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Abstract

We introduce an active-sampling-based frame-
work for automatic prompt optimization, de-
signed to enhance the performance of Large
Language Model (LLM)-as-a-judge systems,
which use LLMs to evaluate the quality of gen-
erated contents in label-scarce settings. Unlike
existing approaches that rely on extensive an-
notations, our method starts with no labeled
data and iteratively selects and labels a small,
diverse, and informative subset of samples to
guide prompt refinement. At each iteration,
our method evaluates the current prompt based
on selected data and automatically updates the
prompt, enabling efficient prompt optimization
with minimal supervision. Moreover, we for-
mulate sample selection as a convex optimiza-
tion problem that balances uncertainty and di-
versity, maximizing the utility of limited la-
beling budgets. We validate our framework
across popular LLMs and real-world datasets,
including one from a deployed industry prod-
uct. Results show that our optimized prompts
consistently outperform baselines, achieving
significant gains in evaluation quality and ro-
bustness while substantially reducing labeling
costs.

1 Introduction
Large Language Models (LLMs) are increasingly
used as automated evaluators, often referred to as
LLM-as-a-judge, for tasks such as evaluating text
generation quality and chatbot performance. While
leveraging LLMs as evaluators can substantially
reduce human labeling costs, their effectiveness
heavily depends on the quality of the prompts. Sub-
optimal prompts can introduce biases (e.g., ver-
bosity or positional biases), inconsistencies, and
unreliable evaluations. These issues, as highlighted
by recent studies, pose significant challenges to the
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reliability and robustness of LLM-based evaluation
systems (Shinn et al., 2023; Yan et al., 2024).

Recent automatic prompt optimization (APO)
methods have shown promise in enhancing prompt
quality through techniques such as paraphrasing,
LLM-based candidate generation, and feedback-
driven refinement (Prasad et al., 2022; Xu et al.,
2022; Zhou et al., 2022; Pryzant et al., 2023; He
et al., 2024). However, these approaches often
rely on ground-truth labels for the entire dataset
to guide prompt refinement, restricting their use in
real-world applications. Labeling data for LLM-as-
a-judge systems—especially for open-ended tasks
like summarization or dialogue evaluation—can be
exceedingly costly and time-intensive, frequently
requiring domain expertise or detailed annotations.
As a result, large-scale supervision becomes im-
practical, with only a small fraction of data typi-
cally labeled within budget constraints.

While some prior methods address this issue
by sampling data using simple heuristics (Chen
et al., 2024), those strategies may miss some infor-
mative and diverse examples needed for effective
prompt updates. Active learning provides a promis-
ing solution to the above challenge, which aims to
efficiently train models by labeling only the most
informative and diverse samples (Settles, 2009).
Our work extends active learning to target prompt
optimization for LLM-as-a-judge systems in evalu-
ation tasks.

In this paper, we propose a novel approach that
does not require any labeled data to start with. Our
method iteratively refines the evaluation prompt
through selective labeling and feedback-driven up-
dates. At each iteration, our method actively selects
a small subset of unlabeled data samples that are
both diverse in content and uncertain in their pre-
diction of the evaluation score. These samples are
then labeled by human annotators and used to eval-
uate the performance of the current prompt. Based
on the discrepancies between the prompt’s outputs
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and the labeled ground truth, a reflection process
generates insights to guide prompt refinement. This
iterative process continues until the labeling budget
is exhausted, progressively improving the evalua-
tion quality. Central to our approach is a principled
sample selection mechanism, formulated as a con-
vex optimization problem that balances uncertainty
and diversity to maximize the value of each labeled
sample. By focusing labeling efforts on the most
informative data, our framework ensures the effi-
cient use of limited supervision while enhancing
the performance of LLM-as-a-judge systems. Our
major contributions are summarized below:

• We introduce an automatic prompt optimiza-
tion method designed specifically for LLM-as-
a-judge systems in label-scarce settings, an under-
explored research area

• Compared with prior works, our approach sig-
nificantly enhances the efficiency of automated
prompt optimization by incorporating an innova-
tive active sampling strategy to select the most
informative and diverse data

• Our active sampling strategy is framed as a sub-
set selection problem, incorporating carefully de-
signed constraints and convex optimization to en-
sure a tractable solution.

