and database con-
straints. Extensive reasoning improves SQL
quality but increases computational costs and
latency. We propose SQLGenie, a practical sys-
tem for reliable SQL generation. It consists
of three components: (1) Table Onboarder,
which analyzes new tables, optimizes index-
ing, partitions data, identifies foreign key rela-
tionships, and stores schema details for SQL
generation; (2) SQL Generator, an LLM-
based system producing accurate SQL; and (3)
Feedback Augmentation, which filters cor-
rect query-SQL pairs, leverages multiple LLM
agents for complex SQL, and stores verified
examples. SQLGenie achieves state-of-the-art
performance on public benchmarks (92.8% exe-
cution accuracy on WikiSQL, 82.1% on Spider,
73.8% on BIRD) and internal datasets, surpass-
ing the best single-LLM baseline by 21.5% and
the strongest pipeline competitor by 5.3%. Its
hybrid variant optimally balances accuracy and
efficiency, reducing generation time by 64%
compared to traditional multi-LLM approaches
while maintaining competitive accuracy.

1 Introduction

Text-to-SQL generation has become a crucial capa-
bility in industry, enabling non-technical users to
query databases using natural language. As organi-
zations accumulate vast structured datasets, democ-
ratizing data access through natural language inter-
faces marks a significant advancement in enterprise
analytics. However, developing robust text-to-SQL
systems for production presents unique challenges,
including handling domain-specific terminology,
ensuring high accuracy across diverse schemas, and
maintaining query performance at scale.
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Large Language Models (LLMs) have demon-
strated remarkable SQL generation capabilities,
surpassing rule-based and supervised approaches
by interpreting complex query intents and produc-
ing syntactically correct SQL with minimal ex-
plicit training. However, they remain unreliable
in industrial applications, frequently hallucinating
column names, misinterpreting intent, or generat-
ing logically incorrect queries. Common errors in-
clude faulty join conditions, improper aggregations,
and mismatches between filter values and actual
database content. While ensemble methods and
multi-agent approaches improve accuracy by split-
ting SQL generation into planning and execution
phases, they require multiple LLM calls, increas-
ing latency and computational costs—making them
impractical for real-time production use.

To address these challenges, we propose SQL-
Genie, a practical and efficient SQL generation
framework that integrates an agentic approach with
historical query reuse. SQLGenie incorporates a
structured table onboarding process to capture es-
sential database characteristics, a flexible SQL gen-
eration pipeline that leverages verified examples
when available, and a feedback-driven augmenta-
tion mechanism for continuous improvement. By
balancing accuracy, efficiency, and adaptability to
domain-specific requirements, SQLGenie advances
the state of the art in industrial text-to-SQL sys-
tems.

2 Related Works

Text-to-SQL systems have evolved from rule-based
approaches to neural architectures. Early methods
relied on handcrafted rules and templates, requir-
ing extensive human engineering to map natural
language queries to SQL (Hendrix et al., 1978).
While pioneering, these approaches lacked scala-
bility across domains.

The advent of deep learning introduced encoder-
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decoder architectures for direct translation of text
to SQL. Seq2SQL (Zhong et al., 2017a) lever-
aged reinforcement learning to enhance accuracy,
while attention mechanisms improved query and
schema alignment (Bahdanau et al., 2016). Pre-
trained models like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), fine-tuned on datasets
such as Spider (Yu et al., 2019a), set new bench-
marks but struggled with complex SQL and cross-
domain generalization. The emergence of LLMs
like GPT-4 (OpenAl, 2024) marked a shift, signif-
icantly improving SQL generation with minimal
human intervention.

Recent research enhances LLM performance
via multi-agent pipelines. For instance, MAC-
SQL [(Wang et al., 2025) introduces a multi-
agent framework with agents for schema linking,
question decomposition, and iterative SQL gen-
eration and refinement. Another work presents
MageSQL (Shen et al., 2024), a system that or-
chestrates multiple agents in a pipeline, allow-
ing users to customize prompts and agent func-
tionalities for enhanced Text-to-SQL performance.
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2021) integrates retrieval mechanisms to
incorporate relevant context, reducing hallucina-
tions. Actor-critic frameworks iteratively refine
SQL generation, while schema linking techniques
in IRNet and RAT-SQL (Guo et al., 2019) align nat-
ural language with database structures, improving
query precision. These advancements underscore
the dynamic progress in Text-to-SQL, with ongo-
ing efforts to optimize LL.M-based approaches for
precise database querying.

