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Abstract
With the emergence of ChatGPT, Transformer
models have significantly advanced text classi-
fication and related tasks. Decoder-only mod-
els such as Llama exhibit strong performance
and flexibility, yet they suffer from inefficiency
on inference due to token-by-token generation,
and their effectiveness in text classification
tasks heavily depends on prompt quality. More-
over, their substantial GPU resource require-
ments often limit widespread adoption. Thus,
the question of whether smaller language mod-
els are capable of effectively handling text clas-
sification tasks emerges as a topic of signif-
icant interest. However, the selection of ap-
propriate models and methodologies remains
largely underexplored. In this paper, we con-
duct a comprehensive evaluation of prompt
engineering and supervised fine-tuning meth-
ods for transformer-based text classification.
Specifically, we focus on practical industrial
scenarios, including email classification, legal
document categorization, and the classification
of extremely long academic texts. We examine
the strengths and limitations of smaller models,
with particular attention to both their perfor-
mance and their efficiency in Video Random-
Access Memory (VRAM) utilization, thereby
providing valuable insights for the local de-
ployment and application of compact models
in industrial settings1.

1 Introduction

Text classification is a fundamental task in natu-
ral language processing (NLP) that involves the
automatic assignment of textual documents, regard-
less of length, to predefined categories (Taha et al.,
2024). With the exponential growth of digital tex-
tual data, the significance of this task has increased
considerably. Efficient classification methods have
become increasingly valuable in both academic
research and industrial applications, while the com-
plexity of classification has also escalated (Collins

1
https://github.com/DobricLilujun/agentCLS/

et al., 2018). The field has evolved from basic
sentiment analysis of entire texts to more advanced
approaches such as multi-label classification and hi-
erarchical classification of long documents(Wang
et al., 2023b). These advancements have led to
greater demands for customization and higher clas-
sification efficiency, particularly in industrial appli-
cations. In scenarios with abundant labeled data,
certain encoder-only models can be quickly trained
and deployed. However, in cases with limited or no
labeled samples, BERT-like models (Devlin et al.,
2018) often struggle to achieve satisfactory per-
formance. For localized industrial deployments,
achieving optimal results typically requires large-
scale models like Llama-3.1-70B-Instruct, which
demands significant GPU resources. This makes
their widespread use in industrial text classification
less practical compared to models like BERT, as
dedicating high-memory GPUs solely for classifi-
cation is often infeasible.

As a consequence, this study aims to investi-
gate the limitations of transformer models, with a
particular focus on the performance of Small Lan-
guage Models (SLMs) and exploring best practices
to address industrial text classification challenges
effectively. To achieve this, we center our research
around three key questions:

• RQ1: Can SLMs perform classification with-
out any task-specific training?

• RQ2: What are the strengths and limitations
of various methods applied to text classifica-
tion using SLMs?

• RQ3: How can the trade-off between com-
putational efficiency and classification perfor-
mance be optimized, and how can SLMs be
more effectively deployed in practice?

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work and text clas-
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sification approaches; Section 3 presents the exper-
imental methodology applied to industrial datasets;
Section 4 provides a detailed analysis of the results;
and Section 5 concludes the study with key findings
and future directions.

2 Related Work

2.1 Different Types of Transformers

Transformers have demonstrated remarkable effi-
cacy in classification tasks (Zhao et al., 2023), pri-
marily due to their ability to comprehend multi-
lingual texts and generate linguistically nuanced
and stylistically personalized outputs (Zhao et al.,
2024). Across encoder-decoder architectures of
LLMs, three primary paradigms emerge:

1. The sequence to sequence framework (Naveed
et al., 2024) maps an input sequence to a hidden
space, enabling various downstream tasks by ap-
pending additional components of the neural net-
work, such as the classifier head. This framework
encompasses a range of models, including T5 (Raf-
fel et al., 2019), and BART (Lewis et al., 2019),
which have been extensively employed in applica-
tions such as machine translation and text summa-
rization.

2. Encoder-only models, such as BERT (Devlin
et al., 2019), are designed to focus on understand-
ing and processing input text to extract meaningful
representations. They demonstrated superior per-
formance in tasks such as named entity recognition
(NER: (Liu et al., 2021)), surpassing other state-of-
the-art (SOTA) models. Additionally, models like
RoBERTa (Robustly Optimized BERT (Liu et al.,
2019)) and ModernBERT (Warner et al., 2024)
(149M parameters) are optimized for lightweight
deployment due to their smaller size.