• We validate our method across multiple real-world
datasets, including one from a deployed product,
demonstrating that it consistently outperforms
baseline methods in accuracy and labeling effi-
ciency.

Additional Background The proposed method
addresses our challenge of developing an efficient
and scalable evaluation system for a conversational
agent that provides personalized health coaching
to users. The conversational agent uses data from
wearable devices to provide actionable health in-
sights and recommendations, in order to empower
users to improve their health outcomes. Evaluating
such an agent at scale presents significant difficul-
ties due to the reliance on domain experts with
health coaching backgrounds, which incurs high
costs and limits scalability. To overcome these lim-
itations, we explore LLM-based evaluation, which
relies on prompt optimization with iterative refine-
ment on annotated data. Based on the proposed
approach, we designed and deployed an automated
system to refine prompts via active sampling and
feedback, reducing manual annotation needs. It bal-
ances trade-offs in cost, accuracy, and automation,

overcoming deployment challenges and enabling
scalable, cost-effective evaluation.

2 Related Work
Prompt Optimization. APO aims to refine
prompts for LLMs without modifying the param-
eters. Early methods leverage paraphrasing, in-
cluding phrase editing (Prasad et al., 2022) and
back translation (Xu et al., 2022), to generate di-
verse candidate prompts. Subsequent advance-
ments leveraged LLMs for prompt generation and
evaluation. Notably, Automatic Prompt Engineer-
ing (Zhou et al., 2022) introduced iterative prompt
generation guided by LLM feedback. Similarly,
error-reflection-driven approaches (Pryzant et al.,
2023; He et al., 2024) refined prompts by analyzing
incorrect predictions. Other techniques have incor-
porated historical prompt performance data (Yang
et al., 2023), expert-level planning (Wang et al.,
2023), evolutionary algorithms (Fernando et al.,
2023), and heuristic-driven prompt selection (Wen
et al., 2025; Cui et al., 2025). Recently, heuristic-
based sampling methods (Chen et al., 2024) have
prioritized promising prompts informed by human
feedback. Despite the advancements, most ap-
proaches heavily rely on extensive labeled data,
posing challenges for low-resource scenarios.
Active Learning. Active learning is a machine
learning paradigm where models selectively query
the most informative samples for labeling to en-
hance performance while minimizing supervision
(Settles, 2009). Common strategies prioritize sam-
ples based on uncertainty, diversity, or representa-
tiveness (Ren et al., 2021). Although active learn-
ing has been extensively applied to classification
and regression tasks, its potential integration into
prompt optimization—particularly within the con-
text of LLM-as-a-judge—remains unexplored.
LLM-as-a-Judge and Efficient Evaluation. Re-
cent works have explored LLMs as evaluators (i.e.,
judges) for ranking and scoring language model
outputs. MT-Bench and Chatbot Arena (Zheng
et al., 2023), JuStRank (Song et al., 2024), and
Re-Evaluating LLM Judges (Liu et al., 2024) have
evaluated the consistency and reliability of LLM-
as-a-judge setups. In parallel, efforts in efficient
benchmarking aim to reduce the annotation cost
for evaluation tasks, such as by selecting fewer yet
informative test examples (Li et al., 2023; Fu et al.,
2024). Our work builds on these insights and fo-
cuses on the automatic optimization of LLM judges
under limited labeling budgets.
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3 Methodology

3.1 Problem Formulation

We consider an LLM-as-a-judge scenario, where
LLM serves as a judge for evaluation tasks. The
evaluation is performed through an LLM prompt
p designed for a specific task T . Formally, given
an initial prompt p0, an unlabeled dataset D =
{xn|Nn=1} related to task T , and a labeler L(xn)→
yn capable of providing ground-truth labels within
a limited labeling budget B (i.e., the labeler can
label at most B samples), our goal is to optimize
the initial prompt p0 into an improved prompt p∗

to maximize the LLM’s performance on the evalu-
ation task T .