3 Methodolgy

3.1 Setup: Onboarding new tables

Given a relational database D consisting of n ta-
bles, each table T; (1 < ¢ < n) with ¢; columns
undergoes an onboarding process to enhance query
performance and interoperability. Along with
schema generation, the process includes: 1. Main-
tenance of column synonyms 2. Selection of op-
timal partitioning, indexing and primary keys, 3.
Mapping of 7;’s columns to relevant columns in
previously onboarded tables {17, T%,...,T;—1} to
define permissible joins, 4. Caching of frequent val-
ues for categorical columns to facilitate generation
of accurate filters.

3.1.1 Column metadata

An LLM fine-tuned on internal knowledge base
is used to generate synonyms and abbreviations
(both expanded and shortened forms) for each col-
umn in the table. Additionally, each column is
assigned an appropriate aggregation function, such
as STRING_AGG, SUM, MIN, MAX, COUNT or AVG.

3.1.2 Column selection for partioning,
indexing and PK-FK mapping

Partitioning Column Selection: To optimize
query performance, we select partitioning columns
based on high cardinality and frequent usage in
query filters. Columns exhibiting a broad distri-
bution of unique values, such as timestamps or
region-based identifiers, are prioritized to ensure
balanced partitions.

Indexing Column Selection: Indexing deci-
sions are guided by selectivity and query workload
characteristics. Columns frequently appearing in
JOIN, ORDER BY, or GROUP BY operations in (@, S)
are indexed to expedite lookups and sorting. High-
selectivity columns, i.e. low cardinality columns,
where queries retrieve only a small subset of rows,
are prioritized to minimize scan overhead.

Primary and Foreign Key Identification: Pri-
mary keys are determined based on uniqueness and
non-null constraints, ensuring each row’s distinct
identification. Foreign keys are inferred from inter-
table dependencies.

3.1.3 Foreign Key Mapping

For each column in 7;, candidate foreign key
relationships are generated by forming pairs
with columns from previously onboarded tables
{T1,Ts,...,T;—1}. An LLM evaluates these pairs
based on schema similarity, including column
names, datatypes, and the top frequent values, to
infer potential foreign key mappings. The inferred
mappings undergo manual verification, refining
constraints that define permissible joins and ensur-
ing schema consistency. To ensure computational
efficiency, we impose a strict constraint that only
equi-joins are considered. Given the computational
complexity of joining large tables, we introduce a
cost model to quantify the estimated overhead of
joining 7% and 75%. The cost function is formulated
as follows:

C(Ty,T») = ko + k1 (T | log(|T1|)

1
- |T5] log (T3 ) M
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where kg and k are empirically determined coef-
ficients. This function accounts for the sorting and
hashing overhead incurred during join processing.
By incorporating this estimated cost, we can sys-
tematically prioritize efficient join paths, thereby
mitigating excessive computational overhead asso-
ciated with large table joins.

3.1.4 Caching frequency column values

Certain VARCHAR, non-binary columns with low
cardinality (< 100K unique values) require nor-
malization, spell correction, and formatting to en-
sure accurate query execution. For instance, a
user querying “headphones” would fail if the ta-
ble stores it as “1300 Headphone.” To address this,
we identify searchable text columns based on car-
dinality and datatype. For each, we extract the
top X most frequent values or those in the 99.9t"
percentile of a priority metric (e.g., sales, clicks).
These are cached, and during inference, filters are
matched using a modified Levenshtein distance for
robust query resolution.

3.2 Inference: Generation of SQL query

We present a multi-agent LLM-based system for
translating natural language queries into SQL, con-
sisting of a schema parser, generator and determin-
istic error correctors.