3. Decoder-only models, with a more com-
pact structure (Gao et al., 2022), extract linguistic
knowledge from large corpora and generate trans-
lations auto-regressively. They have shown strong
performance in text generation (Hendy et al., 2023;
Brown et al., 2020a). The rapid growth of language
models is driven by decoder-only architectures,
known for their versatility, reasoning, and problem-
solving abilities. Their decoding mechanism allows
them to handle nearly all NLP tasks. Notable ex-
amples include Meta’s Llama series (Touvron et al.,
2023) and Google’s Gemma series (Team et al.,
2024), along with newly released reasoning models
such as DeepSeek (Liu et al., 2024), which enhance
logical problem-solving by leveraging hard-coded

reasoning chains.

2.2 Background
The earliest systematic studies on text classifica-
tion included probabilistic model-based methods
such as Naive Bayes (Joachims, 1998). He was the
first to apply Support Vector Machines (SVM) to
text classification tasks. With the advent of neu-
ral networks, early research primarily utilized em-
beddings and simple neural network architectures
for text classification. Subsequently, (Kim, 2014)
proposed a convolutional neural network-based ap-
proach for text classification, significantly improv-
ing classification performance at sentence-level fea-
ture extraction. In addition, classification models
based on Recurrent Neural Networks (RNNs) have
also shown remarkable performance, demonstrat-
ing greater robustness under distribution shifts (Yo-
gatama et al., 2017). However, they still struggle to
effectively handle complex scenarios in classifica-
tion tasks such as long texts(Du et al., 2020). Later,
the emergence of attention architectures led to ex-
tensive experimentation in various applications.

The advent of transformer-based architectures in
2018, particularly BERT, brought about a paradigm
shift in natural language classification tasks, re-
sulting in considerable performance enhancements
(Kora and Mohammed, 2023; Pawar et al., 2024).
Some knowledge distillation approaches (Nityasya
et al., 2022) have also been explored to compress
large BERT models into smaller, faster, and more
efficient versions that can retain up to 97% of
the original model’s classification performance.
This observation has motivated our interest in di-
rectly using small open source models, which often
achieve performance comparable to that of large
models after distillation (Zhu et al., 2024). For long
text classification, specialized bidirectional mod-
els such as Longformer (Beltagy et al., 2020) and
LegalBERT (Chalkidis et al., 2020) have emerged
in recent years, capable of handling ultra-long doc-
uments and showing excellent performance. Nev-
ertheless, their adoption in industry remains lim-
ited, primarily due to substantial GPU resource
requirements and the need for custom CUDA ker-
nels to support sliding-window attention, which
also introduces compatibility challenges with the
Huggingface Transformers framework.

Regarding SLMs, (Lepagnol et al., 2024) ex-
plored the zero-shot text classification capabili-
ties of small language models, highlighting their
potential in classification tasks. Recent advance-
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ments in text classification have primarily focused
on two key approaches: prompt engineering and
Supervised Fine Tuning(SFT).

Prompt engineering involves crafting well-
structured inputs to guide LLMs in producing more
personalized responses. Recent research has shown
that sophisticated prompt engineering techniques
can sometimes compete with or even outperform
fine-tuned models(Sahoo et al., 2025). In both in-
dustry and academia, models such as BERT and
Llama are commonly used to assess downstream
tasks. Nevertheless, there is a notable absence of
extensive comparative research on various prompt
engineering and SFT techniques for SLMs, aimed
at identifying the most effective practices for indus-
trial applications. Furthermore, publicly available
datasets are frequently subject to inherent biases
resulting from prior exposure during pre-training,
which means that models being evaluated may have
already been trained on portions of the test set,
thereby introducing the possibility of biases.

3 Experiments On Industrial Cases

3.1 Methods

To address the challenges outlined in the related
work, we trained models on datasets of varying
difficulty levels, including a proprietary, real-world
industrial dataset. Regarding model selection, we
primarily focused on decoder-only architectures
while incorporating a subset of encoder-only mod-
els for validation. In addition, we explore various
prompt engineering techniques and examine the im-
pact of different prompt tuning methods, focusing
on classification task.

Table 1 presents an overview of different tem-
plates and prompt strategies, where all prompts are
designed to enforce a structured output format. The
base prompt closely resembles a direct label map-
ping approach, where the model outputs the label it
deems most appropriate. Few-shot prompts extend
this by incorporating examples alongside descrip-
tions. Furthermore, Chain-of-Thought (COT) and
Chain-of-Draft (COD) prompts serve to evaluate
the reasoning capabilities of SLMs to some extent.