3.2 Overview of the Approach

Our framework begins with an initial prompt p0
for the LLM-as-a-judge and an unlabeled dataset,
and iteratively optimizes the prompt through active
sampling and reflection-driven updates. As illus-
trated in Figure 1, three LLM agents collaborate in
this process: the Judge, the Reflector, and the Up-
dater, all implemented using the same underlying
LLM but serving distinct roles.

At each iteration i, an active sampling mod-
ule, formulated as a numerical optimization prob-
lem (Section 3.3), selects a small subset of unla-
beled samples that are most informative and diverse.
These selected samples are labeled by human an-
notators (labeler), and then passed to the Judge,
which uses the current prompt pi to generate evalu-
ation predictions for the labeled samples. Next, the
Reflector compares the Judge’s predictions with
the ground-truth labels and generates reflections
that identify weaknesses or improvement oppor-
tunities in the current prompt. These reflections
are then used by the Updater, which synthesizes
them into a refined prompt pi+1 for the Judge. We
provide example prompts for Judge, Reflector and
Updater in the Appendix.

This process continues iteratively, refining the
prompt at each step until the labeling budget is ex-
hausted. At the end of the process, the finalized
prompt is returned. This design enables efficient
use of limited labels by ensuring that only the most
impactful samples are used for prompt improve-
ment. Algorithm 1 outlines the detailed procedure
for our active prompt optimization framework.

In Algorithm 2, we provide more details on the
active sampling process. The method ensures that
the selected subset consists of the most uncertain

Algorithm 1 Proposed active prompt optimization

k ← batch size
B ← labeling budget
imax ← B

k ▷ max number of iterations
p← initial prompt
Dunlabeled ← Dfull ▷ initialize with full data
Dlabeled ← ∅ ▷ initialize with an empty set
i← 1
while i ≤ imax do

Dselect ← ActSamp(Dunlabeled, p)
Dselect ← Judge(Dselect)
Dlabeled ← Dlabeled +Dselect
Dunlabeled ← Dunlabeled −Dselect
reflection← Reflector(p,Dlabeled)
p← Updater(p, reflection)
i← i+ 1

end while
return p

Algorithm 2 Active sampling

Require: Dataset with n unlabeled samples, max-
imum selection size k, number of clusters c,
hyperparameter λ

Ensure: Subset of k selected samples for labeling
1: Initialize: Load data; extract texts and sum-

maries
2: Generate n uncertainty scores randomly
3: Encode texts into embedding space; apply K-

means clustering (c clusters) and assign each
sample a cluster label

4: Define selection variable w ∈ Rn where wi ∈
[0, 1]

5: Define Objective: Maximize informativeness
and diversity

Compute entropy-based diversity scores
H(S) from:

- Sample representation across text groups
- Sample distribution across cluster groups

6: Optimization Problem:
7: Maximize: λ

∑
iwiUi + (1− λ)H(S)

Subject to:
-
∑

wi ≤ k (selection budget)
- Category coverage constraints for text and

cluster diversity
- wi ∈ [0, 1] (feasibility constraint)

8: Solve using a convex solver
9: Select top-k samples with highest optimization

scores; return selected subset for labeling
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Figure 1: Flowchart of our active-sampling-based automatic prompt optimization. The process iteratively selects
informative and diverse samples, refines the prompt, and stops when the labeling budget is exhausted.

and diverse samples, leading to a more efficient
labeling process.

