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Abstract

Text chunking is fundamental to modern
retrieval-augmented systems, yet existing meth-
ods often struggle with maintaining seman-
tic coherence, both within and across chunks,
while dealing with document structure and
noise. We present AutoChunker, a bottom-up
approach for text chunking that combines doc-
ument structure awareness with noise elimina-
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tion. AutoChunker leverages language models
to identify and segregate logical units of infor-
mation (a chunk) while preserving document hi-
erarchy through a tree-based representation. To
evaluate the chunking operator, we introduce
a comprehensive evaluation framework based
on five core tenets: noise reduction, complete-
ness, context coherence, task relevance, and
retrieval performance. Experimental results
on Support and Wikipedia articles demonstrate
that AutoChunker significantly outperforms ex-
isting methods, reducing noise while improving
chunk completeness compared to state-of-the-
art baselines. When integrated with an online
product support system, our approach led to
improvements in retrieval performance and cus-
tomer return rates. Our work not only advances
the state of text chunking but also provides a
standardized framework for evaluating chunk-
ing strategies, addressing a critical gap in the
field.

1 Introduction

The growing adoption of retrieval-augmented sys-
tems has made effective text chunking increas-
ingly critical for information access and utiliza-
tion. However, current chunking approaches face
significant challenges in maintaining semantic co-
herence while handling real-world document com-
plexity. Traditional methods often produce chunks
that either fragment logical units of information
or include irrelevant content, leading to degraded
retrieval performance and poor user experiences in
production systems.
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Figure 1: An illustration showcasing the limitations of
the existing methods in general and how AutoChunker
solves them by generating chunks that are noise-free,
coherent and not well entailed.

These limitations are particularly evident in in-
dustrial applications, such as online product sup-
port systems, where documents often contain rich
structure (headers, sections, lists) alongside noise
(navigation elements, advertisements, boilerplate
text) as shown in Figure 1. While recent approaches
have attempted to address these challenges through
embedding-based or language model-driven solu-
tions, they typically operate in a top-down manner
that struggles to preserve document hierarchy and
eliminate noise effectively.

In this paper, we present AutoChunker, a bottom-
up approach to text chunking that combines doc-
ument structure awareness with intelligent noise
elimination. Our method first converts documents
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Feature \ Recursive Semantic LGMGC LLMSemantic LumberChunker \ AutoChunker
Structure Utilization v X X X X v
Noise Elimination X X X X X v
Context Aware Retrieval X X X X X v
Context Switching X X 4 v v
Logit Free - - X v v v
Parameters Insensitivity X X v 4 X v

Table 1: Comparison of different methods across various features. Features are marked as not available (X), partially

available (), fully available (v'), or not applicable (-).

to a standardized markdown format, then employs
language models to identify and aggregate logical
units of information while preserving the docu-
ment’s hierarchical structure through a tree-based
representation. This approach not only maintains
semantic coherence within and across chunks but
also enables context-aware retrieval through the
hierarchical structure.

To systematically evaluate chunking effective-
ness, we also introduce an evaluation framework
based on five core tenets: noise reduction, com-
pleteness, context coherence, task relevance, and
retrieval performance. Through extensive exper-
iments on Support and Wikipedia articles, we
demonstrate that AutoChunker significantly out-
performs existing methods across all evaluation
dimensions. In a real-world deployment for an on-
line product support system, our approach led to
improvements in both retrieval performance and
customer return rates.

2 Related Work
2.1 Chunking Methods

Traditional static chunking methods often strug-
gle to maintain logical coherence within and across
data units. These methods typically employ fixed
granularity levels such as sentences or paragraphs
(Gao et al., 2024). More advanced static meth-
ods such as Langchain’s Recursive chunker (Chase,
2022) employ priority-based separators, including
paragraph breaks and new lines. While these meth-
ods are simple to implement, they lack the contex-
tual understanding necessary to maintain semantic
coherence across chunks.

To overcome the limitations of static chunk-
ing, researchers have explored intelligent dynamic
chunking strategies. These methods aim to iden-
tify context switches within the data and create
chunks based on semantic coherence rather than ar-
bitrary divisions. Embedding/Semantic-based split-
ting (Chase, 2022; Smith and Troynikov, 2024)

utilizes text embeddings to cluster semantically
similar text segments. This method can effectively
group related concepts, even when they span multi-
ple paragraphs or sections. However, the quality of
the chunks heavily depends on the underlying em-
bedding model’s performance. Some works, such
as Bayomi and Lawless (2018); Eisenstein (2009);
Kazantseva and Szpakowicz (2014), have explored
the use of classical ML techniques for text segmen-
tation, which typically rely on lexical and syntactic
features to identify coherent segments of text.