In the training process, we primarily employ
three distinct methods: 1) SFT, which modifies
only the weights of the classification heads added
at the end of the model using labeled data; 2) Soft
Prompt Tuning (SPT), which involves optimizing
input prompts to continuously guide the model to-
wards correct behavior based on labeled data; and

3) Prefix Tuning (PT), which incorporates a learn-
able prefix tensor into each attention layer.

These approaches enhance the model’s classifica-
tion performance while keeping most of the model
weights frozen, which are widely used in industrial
use cases.

Methods Types Methods Reference

Prompt Engineering Base Prompts (Ye et al., 2024)

Prompt Engineering Few-Shot Prompts (Brown et al., 2020b)

Prompt Engineering Chain-of-Thought (COT) (Wei et al., 2022)

Prompt Engineering Self-consistency COT (Wang et al., 2023a)

Prompt Engineering Chain-of-Draft (COD) (Xu et al., 2025)

Fine Tuning Supervised Fine-tuning (Parthasarathy et al., 2024)

Soft Prompt Tuning Parameter Efficient Fine-tuning (Lester et al., 2021)

Prefix Tuning Parameter Efficient Fine-tuning (Li and Liang, 2021)

Table 1: Classification methods based on the trans-
former architecture investigated in this study.

3.2 Datasets
In this study, we primarily utilized three datasets
for our experiments, as shown in Table 2. First,
we used the EURLEX57K dataset (Chalkidis et al.,
2019), which was released by (Chalkidis et al.,
2019) and contains 57,000 new legislative docu-
ments. We adopted the document type as the clas-
sification label, which includes Regulation, Deci-
sion, and Directive. Additionally, we employed
the Long Document Dataset (He et al., 2019), a
relatively more challenging dataset that consists
of a large amount of literature text extracted from
PDFs, categorized into 11 different classes, such
as cs.AI (Artificial Intelligence), cs.CE (Computa-
tional Engineering), and so on. The main difficulty
lies in the length of the documents and the chal-
lenge of classifying them into over 11 labels, which
significantly increases the complexity of the task.

In addition, we possess a proprietary, closed-
source dataset derived from email correspondence
between our partner company and its clients. The
primary business requirement is to analyze histori-
cal interactions with each client—written in a mix-
ture of English, French, German, and Luxembour-
gish—to determine whether the most recent emails
in the thread are reminders. Consequently, the task
involves identifying the optimal position within
the text and determining whether that position con-
veys a “reminder” meaning, resulting in a binary
labeling scheme. It also requires a comprehen-
sive understanding of long email threads written
in mixed languages, including low-resource ones,
and making a final decision based on the contextual
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Dataset Abbreviation Words / D # Train # Validation # Labels Subject

EURLEX57K EUR 720 3039 900 3 EU Legislation
Long Document Dataset LDD 10378 15682 3300 11 Academy

Insurance Email IE 724 2015 1000 2 Email History

Table 2: The table below presents the statistics of the three datasets used in our experiments. Words/D denotes the
average number of words per document, #Train represents the number of training samples, #Validation refers to
the number of validation samples, and #Labels indicates the number of unique labels in the dataset. Each dataset
corresponds to a different domain of text. Notably, the LDD dataset exhibits a larger number of labels and a higher
word count per document, which increases the difficulty of the classification task.

meaning at the identified position.
The main challenges associated with this dataset

are: 1. Semantic decision-making is heavily based
on the content of the most recent emails exchanged
with the client, with older emails primarily serving
as background context. This characteristic places
the most crucial textual information towards the
beginning of the sequence, which contrasts with
typical datasets where classification decisions are
based on the overall semantics of the entire text.
2. The dataset inherently contains long texts with
uneven length distributions with information ex-
tracted from images. All nontextual data has been
processed using OCR to extract textual content. By
incorporating this real-world industrial dataset, we
improve the persuasiveness and robustness of our
model and methods evaluations.

3.3 SLM Models
Fine-tuning on classification typically refers to the
application of transfer learning when a task is asso-
ciated with a certain amount of labeled data. This
approach capitalizes on the semantic representa-
tion capabilities of a pre-trained model by incor-
porating a lightweight linear layer for classifica-
tion, denoted as classification heads. During train-
ing, the model parameters are kept frozen, while
only the newly introduced classification network
is optimized to achieve the classification objective.
In this study, we adopt SLMs including Llama-
3.2-1B, Llama-3.2-1B and ModernBERT-base as
the foundational models. Additionally, Llama-3.3-
70B-Instruct and GPT-4o mini are used as founda-
tion model baselines for performance comparison.
More details are shown in the Appendix A.