3.3 Proposed Active Sampling
Traditional reflection-based APO methods primar-
ily select samples whose predictions (based on
the current prompt) disagree with existing ground-
truth labels, facilitating reflection-driven updates
(Pryzant et al., 2023). However, they are not appli-
cable in label-scarce scenarios, as they rely on full
access to labeled data to identify discrepancies.

While one could randomly sample from the pool
of unlabeled data, not all samples are equally help-
ful—some are more informative or diverse than oth-
ers and thus contribute more effectively to prompt
improvement. Consequently, we propose an ac-
tive sampling strategy that identifies and selects
samples without labels by explicitly maximizing
uncertainty and diversity. This enables efficient uti-
lization of limited labeling budgets and enhances
the optimization process when initial labeled data
is unavailable.

Subset Selection with Maximal Diversity
and Uncertainty: Given an unlabeled dataset
Dunlabeled with N samples, our objective is to select
an optimal subset Dselect ⊆ Dunlabeled of size k that
maximizes an affine combination of uncertainty
and diversity scores. To facilitate optimization in
continuous space, we represent sample selection us-
ing a weight vector w ∈ RN , where each element
wx ∈ [0, 1] indicates whether sample x is selected
or not (0 for unselected, 1 for fully selected). wx is
relaxed to a continuous number instead of a discrete
number, which will be discussed later.

For each sample x ∈ Dunlabeled, an uncertainty
score U(x) is computed as the sum of two vari-
ances:

U(x) = Vartemp(x) + Varrephrase(x), (1)

where Vartemp(x) is the variance of predictions
from the LLM with different sampling tempera-
tures, reflecting uncertainty in probabilistic token
generation, and Varrephrase(x) is the variance across
predictions from paraphrased inputs, capturing sen-
sitivity to small input perturbations. Together, these
variances quantify the model’s uncertainty about
the sample.

Diversity is quantified using categories assigned
to each sample. Formally, the diversity score H(S)
for subset S is defined as the weighted entropy over
multiple category dimensions:

H(S) = −
D∑

d=1

ηd
∑

cd

Pcd(S) logPcd(S), (2)

Pcd(S) =

∑
x∈Dunlabeled,Cd(x)=cd

wx∑
x′∈U wx′

(3)

where d denotes the index of dimension, Pcd(S)
represents the proportion of selected samples be-
longing to category cd, ηd is the weighting factor.
Higher entropy indicates a more balanced repre-
sentation across categories, thereby encouraging
the selection of samples that cover diverse content.
Researchers can select an appropriate clustering
method (e.g., K-means clustering) to generate cat-
egory assignments and use them as diversity di-
mensions. When such categorical dimensions are
already part of the data (e.g., topic or user intent
labels), they can be directly used instead of clus-
tering. This flexibility allows the framework to
generalize across datasets with or without prede-
fined sub-category labels.

To actively select samples, we formulate the fol-
lowing optimization problem:

max
w

λ
∑

x∈U
wxU(x) + (1− λ)H(S) (4)

subject to the following constraints:
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Example: Active-sampling-based Prompt Optimization in Hate Speech Detection
Task Description: Detect whether a given speech contains hate speech by assigning a score between 0 and 1, where 0
indicates no hate speech and 1 indicates explicit hate speech.
Training Set (Unlabeled Samples):
1. XXX immigrants are criminals who come here to steal and destroy our way of life.
2. Men/women like XXX often struggle in leadership because they think differently.
3. People with disabilities like XXX are just burdens on society.
4. People who follow XXX ideology are easily manipulated and dangerous to society.
Testing Set (Labeled Samples):
1. It’s unfortunate, but XXX just aren’t as productive in the workplace. (Score: 0.75)
2. Fat/ugly people like XXX disgust me—they have no self-respect and should stay out of sight. (Score: 0.89)
Initial Prompt: "Given a text, assign a score between 0 and 1 to determine the likelihood that it contains hate speech."
Issue: This prompt yields inaccurate results in the testing set, failing to guide the model to identify nuanced hate speech.
Active Sampling Step: Our approach selects the most uncertain and diverse samples for labeling based on the optimization
problem as discussed before. Samples (2) and (4) are selected as they receive high uncertainty score and high diversity score
based on the proposed metric. These samples are labeled by human annotators as follows:
• (2) Men/women like XXX often struggle in leadership because they think differently. → 0.70
• (4) People who follow XXX ideology are easily manipulated and dangerous to society. → 0.75