Recently, researchers have explored leverag-
ing the capabilities of LLMs to perform more
intelligent chunking. LLMSemantic (Smith and
Troynikov, 2024) provides text as input to an LLM
and prompts it to identify splits that result in
thematically consistent sections. Another work
LumberChunker (Duarte et al., 2024) leverages
LLMs to find paragraph splits where the content
switches context. Unlike the previous two meth-
ods, LGMGC (Liu et al., 2025) utilizes the LLM’s
internal logits, specifically the probability of the
end-of-sentence token [EOQS], to determine optimal
split points. These LLM-based methods represent
a top-down approach to chunking, starting with
the full text and recursively identifying appropriate
split points. While they offer improved semantic
coherence, they may still struggle with noisy data
and complex document layout.

2.2 Limitations of Existing Methods

Table 1 provides a comprehensive comparison of
existing chunking methods, highlighting their ma-
jor limitations across the following dimensions:

1. Structure Utilization: leveraging document
structure (e.g., titles, subtitles) to guide the
chunking process.

2. Noise Elimination: identifying and eliminat-
ing irrelevant content during chunking.

984



Lorem Ipsum

What is Lorem Ipsum?

Itis dummy text of the printing and
typesetting industry.

Why do we use it?

« Ithas a normal distribution of letters.
« Itis used as sample text.

# Lorem Ipsum

## What is Lorem Ipsum?

It is dummy text of the
printing and typesetting
industry.

&A%SH@ ™| ?><H+=

## Why do we use it?

- It has a normal distribution
of letters

- Itis used sample text.
&A%SH@ ™| ?><H+=

L1: # Lorem Ipsum

L2: ## What is Lorem Ipsum?
L3: It is dummy text of the
printing and typesetting
industry.

L4: &A%SH@ ™| ?><H+=

L5: ## Why do we use it?

L6: - It has a normal
distribution of letters

L7: - Itis used sample text.
L8: &A%SH@ ™| ?><H+=

<a>L1-11, L2-13, L5-L7</a>

| Lorem Ipsum

L1: # Lorem Ipsum

What is Lorem Ipsum?

L2: ## What is Lorem Ipsum?
L3: It is dummy text of the
printing and typesetting
industry.

>

L It is dummy text of
d the printing and

typesetting industry.

Why do we use it?

L5: ## Why do we use it?
L6: - It has a normal
distribution of letters

L7: - Itis used sample text.

L - It has a normal
distribution of

letters

- It is used sample

ERHSHR !~ 2><) (4=

text.

Figure 2: A block diagram of the proposed technique for Intelligent Document Chunking (a, b and c¢) and Hierarchical
Tree Creation (d). The document is first converted to a common markdown format (a) and is then split into logical
units (b). Intelligent aggregation and noise filtering (c) is then performed using an LLM.

3. Context-Aware Retrieval: effective informa-
tion retrieval of the chunks using semantic
matching.

Table 1 also highlights that additional differences
based on their context switching, utilization of
LLM logits, and reliance on hyperparameters. No-
tably, approaches that are Logit Free offer greater
flexibility in LLM selection. This design choice
enables the use of any LLM with API access, not
limiting the method to open-source models only.

2.3 Lack of Evaluation

Evaluating the effectiveness of chunking tech-
niques remains underexplored in literature. Tra-
ditional evaluation methods rely on downstream
task performance, which solely may not directly re-
flect the quality of the chunking itself (Duarte et al.,
2024; Liu et al., 2025). Also, reliance on retrieval
is often impractical to assess due to the absence
of comprehensive ground truth chunks. Moreover,
retrieval performance may be influenced by factors
beyond the chunking process itself, such as the em-
bedding module and underlying retrieval algorithm,
making it an indirect and potentially unreliable
measure of chunking quality.