3.4 Experimental Settings & Metrics
We employ Accuracy, F1-score as performance
metrics to evaluate different methods across all
models. For the fine-tuning approach, we standard-
ize the learning rate to 1e-6 and train all models for

10 epochs to ensure controlled variable conditions.
To evaluate the efficiency of different methods and
analyze resource usage, we track GPU hours (GHs)
and GPU RAM hours (GRHs). GPU hours repre-
sent the total computational time a model utilizes
GPU clusters, while GPU RAM hours quantify cu-
mulative memory consumption during execution.
These metrics provide insights into computational
cost and resource efficiency. As prompt engineer-
ing primarily affects inference time and pretraining
duration is unknown, we measure only its inference
stage.

The prompts used from different strategy meth-
ods were well designed as shown in the appendix
B. When it comes to self-consistency COT, sev-
eral different paths of thinking should be set, and
in this study, we explicitly set it to 3. To control
for variables, we standardize the batch size to 8
and set the number of training epochs to 10, select-
ing the checkpoint with the lowest evaluation loss.
For both SPT and PT, we configure the number of
virtual tokens to 128. In general, all models are
trained with a maximum context length of 4096
tokens.

4 Results

4.1 Main Performance

Additional models were used to validate the test
set in order to provide a reference performance
for State-of-the-Art (SOTA) models. However,
ChatGPT was not evaluated on the IE dataset
due to potential data leakage concerns. In con-
trast, Llama-3.3-70B-Instruct was run locally, al-
lowing for GPU resource estimation and compre-
hensive metric evaluation. As presented in Table
3, the highest prompt engineering performance
was achieved by ChatGPT-o1 mini. Meanwhile,
in the IE dataset, which serves as our industrial
database, an accuracy score of 0.800 was achieved
by Llama-3.3-70B-Instruct. Regarding SLMs, we
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Table 3: The main results include validation performance on three datasets under different prompt engineering and
SFT conditions. ACC represents accuracy, GH indicates GPU hours, and GRH refers to GPU RAM hours for
memory usage. Prefix-tuning is unsupported on ModernBERT-base due to model structure incompatibility.

Methods Type Methods Models EUR LDD IE

ACC ↑ F1 ↑ GH ↓ GRH ↓ ACC ↑ F1 ↑ GH ↓ GRH ↓ ACC ↑ F1 ↑ GH ↓ GRH ↓

GPT-4o-mini 0.833 0.767 N/A N/A 0.682 0.698 N/A N/A N/A N/A N/A N/A
Llama-3.3-70B-Instruct 0.398 0.287 0.157 26.443 0.500 0.333 0.188 31.651 0.800 0.799 0.517 86.772

Llama-3.2-1B-Instruct 0.330 0.319 0.010 0.263 0.186 0.159 0.775 19.981 0.500 0.370 0.040 1.034
Base prompt

Llama-3.2-3B-Instruct 0.346 0.220 0.030 1.167 0.314 0.301 0.313 12.385 0.500 0.333 0.047 1.847
Llama-3.2-1B-Instruct 0.387 0.377 0.022 0.578 0.132 0.113 0.574 14.804 0.488 0.338 0.038 0.972

Few-shot Prompt
Llama-3.2-3B-Instruct 0.506 0.499 0.024 0.931 0.471 0.491 0.136 5.376 0.500 0.333 0.044 1.756
Llama-3.2-1B-Instruct 0.463 0.438 0.181 4.659 0.181 0.167 1.248 32.171 0.501 0.339 0.189 4.873

Chain-of-Thought
Llama-3.2-3B-Instruct 0.341 0.293 0.427 16.906 0.365 0.334 0.722 28.544 0.491 0.401 0.519 20.538
Llama-3.2-1B-Instruct 0.433 0.411 0.582 14.997 0.178 0.168 4.231 109.086 0.500 0.333 0.597 15.392

Self-consistency COT
Llama-3.2-3B-Instruct 0.419 0.338 0.982 38.836 0.167 0.168 2.321 91.821 0.510 0.333 0.991 39.192
Llama-3.2-1B-Instruct 0.408 0.395 0.061 1.560 0.226 0.226 0.376 9.702 0.499 0.336 0.105 2.705

Prompt Engineering

Chain-of-Draft
Llama-3.2-3B-Instruct 0.351 0.332 0.055 2.191 0.425 0.437 0.390 15.431 0.499 0.335 0.113 4.458