Reflection generated by analyzing labeled samples: "Hate speech is not always direct or explicit. Some statements present
themselves as factual observations but contain implicit biases and stereotypes targeting specific groups. Such speech, even if
framed as an opinion or observation, should be considered hate speech and assigned a higher score."
Updated prompt based on the reflection and the original prompt: "Given a text, assign a hate speech score between 0
and 1. Consider that hate speech can be explicit (e.g., direct slurs) or implicit (e.g., statements that reinforce stereotypes
or promote bias under the guise of opinion or fact). Ensure that biased and stereotype-driven speech is also identified and
scored appropriately."
Result: By labeling fewer samples, we refined the prompt to better capture implicit hate speech, significantly reducing MSE.

Figure 2: Demonstration of active sampling in hate speech detection. Our approach selects the most uncertain and
diverse samples for labeling, generates reflections, and updates the prompt to improve detection performance.

s.t.
∑

x∈Dunlabeled

wx ≤ k (5)

∑

x∈Dunlabeled,Cd(x)=cd

wx ≥ α|cd|, ∀d,∀cd (6)

∑

x∈Dunlabeled

wxU(x) ≥ β|Dunlabeled| (7)

0 ≤ wx ≤ 1, ∀x (8)

Eq.4 defines our objective: we aim to select a
subset of samples such that the weighted sum of
their uncertainty and diversity scores is maximized.
Intuitively, this helps prioritize samples that are
both uncertain (the model is less confident) and
diverse (spanning different content categories or
topics). Maximizing this objective ensures that
each selected batch of samples contributes mean-
ingful new information to the prompt optimization
process.

The constraints further shape the selection strat-
egy to ensure efficient use of the labeling budget.
Inequalities 5 and 8 help enforce sparsity by lim-
iting the selection of k samples (details will be
discussed later). Inequalities 6 and 7 impose lower
bounds on diversity and uncertainty from selected
samples, respectively, where α and β are constants
with pre-set values, |cd| is the size of cluster cd.

In the context of APO, there is a critical chal-

lenge to be resolved: without ground-truth labels,
we cannot rely on traditional disagreement-based
selection strategies that compare predictions to
known labels. To address this, we estimate uncer-
tainty based on the LLM’s own predictive variabil-
ity (i.e., the degree of disagreement across multiple
outputs given the same input). By targeting sam-
ples that exhibit high model uncertainty and broad
diversity, we increase the likelihood that the se-
lected and labeled samples will yield meaningful
reflections for prompt updates, accelerating opti-
mization while minimizing redundancy.

The optimization problem in Eq. 4 is convex: the
objective combines a linear term (uncertainty) and
a concave entropy term (diversity), and the feasible
region defined by Constraints is convex, consisting
of linear inequalities (5-7) and a box constraint (8).

Ideally, we prefer an L0 pseudo-norm where wx

strictly equals 0 or 1 to enforce binary selection
of data samples. However, due to computational
complexity, we apply an L1 relaxation to facilitate
efficient convex optimization (Ramirez et al., 2013).
After solving this relaxed optimization problem, we
perform a top-k data sample selection based on the
optimized weights w∗, determining the final subset
of samples for labeling at each iteration.
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4 Experiments

Datasets We experiment on the following
datasets: 1. SummEval: This dataset consists of
original texts paired with machine-generated sum-
maries. Each summary is evaluated by scores (1-5)
in four dimensions: coherence, consistency, flu-
ency, and relevance (Fabbri et al., 2020). 2. In-
House Health Coaching Datasets: The dataset used
in product development for an AI-based conversa-
tional agent for health coaching. In this dataset,
each conversation data sample consists user health
data and additional user profile information, user
message, response from the conversational agent,
and conversation history. The evaluation task is to
judge the quality of the response. Each data sam-
ple is associated with evaluation scores (0–3) in
three dimensions: accuracy (whether the response
is consistent with domain knowledge), grounding
(whether the response is relevant to user’s personal
information and history), and safety (the extent to
which the response avoids harmful or inappropriate
content).