In light of these limitations, our work not only
proposes AutoChunker to address the shortcom-
ings of existing methods but also introduces an
unsupervised evaluation framework. This frame-
work utilizes LLMs as impartial judges to assess
the quality of text chunks based on five core tenets
of effective chunking, which we describe in Sec-
tion 4. By addressing both the chunking process
and its evaluation, we aim to advance the field of
text chunking and improve its applicability.

3 Proposed Methodology

3.1 Intelligent Document Chunking

We propose a bottom-up approach to document
chunking that preserves the logical structure of the
text while enabling efficient retrieval. Unlike top-
down methods that start with the full document and
recursively split it, our bottom-up strategy begins
at the most granular level - individual sentences.
The process consists of three key steps:

1. Document Preprocessing: We convert the
document into Markdown format, preserving
heading, subtitles, content, and other struc-
tural elements (Figure 2a).

2. Granular Splitting: We split the document
into its smallest logical units - individual sen-
tences - each assigned a unique identifier (ID)
(Figure 2b).

3. Intelligent Aggregation: These atomic sen-
tences, along with their IDs, are then fed into
an LLM with Prompt 1, present in Appendix
B.1. The LLM analyzes the semantic relation-
ships between sentences and identifies logi-
cal units of text by generating the start and
end IDs of sentences that should be merged.
During this aggregation process, the LLM si-
multaneously identifies and filters out noisy
or irrelevant sentences that don’t contribute
meaningfully to the document’s content, as
illustrated in Figure 2c.

This approach offers several advantages:

* Ensures a non-lossy chunking by having the
LLM generate only identifier tokens instead of
summarizing text, thereby preserving fidelity
while reducing computational overhead.

985



* Maintains logical coherence within chunks
by dynamically adjusting boundaries based
on semantic structure rather than imposing
arbitrary length constraints, leading to more
meaningful segmentation.

* Enhances retrieval by systematically eliminat-
ing irrelevant or noisy content, ensuring that
retrieved chunks contain only high-value in-
formation relevant to downstream tasks.

3.2 Hierarchical Tree Creation

The noise-free chunks from the chunking process
are organized into a hierarchical tree structure
(shown in Figure 2d) based on the semantic struc-
ture present in the Markdown format. This rep-
resentation leverages the inherent document hier-
archy, where headings, subheadings, and content
placement guide the tree’s formation. The tree
structure captures the document’s organizational
flow, enabling efficient navigation, retrieval, and
preservation of contextual information.

To address the challenge of irregular chunk sizes
and potential information loss in vector databases
while embedding large chunks, we establish a max-
imum chunk size threshold. If a chunk exceeds this
threshold, it is split into equal parts. While doing
so, we maintain the relationships between these
split chunks within the tree structure, preserving
the original context and sequence. This approach
ensures that embedding models can effectively pro-
cess the chunks while retaining the document’s
logical structure.

The tree creation process offers several benefits:

* Maintains the document’s original structure
and hierarchy.

* Facilitates efficient navigation and retrieval of
relevant content.

¢ Preserves the context of each chunk within the
broader document layout.

* Optimizes chunk sizes for effective embed-
ding and vector representation.

3.3 Context-Aware Retrieval

Our retrieval method leverages the hierarchical tree
structure to provide context-rich results. When a
query is processed, we compare it against each
chunk in the vectorDB. For chunks that match the
query criteria, we output a subtree with that chunk
as the root node.

To address user requests for top-K chunks, we
first perform a de-duplication process to eliminate
overlapping subtrees. This is crucial as both parent
and child nodes of a subtree may be retrieved, po-
tentially leading to redundant information. We then
rank the remaining subtrees and finally flatten them
into a sequence of chunks and return the top-K.

This approach offers several advantages over
traditional retrieval methods:

* Provides not just the relevant chunk but also
its surrounding context within the document.

* Allows for more nuanced and accurate re-
sponses to queries by considering the hier-
archical relationships between chunks.

* Enables the retrieval system to provide more
comprehensive and contextually appropriate
information to users.

4 Proposed Evaluation

We propose an unsupervised evaluation framework
that utilizes LLMs as impartial judges (Gu et al.,
2025; Jain et al., 2025) to assess the quality of
chunks based on five core tenets of effective chunk-
ing. These tenets are:

* Noise Reduction: Does the chunking reduce
noise in the data?

* Completeness: Are the chunks self-contained
and meaningful?