Llama-3.2-1B-Instruct 0.643 0.533 0.848 22.977 0.442 0.429 4.589 124.827 0.506 0.381 0.594 15.914
Llama-3.2-3B-Instruct 0.641 0.524 2.926 169.812 0.136 0.135 8.303 481.701 0.526 0.475 1.396 76.384Soft Prompt Tuning (SPT)

ModernBERT-base 0.332 0.171 0.533 11.903 0.207 0.184 1.374 26.394 0.500 0.333 0.566 12.667
Llama-3.2-1B-Instruct 0.330 0.266 1.580 42.947 0.112 0.107 7.826 212.826 0.502 0.371 0.463 12.530
Llama-3.2-3B-Instruct 0.320 0.300 1.360 83.864 0.128 0.117 16.532 1040.624 0.588 0.536 2.999 172.257Prefix Tuning (PT)

ModernBERT-base N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Llama-3.2-1B-Instruct 0.999 0.999 0.508 13.813 0.892 0.890 1.698 40.631 0.865 0.863 1.008 27.474
Llama-3.2-3B-Instruct 0.998 0.998 1.750 92.118 0.904 0.903 3.764 226.869 0.960 0.960 1.949 123.109

Supervised Fine-Tuning

Fine-tuning (FT)
ModernBERT-base 0.333 0.167 0.132 1.849 0.810 0.811 1.762 24.018 0.514 0.408 0.104 1.476

found the results particularly intriguing, especially
in the context of prompt engineering. Given the
relatively small size of these models, we did not
expect them to achieve high performance. The fi-
nal results for the 1B and 3B models aligned with
our expectations, performing roughly at the level
of random guessing. Interestingly, both the 3B and
even the 1B models demonstrated a strong prefer-
ence for few-shot prompting. This approach led to
an improvement of over 10% compared to the base
prompt on the EUR and LDD datasets, highlighting
the importance of few-shot learning in the applica-
tion of SLMs, as also emphasized in (Brown et al.,
2020a). Furthermore, we observed that both COD
and COT provided limited improvements. In fact,
on the LDD dataset, COD performed worse than
COT and was nearly on par with the base prompt.
Therefore, the use of COD and COT is not rec-
ommended as a solution for classification tasks in
SLMs.

In the context of SFT, we observed that SPT
outperformed prefix tuning by a significant margin,
although it also required substantially more training
time. Prefix tuning introduces a trainable part at ev-
ery layer within the model, whereas SPT only incor-
porates a soft prompt at the input level. It is possi-
ble that SPT better preserves the original language
understanding of the model, as it does not alter
the overall architecture. In contrast, prefix-tuning’s
modifications to the attention structure may dis-
rupt the model’s inherent linguistic comprehension.
Additionally, supervised fine-tuning, which adds a
classification head to the end of the model, demon-
strated the highest overall performance. Notably,

ModernBERT achieved a performance of approxi-
mately 0.810 of accuracy on the LDD dataset while
requiring less training time and GPU memory, mak-
ing it a promising candidate for academic English
text classification. Limited exposure to French,
other multilingual languages, and domain-specific
corpora during training (Warner et al., 2024) led to
weaker performance on the IE dataset (primarily in
French) and EUR (a domain-specific corpus).

4.2 Exploratory Results

4.2.1 Does data matter?
Experiments were conducted to examine the im-
pact of data volume, primarily using SFT, the best
method in our research scope. We randomly se-
lected 50, 150, and 1500 samples as training data.
The results, as shown in Figure 1, indicate that
on the relatively simple EU dataset, the model
can achieve good performance even with a small
amount of data after multiple training iterations,
with the primary determinant of performance be-
ing the model itself. However, for more complex
and challenging datasets such as LDD and IE, the
amount of training data directly determines perfor-
mance. Furthermore, we observed that models of
different sizes exhibit only minor differences in
classification performance. Therefore, data volume
has a direct impact on classification performance
in difficult datasets, which ultimately defines the
performance bottleneck instead of the model itself.

4.2.2 Larger Models?
As observed in Table 4, the performance gains from
larger models are also minimal. For example, in the
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Figure 1: Impact of Data Volume on Model Performance.

Figure 2: Reversed efficiency on LDD datasets

Table 4: This table compares the performance of
ModernBERT-Base ("Base") and ModernBERT-Large
("Large") on the same dataset.