3.2.1 Schema Parser and Filtering

We implement a schema pruning mechanism that
selectively identifies the most relevant columns
from the database schema to enhance query ef-
ficiency and reduce LLM context consumption.
Given a natural language query ¢ and database
D ={L; = {ey,1 < j < [L}1 < i< D]},
where c;; represents the 5™ column of the i ta-
ble in D, we employ a ranking-enhanced encoder
adapted from RESDSQL to compute relevance
scores. The encoder with a softmax layer pro-
cesses query g against each schema element and
outputs a relevance score r;; for each column c;;.
Columns with scores exceeding a predefined thresh-
old § (r;; > 0) are retained in the filtered schema.
This pruned schema is then incorporated into the
LLM’s prompt context, significantly reducing in-
put token consumption while preserving essential
schema information.

3.2.2 SQL Generator

In industrial settings, SQL queries required by
analysts often adhere to template-based patterns,
typically requiring minor modifications such as

adding filters, merging existing queries, or adjust-
ing parameter values. Our analysis of 14,000 SQL
queries revealed that merely 350 unique SQL tem-
plates accounted for 13.1k queries (>93.5% cover-
age). This observation underpins our hypothesis
that for the vast majority of cases (>90%), SQL
generation can be reliably accomplished by lever-
aging matching templates from historical data. For
the remaining novel cases, we employ a more so-
phisticated methodology involving user intent com-
prehension, information retrieval via RAG agents,
and SQL generation through a dynamic, iterative
approach.

Match and Generate: We maintain a repository
of verified examples and formulas, referred to as
the Example Bank, whose creation and upkeep are
discussed in Section 3.3. The Example Bank is
denoted as F = {(q¢i,s;) | 1 < i < n.}, where
each pair (g;, s;) consists of a user query or key-
word and its corresponding verified SQL or for-
mula. Let e; represent the text embedding of the
noun-masked g;, and e represent the embedding of
the noun-masked user query ¢. The process of noun
masking (detailed in Appendix A.1) replaces key
nouns in the query to enhance retrieval precision.
The nearest k examples from the Example Bank
are selected based on cosine similarity (between
{e;} and e), provided their similarity score exceeds
a predefined threshold 7'. These examples are in-
cluded in the LLM prompt as few-shot exemplars.
If suitable examples are found, the SQL Generator
is tasked with generating the SQL s. The prompt of
this LLM comprises a task description outlining the
objective, general guidelines, the table schemas de-
rived during table onboarding, specific instructions
such as handling date computations, formula ap-
plications, and other domain-specific rules, along
with the nearest k-shot examples.

Think and Generate: If no example surpasses
the threshold 7T, the system falls back to a more
computationally intensive three-phase SQL gener-
ation process. If an agent enters this phase during
inference, we only allow a deeper search.

Phase 1 (Planning/Debugging Agent): The
Planning LLM performs two key tasks simulta-
neously. First, it generates a set of clarification
questions required to generate the SQL, such as
business-related formulas, concepts, abbreviations,
etc. Second, it decomposes the user query into
multiple ordered subtasks. An Answering agent,
which has access to internal documents or the web,
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User Input Noun Masked User Input
Fetch the top [X] influencers with...
between [X] and [X], and with
average L-F ratio > 5%

. Get top 20 influencers with...
. between January and March 2024,
with average L-F ratio > 5%

 —

Matched
examples

Database with
k tables and
each table
having t;
columns

l Text-To-SQL*

m-) LM
" Schema
Schema Parsing
Ranking enhanced Encoder
Text To SQL tasked LLM
generates SQL given the query g,
schema and few matched
examples
Selectively prunes relevant
columns to reduce LLM context
size and enhance query
efficiency.

D
User input  =——y Planning /
Pruned Schema  m—— Debugging Agent

LM

JOIN Planner /

Greedy search algorithm

1. Generates set of clarifications
where internal RAG agents can
help like concepts, formulas

2. Breaks the SQL generation
task into multiple sub tasks

3. Reduces thresholding of
schema parsing if any column is
missing and rerun JOIN planner

#The Text-To-SQL Block has a post processing unit after the LLM named AutoCorrectors which is explained in Section 3.1.1
# Every output goes through standard guardrail check

——

RAG Agent

Example
Bank

Similarity matcher

," #H#
S SELECT ... FROM table_1 JOIN
—"—> table_2 ON table_1.id = table_2.idx
L WHERE table_1.xyz < (SELECT ...) ...
#t
Clarification What is meant by PRq %? How do
Seri Checker > we calculate it?
LM
Ay Text To SQL agents solves each
task in the task plan iteratively
Text-To-SQL# to generate the final SQL given
LM the extra context. Or acts as a
reflection agent solving each
1. Task 1: Calculate ... issues detected by Critic agent.
2. Task 2: Add afilter .. ¢
Critic agents identifies potential
Critic Agent errors in the generated SQL.