¢ Context Coherence: Do the chunks minimize
context switching?

e Task Relevance: Are the chunks relevant to
the downstream task?

* Retrieval Performance: Does chunking im-
prove the retrieval of relevant information?

4.1 Noise Reduction

To measure the percentage of noise present in the
chunks, we provide each chunk to an LLM with
the prompt 2, present in Appendix B.2, and ask
it to identify if the chunk contains any noise. We
define noisy elements as headers, footers, duplicate
content, social media buttons, etc., which do not
add value in answering the user query.
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4.2 Completeness

We use LLMs to assess whether chunks are self-
contained and meaningful as shown in Prompt 3
present in Appendix B.2. The completeness score
is calculated as the percentage of chunks that are
deemed complete.

4.3 Context Switch

We measure the percentage of chunks where there
is no effective context switch. An LLM is prompted
with 4, present in Appendix B.2, to check if there
is any context switching present in the chunk.

4.4 Task Relevance

We calculate the percentage of chunks that are rele-
vant to the downstream task. An LLM is prompted
with 5, present in Appendix B.2, to assess if the
chunk is relevant to the downstream task (e.g., ques-
tion answering, support).

4.5 Retrieval Performance

To assess the retrieval performance of our unsu-
pervised approach, we implemented the following
methodology.

4.5.1 Query Generation

Since we lack actual queries, we utilized an LLM to
generate synthetic queries. We randomly sampled
chunks from our dataset and prompted the LLM
to create relevant queries with Prompt 7 present in
Appendix B.3.

4.5.2 Relevance Scoring

We used the generated queries to search through
chunks using an embedding-based retrieval module.
We analyzed the top-K retrieved chunks for rele-
vance to the query using an LLM-based relevance
scoring system. The prompt used for this scoring
is provided in Prompt 6 present in Appendix B.2.
The relevance scale is as follows:

* 0 - Irrelevant (no connection to query)
* | - Relevant (identifies the query)

* 2 - Somewhat Relevant (contains potential
answer)

* 3 - Completely Relevant (contains both query
and answer)

* 4 - Perfectly Relevant (exact match for query
and answer)

We use weighted precision@K to measure the
performance as:

WpeK = iz el

max(reD K < 100

where rel (i) is the relevance score of the i-th
retrieved chunk from top-K retrieved chunks, and
max(rel) is the maximum relevance score (4 in

this case).

5 Experimental Setup

5.1 Datasets

We evaluate our approach on two distinct domains:
Support and Wikipedia. To obtain structured data
for these domains, we used Common Crawl dataset
(Crawl, 2025) containing raw HTML web pages.

For the Support domain, we filtered pages re-
lated to product support from top brands such as
Apple and Samsung. The raw HTML text was
extracted from the dataset, focusing on support
pages addressing product issues. Here the content
is usually structured with sections such as problem
description, symptoms, and step-by-step solutions.

For the Wikipedia domain, we randomly sam-
pled Wikipedia HTML pages. These pages cover a
diverse range of topics, including products, coun-
tries, and notable individuals. The Wikipedia con-
tent is inherently structured, featuring sections like
introduction, history, and references.

5.2 Baselines and Implementation Details

We compared our approach with static and dynamic
chunking baselines using unstructured (raw text)
and structured (HTML, Markdown) input formats.
Static baselines include:

* Recursive + Text: We extracted text from
raw HTML using BeautifulSoup (Richardson,
2007) and chunked it using Langchain’s Re-
cursiveCharacterTextSplitter (Chase, 2022).

* Recursive + HTML: We utilized the imple-
mentation released by Liu (2024), which is
considered to be the most practical chunking
method for HTML input.

* Recursive + Markdown: We converted
HTML content to markdown and used
Langchain’s MarkdownHeaderTextSplitter
(Chase, 2022) for chunking.