Models EUR LDD IE

ACC F1 ACC F1 ACC F1

Base 0.333 0.167 0.810 0.811 0.514 0.408
Large 0.333 0.168 0.828 0.829 0.539 0.424

LDD dataset, ModernBERT-large only improves
by about 2% over the base model. In particular,
on the EUR, larger models do not show signifi-
cant performance gains. This is highly related to
the domain relevance of the model’s pre-training
data. For example, in the ModernBERT paper, it
is mentioned that the model is trained on a large
amount of academic English data, which leads to
high performance on LDD. The IE dataset, which
includes French, German, and English, results in
accuracy around 0.5. In the EUR dataset, perfor-

mance is especially poor and increasing the model
size does not improve results. This shows that
SFT models for classification do not enhance se-
mantic understanding, but guide comprehension
and classification. Thus, the model should be thor-
oughly investigated before industrial deployment,
and decoder-only SLMs are sufficient for classi-
fication tasks if they excel at understanding the
dataset’s domain knowledge.

4.2.3 Deeper Header?
In our primary experimental setting, we adhere to
the definition of a “Header” as implemented in the
Transformers library, referring to a single linear
layer serving as the classification head. To further
explore potential improvements using different lev-
els of header, we experimented with replacing the
standard single-layer header with a multi-layer lin-
ear architecture incorporating ReLU activations.
Specifically, we constructed classification heads
with 2 to 5 linear layers (hidden dimension = 256)
and fine-tuned Llama-3.2-1B-Instruct model ac-
cordingly. As shown in Table 5, the results indi-
cate that increasing the depth of the classification
head yields only marginal gains, with performance
plateauing beyond three layers. These findings sug-
gest that deeper header architectures offer limited
benefit in enhancing the classification accuracy or
F1 score in this context.

# Layers 1 2 3 4 5

ACC 0.89 0.91 0.92 0.91 0.91
F1 0.89 0.91 0.92 0.91 0.91

Table 5: Impact of classification head depth on perfor-
mance, evaluated on the LDD dataset using Llama-3.2-
1B-Instruct. “# Layers” refers to the number of stacked
linear layers in the classification head.
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4.3 Efficiency

We particularly focus on model efficiency from
training to inference, with a specific emphasis on
VRAM usage, which is the primary limiting factor
for deployment in industrial settings. As shown in
Figure 2, the x-axis represents the reverse normal-
ized GRH score, while the y-axis represents the F1
Score. Therefore, points located further towards
the top-right indicate higher efficiency. It is clear
that the three FT models exhibit the highest effi-
ciency, while the prompt engineering methods, al-
though very efficient in terms of GPU RAM usage,
significantly lag behind in performance. There-
fore, for local deployment, fine-tuning of SLMs is
the optimal approach for enhancing both efficiency
and accuracy. Additionally, we can observe that
from 1B to 3B models, there is only a marginal
improvement in model accuracy, while GPU time
consumption increases. Hence, fine-tuning the 1B
model could be the optimal solution when consid-
ering efficiency.

4.4 Research Questions

For RQ1, “Can SLMs perform classification with-
out any task-specific training?”, we found that text
classification using SLMs faces several key chal-
lenges. Smaller models tend to exhibit limited log-
ical reasoning capabilities and are more suscepti-
ble to generating hallucinations while encounter-
ing long text. Moreover, the performance ceiling
is strongly influenced by the amount of available
training data, while the intrinsic properties of the
SLMs themselves also play a critical role in shap-
ing classification outcomes.

Regarding RQ2, “What are the strengths and
limitations of various methods applied to text clas-
sification using SLMs?”, prompt engineering can
demonstrate substantial flexibility and customiza-
tion; however, its performance on SLMs remains
significantly limited. Notably, various prompt en-
gineering strategies, such as COT or COD, some-
times negatively influence model performance. If
employing prompts engineering on SLMs is neces-
sary, it is recommended to utilize few-shot prompt-
ing rather than COT or COD as shown in Table 3.
In contrast, SFT shows excellent performance on
decoder-only models, whereas SPT and PT achieve
moderate effectiveness. Nevertheless, both ap-
proaches generally yield superior results compared
to prompt engineering.