Implementation Details The dataset is randomly
split into training and testing sets with a 60/40 ratio.
We assume all testing samples have ground-truth
labels, allowing us to report MSE on the test set.
The total number of iterations is set to 15. The
maximum total labeling budget (B) is set to 50%
of the number of samples in the training set, with
each iteration using a labeling budget of B/15. For
each experiment, we ran five times and recorded the
average MSE to reduce the randomness. However,
it should be noted that we may not use the entire
budget to achieve sufficiently good performance.
Empirically, we can apply early stopping at around
Iteration 5 based on empirical alignment between
human annotation and auto evaluation scores, using
only around B/3 budget. We will provide more
details on the discussions later.

For evaluation, we employ the Mean Squared
Error (MSE) metric, which quantifies the average
squared difference between the ground-truth scores
and the scores assigned by the LLM-as-a-judge
based on the current prompt.

LLMs and Baselines We conduct our experi-
ments using four models: Gemini-1.5-Pro (Team
et al., 2024), Mistral Large 2, Llama3-70b-instruct
(Grattafiori et al., 2024), and Claude-3.5-sonnet
(Anthropic, 2024). For each set of experiments,
the same LLM is used across all three core mod-
ules of our framework: the Judge, the Reflector,

and the Updater. As baselines, we compare our
active sampling strategy with two relevant sample
selection methods: 1) random selection (Ghojogh
et al., 2020), and 2) density-based core-set selec-
tion (Phillips, 2017).

(a) In-House Dataset: Grounding
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(b) In-House Dataset: Accuracy
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(c) SummEval: Consistency
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(d) SummEval: Coherence

2 4 6 8 10 12 14
Iteration

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e 

M
SE

Random Sampling
Proposed Method

Density-based Sampling
Initial Prompt

Figure 3: MSE trends over prompt updates using differ-
ent sampling strategies. (a–b) coaching quality eval-
uations, (c–d) text summarization evaluations. The
proposed method achieves significant MSE reduction
within 3-4 iterations, and we empirically apply early-
stopping to achieve the best results

Uncertainty and Diversity Computation To
guide active sample selection, we compute both
uncertainty and diversity scores at each iteration.

The uncertainty score consists of two compo-
nents: (1) the variance of predicted scores from the
LLM using the current prompt at different tempera-
ture settings {0, 0.25, 0.5, 1}, and (2) the variance
of predicted scores from the LLM using the cur-
rent prompt on five different rephrasings of the in-
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put, generated by a pre-trained paraphrasing model
(ChatGPT Paraphraser (Vladimir Vorobev, 2023)).

Diversity is computed by encoding input texts
using a transformer-based encoder, MiniLM (Wang
et al., 2020), followed by K-means clustering. For
SummEval, we apply K-means on embeddings of
summarization texts, while for the in-house health
coaching dataset, clustering is performed on em-
beddings of user messages. The resulting cluster
assignments serve as categorical labels for diver-
sity computation, with the number of clusters set
to k = 5 based on empirical grid search.

5 Results
Figure 3 presents Mean Squared Error (MSE)
trends over 15 iterations for four strategies: Active
Sampling (proposed), Random Sampling, Density-
Based Sampling, and Initial Judging Prompt (no
updates). Due to space limitations, we report re-
sults with Gemini on two evaluation tasks from
each of the datasets. Results with three additional
LLMs (Llama, Claude, and Mistral) and the com-
plete set of evaluation tasks show similar trends
and are provided in the Appendix A.1.