Dynamic baselines include:
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Domain Method Input \ Noise () Complete (1) Context Switch (|) Task Relevance (1)
Recursive Text 27.56 15.36 23.60 84.38
Recursive HTML 25.59 55.75 2.96 45.16
Recursive Markdown 26.46 27.34 24.34 82.32
SUpPOrt g bedding Markdown 35.86 9.41 59.41 57.92
LLMSemantic Markdown 24.00 71.21 6.81 76.89
LumberChunker Markdown 36.05 1.25 54.64 63.16
AutoChunker Markdown \ 1.12 93.03 1.66 94.76
Recursive Text 29.83 18.45 25.12 82.54
Recursive HTML 26.91 53.62 3.15 47.23
Recursive Markdown 28.13 25.67 26.45 80.91
Wikipedia “p e dding Markdown 37.42 8.92 61.23 55.84
LLMSemantic Markdown 25.34 69.87 7.12 75.32
LumberChunker Markdown 38.21 2.14 56.78 61.45
AutoChunker Markdown \ 2.31 91.24 2.05 92.87

Table 2: Comparison of Different Chunking Techniques Across Domains. 1 indicates higher is better, | indicates

lower is better. Best results are in bold.

Domain Method \ WP@1 \ WP@3 \ WP@5
Recursive 60.75 51.25 39.15
Embedding 16.75 14.25 13.65
Support LLMSemantic 69.12 56.23 49.41
AutoChunker 75.42 63.42 56.84
AutoChunker + CAR 75.42 68.74 63.22
Recursive 58.45 48.92 37.84
Embedding 15.92 13.85 12.95
Wikipedia LLMSemantic 66.78 54.32 47.65
AutoChunker 72.95 61.45 54.92
AutoChunker + CAR 72.95 66.84 61.35

Table 3: Comparison of Weighted Precision Scores Across Different Methods and Domains. CAR: Context Aware

Retrieval. Best results are in bold.

* Embedding: We converted HTML content to
markdown and utilized Langchain’s Seman-
ticChunker (Chase, 2022) with cohere.embed-
multilingual-v3 (Cohere, 2023).

* LLMSemantic: We used the code provided
by the authors, employing the claude-3.5-
sonnet (Anthropic, 2024) model as the LLM
backbone.

* LumberChunker: We implemented this
method using the code provided by the au-
thors, also using the claude-3.5-sonnet model
as the LLM backbone.

We used claude-3.5-sonnet for AutoChunker
and all LLM-based evaluations, and cohere.embed-
multilingual-v3 as the embedding model for the
retriever.

6 Results and Analysis

6.1 Chunking Quality Analysis

Table 2 presents the results comparing different
chunking techniques across various metrics. Our
approach significantly outperforms all baselines
across all metrics. It achieves the lowest noise,
highest completeness, minimal context switching,
and highest task relevancy. The substantial reduc-
tion in noise can be attributed to our elimination
mechanism, which addresses a critical gap in exist-
ing techniques.

6.2 Retrieval Performance

We evaluated the retrieval performance using
weighted precision scores at different ranks. Table
3 shows these results. Our method consistently out-
performs baselines in retrieval performance, with
the highest WP@1. The addition of information via
Context Aware Retrieval (CAR) further improves
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WP@3 and WP@5 scores, demonstrating the ef-
fectiveness of our approach in maintaining context
and relevance.

7 Industry Application and Impact

We implemented our chunking strategy to optimize
the organization of support guides and troubleshoot-
ing content for an online product support store. The
implementation of this strategy enhanced the re-
trieval performance of the online product store’s
customer support system. We observed a 7% in-
crease in relevant content retrieval precision com-
pared to the internal baseline that implements static
chunking.

To leverage this improved content retrieval, we
integrated our chunking strategy to chatbot sys-
tem that utilizes a Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020). This chatbot serves
as the primary interface for customers who have
purchased products and are experiencing issues.
The pipeline efficiently retrieves the most relevant
chunked content from the vector database and uses
it to generate contextually appropriate responses.
The impact of this integration led to a 6.5 bps re-
duction in product return rates over a 4 week period
following the system’s deployment as we are able
to provide more meaningful responses.

8 Conclusion

We introduce AutoChunker, an approach to text
chunking that addresses critical limitations in ex-
isting works. Through its bottom-up strategy and
structure-awareness, AutoChunker demonstrates
improvements in chunk quality across multiple di-
mensions. Our evaluation framework, based on five
core tenets, provides a systematic way to assess
chunking effectiveness beyond traditional retrieval
metrics. The integration of AutoChunker’s pro-
cessed chunks in an online product support system
validates its practical utility, with measurable im-
provements in customer support and reduced prod-
uct return rates. This real-world validation demon-
strates that empirical improvements in chunking
quality translate directly to industry impact.
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A Additonal Results

Table 4 compared various document chunking techniques, including our proposed AutoChunker method,
across multiple performance metrics. These metrics include average chunking time, token statistics (mean,
50th percentile, 90th percentile), and mean number of chunks per document. AutoChunker demonstrates
competitive performance and is more efficient in terms of processing time compared to other LLM-based
approaches. Moreover, it produces chunks with a balanced token distribution, suitable for both retrieval
tasks and LLM context window limitations.