For RQ3, “How can the trade-off between

computational efficiency and classification perfor-
mance be optimized, and how can SLMs be more
effectively deployed in practice?”, we found that
although training the model consumes significant
GPU resources, the SLMs are essentially unusable
in their current form due to the lack of inference
capability. We also tested Llama-3.3-70B-Instruct,
which, although capable of achieving 80% accu-
racy in IE, still produces uncertain output. There-
fore, FT transformers remains the only viable solu-
tion on SLMs which is portable and light weight.
Finally, the limited capacity of SLMs creates a bot-
tleneck on performance and the amount of labeled
data also remains a key limitation. For real applica-
tion, it is crucial to focus not only on data quality
but also on the model’s inherent characteristics,
such as multilingual comprehension. If resources
are relatively abundant, opting for decoder-only
models such as the Llama series would be a bet-
ter choice, which has a good support on both lan-
guages and different domain knowledge.

5 Conclusion

In this study, we present a comprehensive evalu-
ation of lightweight models on text classification.
We systematically investigate nearly all major ap-
proaches, including prompt engineering and super-
vised fine-tuning. Our experimental setup spans
three benchmark datasets, including a real-world
industrial scenario involving email history classifi-
cation.

Our findings indicate that while the volume of
training data has a significant impact on classifi-
cation performance, the model’s intrinsic under-
standing of domain-specific textual content also
plays a critical role and can become a major bot-
tleneck in achieving high accuracy. Furthermore,
we observe that increasing the size of the model
or the depth of the classification head yields only
marginal performance improvements.

Finally, we analyze the VRAM efficiency of
different models across the entire classification
pipeline, offering practical insights into their suit-
ability for real-world deployment. These results
are particularly relevant for industrial applications,
where both high precision and computational effi-
ciency are essential, providing guidance in select-
ing the appropriate models, classification strategies,
and computational resources to optimize under real-
world constraints.
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6 Limitations

This paper comprehensively evaluates Transformer-
based classification methods on industrial datasets,
providing valuable insights for real-world deploy-
ment. However, the impact of the number of virtual
tokens in SFT has not been thoroughly explored.
It is possible that increasing the number of virtual
tokens could yield better results.

Furthermore, we observed that the performance
of the ModernBERT-base model on the EUR
dataset is particularly poor. However, due to the
limited understanding of its pretraining data vol-
ume and composition, further research is needed
to analyze the language understanding capabilities
of ModernBERT-base. Since our training does not
enhance the model’s intrinsic language understand-
ing, the model’s inherent linguistic comprehension
plays a crucial role in classification tasks. Addi-
tionally, more SLMs should be evaluated, such as
Gemma-2B, to obtain a more comprehensive un-
derstanding of the results.
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A Experiment Details

In this study, we examine three distinct models in
all text classification methods, along with several
larger models, as presented in Table 6.

We primarily utilized the AutoModelForSe-
quenceClassification from Transformers to train
our model for classification tasks. The main prin-
ciple involves adding a linear mapping head for
model classification, where the input dimension
corresponds to the output dimension of the LLMs.
For instance, in the case of Llama-3.2-1B-Instruct,
its output features are 2048, which serve as the
input features for the linear mapping head. The
output features’ dimension, on the other hand, cor-
responds to the number of classification labels.

During training, the orignal weights of the pre-
trained model are kept frozen, while only the
newly introduced classification head is optimized

to achieve the final classification objective. In this
study,the optimization process is guided by BCE-
WithLogitsLoss, which serves as the loss function
throughout the training.

B Prompt Example

The base prompt template for the EUR dataset is
shown below. Basically, it requires the models to
provide three labels with a classification answer at
the end, following a separator ####.

Return the classification answer after a sep-
arator ####. Do not return any preamble,
explanation, or reasoning.
Classify the input text into one of the fol-
lowing categories based on the descriptions
provided, and explicitly provide the output
classification at the end.
Categories: 1. Decision - Choose this cate-
gory if the text involves making a choice or
selecting an option. 2. Directive - Use this
category if the text instructs or commands
an action. 3. Regulation - Appropriate for
texts that stipulate rules or guidelines.
<<<START OF INPUT>>>
{input}
<<<END OF INPUT>>>

In the LDD dataset, there will be 11 labels, each
representing the category of an academic subject,
while the input will be the document version of
academic articles. The base prompt template for
the LDD dataset is shown below.
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Model Ctx Len Release VRAM Train(GB) VRAM Infer(GB)

Llama-3.2-1B-Instruct 128k Sep 25, 2024 27.36 25.78
Llama-3.2-3B-Instruct 128k Sep 25, 2024 65.52 39.55
ModernBERT-base 8,192 Dec 19, 2024 12.82 1.72
ModernBERT-large 8,192 Dec 19, 2024 25.48 3.35
Llama-3.3-70B-Instruct 128k Mar 14, 2025 N/A 168
GPT4o-mini 32k Jul 18, 2024 N/A N/A

Table 6: Table of Model Specifications with GPU Memory Requirements. In this table, “Ctx” Len refers to the
maximum context length, “Release” denotes the model’s release date, “VRAM Train (GB)” indicates the amount of
VRAM required for training each model with a batch size of 8 and a context length of 4096, and “VRAM Infer
(GB)” specifies the VRAM needed to load the model and perform inference.