Primarily checks if all filters and
requirements by user are present
and correct.

l If no issues are detected

#H
SELECT ... FROM table_1 JOIN
table_2 ON table_1.id = table_2.idx > Example

Reviews are sent to
Debugging agent to
generate the correction plan

LM

WHERE table_1.xyz < (SELECT ...) ... Bank

Figure 1: The end to end proposed pipeline of SQL-Genie

is leveraged to answer each clarification question.
This agent also acts as a debugging planner when
provided with a set of critics.

Phase 2 (Generation Agent): Using the an-
swers to all clarification questions and the task plan,
it builds an SQL query for each task. The JOIN
Planner acts on each SQL query to generate and
provide alternate JOIN plans. Finally, an LLM is
instructed to construct an efficient SQL query.

Phase 3 (Critic Agent): A critic agent evaluates
the generated SQL against the input query ¢. It
identifies a list of potential errors and provides an
explanation/review for each issue.

These errors are then fed back to the Debugging
Agent for a refinement plan. For each identified
issue, the Planning Agent either provides a clari-
fication response to the Critic Agent and ignores
the review or creates a requirement list of exter-
nal data and a new task plan. Subsequent agents
act on these, and the SQL query is updated. The
Critic Agent then reevaluates it. This iterative pro-
cess continues up to a maximum of m interactions.
After reaching this limit, the SQL query with the
fewest errors is selected as the final output.

3.2.3 AutoCorrectors

Our system employs multiple correction mecha-

nisms to enhance query robustness. For searchable
text columns, we maintain a repository of frequent
values and replace filter values with close matches
using modified Levenshtein distance metrics, trans-
forming queries like name = "rockpot” into name
IN ("Rockpot LLC", "Rockpot®l v 7 ik v
k", ...). This transformation is crucial, as the
SQL Generator lacks direct access to the column’s
full value space, often leading to mismatches that
would otherwise yield empty query results. For
mathematical and date computations, the SQL
Generator produces Python expressions (e.g.,
<python>(datetime.now()-relativedelta(
weeks=6)).strftime(’%Y-%m-%d’ )</python>)
that are evaluated at runtime. We enforce system-
wide constraints through defaults, including a
500-row limit and mandatory columns in the
SELECT clause. To prevent type mismatch errors,
our datatype matching mechanism automatically
casts values to match schema definitions. Finally, a
lightweight validation process executes queries on
small dummy tables to catch and correct syntax
errors. These autocorrection layers significantly
improve query success rates in production environ-
ments. Further details on these mechanisms are
provided in Appendix A.2.

1007



3.3 Feedback Augmentation

Every novel SQL query that has been validated by
the Critic agent—meaning all identified errors have
been resolved—is stored in the Example Bank for
future use. For queries that receive negative feed-
back from the user or result in an early-stopped
SQL with unresolved errors, the system takes ad-
ditional steps after responding to the user. Specif-
ically, the three-phase SQL generation process is
rerun multiple times with a higher temperature and
deeper CoT process. The results are then ensem-
bled to produce a more accurate SQL query in the
background, ensuring that an improved version is
available for future queries. Each verified SQL ex-
amples are also parsed by an LLM to generate tuple
of metric, formula and the column dependency.

4 Experiments

4.1 Dataset

Internal: Our dataset consists of 18 tables, where
edges indicate valid primary key-foreign key (PK-
FK) relationships, and vertex size reflects the num-
ber of columns per table. We curated two datasets
belonging to these tables: Dataset-1: Contains ap-
proximately 2,460 questions paired with manually
verified SQL queries from a realistic setup. Aug-
mented Dataset-2: Comprises around 14k SQL
queries from various use cases, fed to LLM to gen-
erate natural language (NL) queries. Manual ver-
ification of a 200-sample subset yielded ~ 98.5%
accuracy.