Method Input | Time (in sec) | Mean tokens p50 tokens p90 tokens Mean #chunks/doc
Recursive Text 0.11 359.5 391 407 534
Recursive HTML 5.61 14.2 10 34 13924
Recursive Markdown 0.24 357.4 388 406 534
Embedding Markdown | 0.38 | 259.6 163 419 772
LLMSemantic Markdown 49.39 95.3 76 195.1 2570
LumberChunker Markdown 10.52 1314.5 633 4037 191
AutoChunker Markdown | 6.04 | 94.3 72 202 2223

Table 4: Comparative analysis of document chunking techniques across different parameters.

B Prompts
B.1 Intelligent Chunking Prompt

Prompt 1: AutoChunker

<task>

Your task is to analyze and merge paragraphs from a Markdown web page into coherent semantic
units. Each merged unit should be self-contained and logically complete. While doing so, also
identify and exclude any noise content (like navigation elements, empty paragraphs, redundant
headers, related articles) in the merged units.

</task>

<Input Format>

- Content is provided as numbered paragraphs within tags: <pXXX>content</pXXX>
- XXX represents the unique paragraph ID number

</Input Format>

<Output Requirements>

1. List the paragraph IDs that should be merged together

2. Present the merged IDs in the format: <merged>ID1-ID2,ID3-ID4,...</merged>

3. Just output the start ID and the end ID of the merged paragraphs in the merged tag.
</Output Requirements>

<Merging Guidelines>

Combine paragraphs that form complete thoughts or topics

Keep related content together (e.g., questions with their answers)

Maintain the natural flow of information

Preserve hierarchical relationships (headings with their content)

. Group related FAQs or technical specifications together

All the steps present in a sequence should be present together.

Create a new paragraph unit only when a new topic is discussed or the context is changed.
Retain the product name in the merged units if there is any.

If an image is is associated with a logical unit, try to retain it.

W oo ~No ol WwN =

Consider these elements as noise (typically exclude):
- Navigation menus

- Empty paragraphs

- Redundant headers

- Social media buttons

- Generic page elements (e.g., "Skip to main content”)
- Footer content
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- Duplicate content

- Related articles

- Support, Contact or chat with us related elements
- Callback request options

</Merging Guidelines>

Here is the input:
{input}

B.2 Evaluation Prompts

Prompt 2: Noise Scoring

You are given various paragraphs provided as numbered paragraphs within tags:
<pXXX>content</pXXX> where XXX represents the unique paragraph ID number. Your task is
to identify for each paragraph whether it contains any noisy content or not.

Consider these elements as noise:

- Navigation menus

- Empty paragraphs

- Redundant headers

- Social media buttons

- Generic page elements (e.g., "Skip to main content”)
- Footer content

- Duplicate content

- Related articles

- Support, Contact or chat with us related elements
- Callback request options

Consider these elements as not noisy:
- Titles

- Question and Answers

- FAQs

<Output Requirements>
<p1>[Yes/No based on if it contains noise]</p1>
<p2>[Yes/No based on if it contains noise]</p2>

<pN>[Yes/No based on if it contains noise]</pN>
</Output Requirements>

Just output Yes or No within each tag in your response.
Now here is the input to you:

{paragraphs}

\. J

Prompt 3: Completeness Scoring

Analyze the following paragraphs for logical completeness. Each paragraph is enclosed in tags:
<pXXX>content</pXXX> where XXX is a unique paragraph ID.

A paragraph is considered COMPLETE if it:

1. Forms a self-contained logical unit

2. Conveys a complete thought or idea

3. Has proper context within itself

4. Doesn’t leave readers with obvious unanswered questions

5. Doesn’t end abruptly or start with connecting words referring to missing content

Examples:

- Complete: "What is photosynthesis? It is the process by which plants convert sunlight into
energy."