5.1 Performance and Efficiency Analysis
All prompt optimization strategies, including Ac-
tive Sampling, Random Sampling, and Density-
Based Sampling, reduce MSE compared to the Ini-
tial Judging Prompt, validating the effectiveness of
iterative prompt refinement. Notably, Active Sam-
pling consistently achieves the lowest MSE across
most iterations, with the most substantial gains ob-
served early in the optimization process.

By prioritizing uncertain and diverse samples,
Active Sampling achieves significant MSE reduc-
tion within the first five iterations (labeling 16%
of training samples), while alternative strategies re-
quire labeling 32–50% of samples to reach similar
accuracy. As the optimization progresses, perfor-
mance gains diminish and MSE curves converge,
indicating limited value from remaining unlabeled
samples. These trends highlight the efficiency of
our method in improving evaluation quality under
strict labeling budgets, particularly in early itera-
tions when sample selection plays a critical role.

5.2 Overfitting & Early Stopping
In some experiments, we observed an increase in
MSE during later iterations across all strategies.
This phenomenon, consistent with prior findings
(Pryzant et al., 2023), is attributed to overfitting.
As prompts are updated using a fixed set of labeled

data, they may become overly tailored to those
examples, reducing generalization to unseen data.
We apply early stopping to address this issue.

5.3 Cost Analysis
We provide a simplified cost analysis for prompt
optimization in LLM-as-a-Judge scenarios. For au-
tomated prompt optimization, the total cost may
include human annotation fanno and LLM-related
cost fLLM = fjudge + freflector + fupdater. We
denote the total number of data samples as N .
For the proposed method, annotation cost is es-
timated as fanno(arN) where r is the rounds of
annotation (usually set to 3 with early stopping)
and a is the percentage of data samples to be
annotated per round (usually set to 1/30). Sim-
ilarly, the cost of Judge and Reflector is related
to the total number of tokens, which depends on
the number of data samples. The cost can be es-
timated as fjudge((t+ p)rN) and freflector(arN)
where t is the number of temperature values and
p is the number of paraphrased text per sample
to estimate uncertainty. The Updater does not
analyze data samples and its cost is fupdator(r).
For the baseline method of prompt optimization
without active sampling, annotation cost could be
higher fanno(kN) where k is the preset percentage
of samples to be labeled. The LLM-related cost
is fjudge(rkN), freflector(rkN) and fupdator(r).
Empirically, fanno ≫ fLLM and a < k, making
the proposed method cost-efficient.

6 Conclusion
We propose an active-sampling-based APO method
to enhance the reliability of LLM-as-a-judge in
label-scarce scenarios. Our approach strategically
selects diverse and informative samples for label-
ing, enabling more effective prompt refinement
with minimal human annotation. A theoretical con-
tribution of our work is the formulation of the ac-
tive sampling problem as a convex optimization
problem to identify the most diverse and informa-
tive subset of samples. Experimental results across
multiple datasets demonstrated that the proposed
prompt optimization method achieves lower MSE
compared to prior works, especially during early
iterations. Consequently, our method significantly
reduces the annotation budget while facilitating ef-
ficient prompt tuning. These findings underscore
the critical role of active sampling strategies in
improving the effectiveness of APO for LLM in
evaluation tasks.
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Ethical Considerations This research utilizes
synthetic health data and does not involve data col-
lection from human participants. Therefore, Institu-
tional Review Board (IRB) approval is not required.
To the best of our knowledge, the research and
experiments presented in this paper do not raise
ethical concerns. However, it is important to note
that evaluations based on large language models
(LLMs) may exhibit bias, particularly when ap-
plied to human-related data. Should the proposed
algorithm be employed in future studies involv-
ing human-related data, a systematic evaluation
of ethical implications and potential risks will be
essential.
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A Appendix

In the appendix, we report additional experiment
results, provide examples of prompts and discuss
limitations of the paper.