Return the classification answer after a sep-
arator ####. Do not return any preamble,
explanation, or reasoning.
Classify the input text into one of the fol-
lowing categories based on the descriptions
provided, and explicitly provide the output
classification at the end.
Categories:
- **cs.AI**: Involves topics related to Ar-
tificial Intelligence. - **cs.CE**: Re-
lated to Computational Engineering. -
**cs.CV**: Pertains to Computer Vi-
sion. - **cs.DS**: Concerns Data Struc-
tures. - **cs.IT**: Deals with Informa-
tion Theory. - **cs.NE**: Focuses on
Neural and Evolutionary Computing. -
**cs.PL**: Involves Programming Lan-
guages. - **cs.SY**: Related to Systems
and Control. - **math.AC**: Pertains to
Commutative Algebra. - **math.GR**: In-
volves Group Theory. - **math.ST**: Re-
lated to Statistics Theory.
<<<START OF INPUT>>>
{input}
<<<END OF INPUT>>>

In the real-world IE dataset, we used authentic
email history records from the industry as the data
source, with labels manually identified by experts
from our industrial partners.

Particularly of interest, we consider Self-
consistency COT method to further validate the
model’s logical reasoning ability. In this approach,
the model first generates three different reasoning
chains using a COT prompt. Then, the reasoning
chains, along with the question, are presented to
the model, which selects the most consistent rea-

soning chain and ultimately identifies the correct
classification label.

Return the classification answer after a sep-
arator ####. Do not return any preamble,
explanation, or reasoning.
You will be provided three thinking paths
for answering the text classification ques-
tion, and the conclusions from the three
paths will be compared. If two or more
paths arrive at the same classification result,
that will be selected as the most consistent
answer; if all three paths differ, answer with
the most plausible classification based on
the overall reasoning. The self consistency
prompt template is shown below.
Question:
{question}
Path 1: {path 1}
Path 2: {path 2}
Path 3: {path 3}

C Additional Results

We conducted a comprehensive evaluation of var-
ious prompt engineering techniques on the rela-
tively large-scale model, Llama-3.1-8B-Instruct,
with the aim of achieving competitive performance
in comparison to other SLMs. As shown in Table
7, despite leveraging an 8-billion parameter model,
attaining satisfactory accuracy proved challenging.
Notably, the performance improvements achieved
through COT and COD strategies were significantly
more substantial, markedly outperforming those ob-
tained via Few-shot Prompting. This suggests that
for larger models, COT and COD methodologies
should be prioritized, whereas few-shot prompting
remains the optimal approach for smaller models.
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Methods Models EUR LDD IE

ACC F1 ACC F1 ACC F1

GPT4o-mini 0.833 0.767 0.682 0.698 - -
Llama-3.3-70B-Instruct 0.398 0.287 0.500 0.333 0.800 0.799

Base prompt Llama-3.1-8B-Instruct 0.216 0.193 0.554 0.596 0.500 0.333
Few-shot Prompt Llama-3.1-8B-Instruct 0.494 0.460 0.456 0.490 0.530 0.408
Chain-of-Thought Llama-3.1-8B-Instruct 0.503 0.465 0.650 0.656 0.514 0.423

Self-consistency COT Llama-3.1-8B-Instruct 0.568 0.528 0.231 0.248 0.500 0.333
Chain-of-Draft Llama-3.1-8B-Instruct 0.422 0.375 0.622 0.635 0.498 0.332

Table 7: This table presents the performance results of all prompt engineering tests conducted on the larger-scale
model, Llama-3.1-8B-Instruct.

Furthermore, it is important to highlight the poor
performance of Self-Consistency COT on the LDD
dataset. This limitation is primarily attributed to
the excessively long text sequences within LDD,
which induce hallucination effects in the model.
Given that Self-Consistency COT involves gener-
ating three separate reasoning chains, the input
length increases considerably, leading to a notice-
able degradation in performance. In contrast, COD
demonstrates comparable performance to GPT-4o-
mini on the LDD dataset, indicating its potential as
a promising area for further investigation.
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