External: For robustness evaluation, we tested
our model on three public benchmarks: Wik-
1SQL (Zhong et al., 2017b), Spider-Test (Yu et al.,
2019b) and BIRD (Li et al., 2024).

4.2 Evaluation metrics

Execution result metrics evaluate the correctness
of a SQL query by comparing its execution results
on the target database with the expected results.

Execution Accuracy (EX) gauges the accuracy
of a predicted SQL query by executing it and com-
paring the results with the ground truth.

Valid Efficiency Score (VES) [ Appendix A.3]
measures the efficiency of valid SQL queries whose
results exactly match the ground truth. We average
VES over 10 runs per example.

4.3 Benchmarking

Models: We comprehensively evaluate our pro-
posed pipeline against two categories of competi-

tive baselines.

1. Single-shot LLM models: We benchmark
against state-of-the-art large language models
that generate SQL in a single inference pass,
including GPT-40 (OpenAl, 2024), Claude 3.5
Haiku (Anthropic, 2024a), Claude 3.5 Sonnet
(Anthropic, 2024b), Claude 3.7 (Anthropic,
2025), DeepSeek Coder (Guo et al., 2024),
and SQLCoder-70B (Srivastava et al., 2024).

2. Multi-LLM pipeline approaches: We com-
pare against recent methods that decompose
text-to-SQL generation into sequential sub-
tasks. Specifically, we benchmark RES-
DSQL (Li et al., 2023), which separates
schema linking and SQL parsing via ranking-
enhanced encoding and skeleton-aware decod-
ing; DAIL-SQL (Gao et al., 2023), which em-
ploys iterative decomposition with verifica-
tion; CHESS (Talaei et al., 2024), a multi-
agent framework for retrieval, schema selec-
tion, query generation, and validation; and
MAC-SQL (Wang et al., 2025), which lever-
ages a decomposer agent for few-shot reason-
ing and auxiliary agents for query refinement.

Ablation Study: To analyze the contribution
of individual components within our pipeline, we
conduct a systematic ablation study by selectively
removing each component while keeping the rest
of the architecture intact. Specifically, we ex-
amine: (1) the impact of our schema pruning
mechanism by replacing it with full schema pass-
ing; (2) the effect of changing 7' and not go-
ing through novel SQL generation route of Plan-
ning/Generation/Critic Agent and limiting the sys-
tem to a single generation attempt. This ablation
methodology allows us to quantify the incremental
performance gains attributed to each component
across our evaluation datasets.

5 Results and Discussion

As demonstrated in Tables 1 and 2, our SQLGe-
nie framework consistently outperforms both zero-
shot LLLM approaches and existing multi-LLM
pipelines across all evaluated datasets. On our inter-
nal production dataset, SQLGenie (Think) achieves
84.6% execution accuracy, representing a signifi-
cant improvement of 21.5% over the best single-
LLM baseline (Claude 3.7) and 5.3% over the
strongest pipeline competitor (RESDQL). Simi-
larly, on external benchmarks, SQLGenie estab-
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Model ‘ Dataset-1 ‘ Dataset-2
| EX(%) VES (%) Tgen (s) | EX(%) VES (%) Tgen (5)
Zero-shot LLM models

DeepSeekCoder 50.3 88.7 5.61 76.2 95.5 3.99
SQLCoder-70B 499 89.5 8.05 79.4 953 532
GPT-40 58.4 87.0 7.56 82.1 94.8 5.65
Claude 3.5 Haiku 54.5 87.8 6.04 74.3 94.0 5.26
Claude 3.5 Sonnet 582 86.6 9.82 80.8 953 7.01
Claude 3.7 63.1 88.2 14.4 83.5 95.1 12.4
Multi-LLM pipeline approaches
MAC-SQL 712 89.2 30.6 924 95.0 324
CHESS 76.6 88.4 274 91.2 94.5 36.8
DAIL-SQL 78.7 88.5 40.8 92.7 94.7 40.1
RESDQL 79.3 90.0 27.1 93.0 94.2 28.5
SQLGenie (Hybrid) 81.5 93.6 139 93.3 97.0 10.4
SQLGenie (Think) 84.6 93.6 48.7 94.6 98.7 34.7