- Incomplete: "This led to several complications.” (lacks context and previous reference)

Please evaluate each paragraph and respond ONLY with Yes/No in the following format: <p1>Yes</pl1>
or <p1>No</p1>
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<Output Requirements>
<p1>[Yes/No based on if it is completel</p1>
<p2>[Yes/No based on if it is completel</p2>

<pN>[Yes/No based on if it is completel]</pN>
</Output Requirements>

Paragraphs to analyze:
{paragraphs}

\

Prompt 4: Context Switch Scoring

Analyze each paragraph for internal context switching. Each paragraph is provided within tags:
<pXXX>content</pXXX> where XXX is the unique paragraph ID number.

DEFINITION OF CONTEXT SWITCHING:

A paragraph exhibits context switching if it:

1. Discusses more than 2 distinct topics/subjects

2. Shifts between unrelated ideas without clear transitions
3. Introduces multiple separate questions or problems

4. Changes perspective or narrative focus abruptly

EXAMPLES:

Context Switching (Yes):

- "The cat slept on the windowsill. Global warming is affecting polar bears. Students should
study more for exams.”

- "AI technology is advancing rapidly. Speaking of which, my garden needs watering. The stock
market crashed yesterday."

No Context Switching (No):

- "The computer processes data through its CPU and RAM, which work together to execute programs.”
- "Climate change affects both temperature and precipitation patterns, leading to various
environmental impacts.”

OUTPUT FORMAT:

<p1>[Yes/Nol</p1>

<p2>[Yes/Nol</p2>

<pN>[Yes/No]</pN>

Respond ONLY with Yes/No within the paragraph tags.

PARAGRAPHS TO ANALYZE:
{paragraphs}

.

Prompt 5: Task Scoring (Support Specific)

You are a product support analysis system. Analyze the following paragraphs to identify
potential customer questions or troubleshooting scenarios about products.

For each paragraph provided within tags <pXXX>content</pXXX> (where XXX is the unique paragraph
ID), determine if it contains:

- A customer’s potential question about a product

- A problem or issue that needs troubleshooting

- A request for help or clarification about product usage

Guidelines for identification:

- "Yes"” if the paragraph contains:

Questions about product features or functionality
Problems or issues requiring resolution

Requests for help or clarification
Troubleshooting scenarios

Customer concerns or confusion

Product descriptions

"No" if the paragraph contains:

General statements or facts

* % % % %X X%

*
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* Marketing content
* Non-question related information

<Output Format Required>
<p1>[Yes/Nol</p1>
<p2>[Yes/Nol</p2>
<pN>[Yes/Nol</pN>

Provide only Yes or No within each tag. No additional explanation needed.

Analyzing the following paragraphs:
{paragraphs}

\

Prompt 6: Relevance Scoring

Task: Analyze paragraphs for relevance to a customer query

Input Format:
- Customer query will be provided
- Multiple paragraphs marked with tags: <pXXX>content</pXXX> (XXX = unique paragraph ID)

Relevance Scoring Scale:

@ - Irrelevant (no connection to query)

1 - Relevant (identifies the issue)

- Somewhat Relevant (contains potential solution)
Completely Relevant (contains both issue and solution)
Perfectly Relevant (exact match for issue and solution)

A ow N
1

Rules:

Each paragraph must be evaluated independently

Consider both semantic and contextual relevance

Score based on how directly the paragraph addresses the query
Multiple paragraphs can receive the same score

. Assess both explicit and implicit relevance

g~ wnNn =

Required Output Format:
<p1>[scorel</p1>
<p2>[score]</p2>

<pN>[score]</pN>

Example:
<query>"How do I reset my password?"</query>

<p1>To reset your password, click on ’Forgot Password’ and follow the instructions.</p1>
Output: <p1>2</p1>

Note: Scores should be integers between ©0-4 only
Now here is the input to you:

<query>{query}</query>
{paragraphs}

B.3 Query Generation Prompt

Prompt 7: Query Generation

Given a set of text chunks, your task is to:

1. Analyze the content of the chunks carefully

2. Generate 5 diverse questions that:

- Can be directly answered using information from the provided chunks
- Range from simple fact-based to more complex analytical questions

- Are clearly worded and unambiguous

- Are non-repetitive and cover different aspects of the content
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Format:
<Q1>[Question]</Q1>
<Q2>[Question]</Q2>

Text chunks:
{chunks}
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