A.1 Additional Experimental Results
A.1.1 Gemini
Figures 4–5 present additional results from the
Gemini model that are not included in the main
content.
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(a) SummEval dataset (fluency)
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(b) SummEval dataset (relevance)

Figure 4: MSE over 15 iterations of prompt updates for
SummEval across different aspects of text summariza-
tion quality.
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Figure 5: MSE over 15 iterations of prompt updates for
the in-house dataset (safety).

A.1.2 Mistral, Llama, and Claude
We report results for three open-sourced LLMs on
one evaluation task per dataset, as other tasks ex-
hibit similar performance trends (Figures 6–8). The
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same observation holds across other open-sourced
LLMs evaluated in our study, where active sam-
pling consistently outperforms baseline strategies
in both prompt optimization efficiency and evalua-
tion accuracy.
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(a) In-house dataset (grounding)
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(b) SummEval dataset (consistency)

Figure 6: MSE over 15 iterations of prompt updates for
LLM-as-a-judge using Mistral Large 2, evaluated on
one task per dataset.
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Figure 7: MSE over 15 iterations of prompt updates for
LLM-as-a-judge using Llama3-70b-instruct, evaluated
on one task per dataset.

A.2 Prompt Templates

In this section, we share prompt templates for dif-
ferent agents as discussed in the main paper. We
use the SummEval dataset as an example.
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Figure 8: MSE over 15 iterations of prompt updates for
LLM-as-a-judge using Claude-3.5-sonnet, evaluated
on one task per dataset.

Prompt for Judge

<ORIGINAL_TEXT>
{original_text}
</ORIGINAL_TEXT>

<SUMMARIZATION>
{summarization}
</SUMMARIZATION>

ORIGINAL_TEXT contains a piece of
long text, and SUMMARIZATION is another
piece of text summarizing ORIGINAL_TEXT.

Generate a score to characterize the
consistency of the SUMMARIZATION with
respect to ORIGINAL_TEXT.
Output a score between 0 and 5 ONLY
(strictly follow this rule).

Prompt for Reflector

I’m trying to write a prompt to ask LLM
provide a {metric} score for a piece
of text summarization of its original
text.
My current prompt is:
"{prompt}"

I got some results from running this
prompt with LLM on some examples. The
result for each example follows the
key-value pair format:
"’original text: xxx’, ’text
summarization: xxx’, ’{metric} score
output with the prompt: xxx’,
’ground-truth {metric} score from human
annotators: xxx’".
Below are the results for examples:
{labeled example}
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For EACH example, carefully analyze the
differences between score output with
the prompt and ground-truth score from
human annotators.
Identify specific area where the prompt
could be improved to better align with
the ground-truth scores.
Provide constructive feedback by
highlighting:
1. Any patterns in the differences...
2. Suggested refinements...
3. If the current prompt is already
performing well, provide positive
feedback...

Prompt for Updater

I’m trying to write a prompt to ask LLM
to provide a {metric} score for a piece
of text summarization of its original
text.

My current prompt is:
{prompt}

I got some results from running this
prompt with LLM on some examples. The
result for each example follows the
key-value pair format:
"’original text: xxx’, ’text
summarization: xxx’, ’{metric} score
output with the prompt: xxx’,
’ground-truth {metric} score from human
annotators: xxx’".
Below are the results for examples:
{labeled example}

Based on these results, the feedback on
the current prompt is: {feedback}

Based on the above information, please
refine the prompt in ways that you
believe will genuinely enhance the
accuracy of score output.
Your major goal is to make the new prompt
better achieving alignment between score
output with the prompt and ground-truth
score from human annotators.

A.3 Limitations
While our approach effectively optimizes prompts
with limited labeled data, we observe an issue: over-
fitting of APO happens in later iterations. Cur-
rently, we use early stopping to address this issue.
We leave more advanced techniques (e.g., adaptive
regularization, meta-learning strategies) for future
work.
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