Table 1: Performance evaluation of text-to-SQL mod-
els on internal datasets. The table compares execution
accuracy (EX), valid efficiency score (VES), and genera-
tion time (Tgen) across zero-shot LLMs and multi-LLM
pipeline approaches on both Dataset-1 and Dataset-2.
SQLGenie variants demonstrate superior performance,
with the Think variant achieving the highest accuracy
(84.6% on Dataset-1, 94.6% on Dataset-2) while the
Hybrid variant maintains competitive generation times.

Model [ WIikiSQL [  Spider-Test | BIRD
[ EX (%) Tgen () [ EX(%) Tgen (5) | EX(%) Tien (5)
Zero-shot LLM models
DeepSeekCoder 78.4 4.19 66.6 5.56 49.8 6.04
SQLCoder-70B 70.2 5.03 65.4 7.27 472 9.87
GPT-40 81.5 6.18 71.5 8.05 53.5 8.96
Claude 3.5 Haiku 75.1 5.84 64.8 6.41 52.1 7.13
Claude 3.5 Sonnet 835 7.20 70.4 9.18 55.6 10.7
Claude 3.7 86.9 122 76.7 13.6 61.3 14.4
Multi-LLM pipeline approaches

MAC-SQL 87.9 22.7 81.2 36.4 63.7 38.1
CHESS 88.1 20.4 82.7 33.7 67.4 30.5
DAIL-SQL 92.0 48.8 84.3 44.6 67.8 62.6
RESDQL 91.4 14.7 78.4 30.3 70.1 28.7
SQLGenie (Think) 92.8 153 82.1 40.6 73.8 50.8

Table 2: Performance comparison on external bench-
mark datasets. We report Execution Accuracy (EX) and
SQL generation time (Tgen). SQLGenie demonstrates
robust generalization capabilities, achieving state-of-
the-art performance on BIRD, Spider and WikiSQL.

lishes new state-of-the-art performance with 92.8%
accuracy on WikiSQL and 73.8% on the more chal-
lenging BIRD dataset. Notably, our hybrid variant
strikes an optimal balance between accuracy and
efficiency, achieving competitive execution accu-
racy (81.5% on production data) while maintain-
ing generation times comparable to single-LL.M
approaches (Tgen = 14.6s). The performance dif-
ferential is particularly pronounced on complex
queries involving multiple tables and nested opera-
tions, where our schema pruning mechanism and
multi-agent collaboration demonstrate their effi-
cacy. Analysis of the Valid Efficiency Score (VES)
further reveals that the use of JOIN planner in SQL-
Genie not only helps it generates more accurate
queries but also produces more efficient SQL, with
a 3.6% improvement over the best baseline on our
production dataset.

Optimal choice of T
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2 £
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0.2 i i F10 2
o R\\l»d D N T
0.0 T T T T 0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Impact of 7" on execution accuracy (blue) and
generation time (red). 7' = 0 represents unconstrained
example selection, while 7' = 1 enforces structured
reasoning. Higher T improves accuracy but increases
latency. The dashed line at 7" = 0.75 marks a trade-off
point, chosen based on Dataset-1.

Our ablation studies reveal several key insights
into SQLGenie’s performance advantages. Re-
placing our schema pruning component with full
schema passing decreases execution accuracy by
~ 4.6% on the internal dataset and ~ 3.5% on
the external dataset, while increasing input token
length by ~ 65%, which in turn raises generation
time by ~ 41%. As shown in Figure 2, execution
accuracy remains relatively stable across different
values of T', but generation time rises sharply be-
yond T" = 0.75. This suggests that setting 1" too
high can significantly impact latency without sub-
stantial accuracy gains. More results are presented
in the Appendix.

6 Conclusion

In this paper, we presented SQLGenie, a practi-
cal system for reliable SQL generation that ad-
dresses the challenges of ambiguous user intent and
database constraints. Our comprehensive approach
integrates intelligent table onboarding, multi-agent
SQL generation, and feedback augmentation to
achieve state-of-the-art performance. Experimental
results demonstrate that SQLGenie outperforms ex-
isting methods on both internal and external bench-
marks, while reducing generation time by 64%.
Future work will focus on extending SQLGenie to
handle more complex analytical queries involving
window functions and recursive CTEs, as well as
exploring cross-database query generation to sup-
port federated analytics scenarios.
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A Appendix

A.1 Noun-Masking

To enhance retrieval precision when matching
examples with user input, we implement a
noun-masking mechanism utilizing a T5-based
model fine-tuned on named entity recognition
(NER) datasets. This approach identifies schema-
independent nouns, proper nouns, numerical val-
ues, and entity codes in natural language queries,
replacing them with a standardized [MASK] to-
ken. The resulting abstracted query functions as
a generic template, effectively capturing the struc-
tural intent while eliminating entity-specific varia-
tions. For instance, semantically equivalent queries
like "Get reel counts of top influencers
aged 18 residing in San Francisco” and
"Get reel counts of top influencers
aged 30 residing in Tokyo" are both trans-
formed into the template "Get reel counts of
top influencers aged [MASK] residing in
[MASK]", achieving 100% similarity in our embed-
ding space. This normalization significantly im-
proves the robustness of our retrieval system by fo-
cusing on query structure rather than specific entity
values, thereby facilitating more accurate template
matching and subsequent SQL generation.

A.2 Auto-Correctors

Search: We maintain a repository of frequently
occurring values for all searchable text columns.
When filter values appear in the WHERE clause,
the system searches this repository to identify
the closest matches using a modified Leven-
shtein distance metric (rapidfuzz.fuzz.WRatio).
If a near match is found, the filter value is
replaced accordingly. For instance, name =
"rockpot” is rewritten as name IN ("Rockpot
LLC", "Rockpot”, "Rockpott (& v 7K w
~)"), while music_genre NOT IN ("calm”,
"sleepy") is transformed into music_genre NOT
IN ("Calm 1860", "Calm 2025 [Updated]”,
"Sleepy time"”, "Sleep"). This transformation
is crucial, as the SQL Generator lacks direct ac-
cess to the column’s full value space, often leading
to mismatches that would otherwise yield empty
query results.

Date/Math Computation: The SQL Generator,
whether operating with or without examples,
is prompted to generate Python expressions in
cases involving numerical calculations or date

computations. These expressions follow the
format <python>89.8*16/100</python> or
<python>(datetime.now()-relativedelta(
weeks=6)).strftime(’ %Y-%m-%d’ )</python>.
A parser evaluates the generated expression
using Python’s eval function and replaces the
placeholder with the computed result.

Defaults: To enforce system-wide constraints,
a default LIMIT of 500 is applied when the user
does not specify a count. Additionally, a prede-
fined set of mandatory columns is appended to the
SELECT clause if no GROUP BY operation is present.
When a GROUP BY clause exists, these mandatory
columns are included using their respective aggre-
gation functions.

Datatype Matching: The LLM sometimes hal-
lucinates and assumes fields like student roll num-
bers or country indices are integers based on gen-
eral knowledge, overlooking schema definitions.
For instance, even if student_roll_number is
a VARCHAR, it may generate an invalid filter like
student_roll_number = 4. A deterministic
type-correction mechanism prevents such errors
by casting values appropriately, e.g., rewriting it
as student_roll_number = "4" based on the
schema.

Dummy Testing: We apply a lightweight valida-
tion mechanism to ensure query syntax correctness
by executing the SQL on small dummy tables (<10
rows). If syntax errors occur, an LLLM-based correc-
tion agent automatically rectifies them. In practice,
such failures are rare, but this safeguard ensures
robustness in edge cases.

A.3 Evaluation metrics

A.3.1 Valid Efficiency Score (VES)

For a dataset with NV examples, VES is computed
as:

N
1 N ~
VES = 3 3K ) RO, @

where Y;, and Vj, are the predicted query and
results, and Y,, and V,, are the ground truth. The
indicator function is:

- 17 Vn:Vn
J’K(Vnavn) = {0 v # V 3)
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Then,

R(Y,,Y,) = R 4)

represents the relative execution efficiency,
where E(-) is the execution time.
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