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Abstract

Electronic Health Records contain vast
amounts of valuable clinical data, much of
which is stored as unstructured text. Extracting
meaningful clinical events (e.g., disorders,
symptoms, findings, medications, and pro-
cedures etc.) in context within real-world
healthcare settings is crucial for enabling
downstream applications such as disease pre-
diction, clinical coding for billing and decision
support. After Named Entity Recognition
and Linking (NER+L) methodology, the
identified concepts need to be further classified
(i.e. contextualized) for distinct properties
such as their relevance to the patient, their
temporal and negated status for meaningful
clinical use. We present a solution that, using
an existing NER+L approach - MedCAT,
classifies and contextualizes medical entities
at scale. We evaluate the NLP approaches
through 14 distinct real-world clinical text
classification projects, testing our suite of
models tailored to different clinical NLP needs.
For tasks requiring high minority class recall,
BERT proves the most effective when coupled
with class imbalance mitigation techniques,
outperforming Bi-LSTM with up to 28%. For
majority class focused tasks, Bi-LSTM offers a
lightweight alternative with, on average, 32%
faster training time and lower computational
cost. Importantly, these tools are integrated
into an openly available library, enabling
users to select the best model for their specific
downstream applications.

1 Introduction

Electronic Health Records (EHRs) document pa-
tient interactions, health data, and treatment details,
including secondary uses for non-clinical, admin-
istrative, or research purposes (NHS, 2023). This
data is stored in various formats, with unstructured
text comprising a significant portion (Häyrinen
et al., 2008). Clinical text classification is a vi-
tal step in the sequence of tasks that facilitate the

extraction of clinical information. These tasks can
unlock tremendous opportunities for large-scale
systemic analysis (Spasic et al., 2020), ranging
from the detection and prediction of adverse events
(Tayefi et al., 2021), to the coding of cancer pathol-
ogy reports (Tayefi et al., 2021) and improving the
quality of care (Menachemi and Collum, 2011),
among numerous others.

Before text classification, we perform a Named
Entity Recognition and Linking task (NER+L) to
extract clinical events such as a diagnosis, symp-
tom, finding or procedure, and link each span to a
standardised clinical terminology. For example, in
the text “patient has been confirmed a diagnosis of
diabetes”, the NER+L task will extract the entity
‘diabetes’ as the diagnosis ‘diabetes mellitus’ and
link, for example, the SNOMED CT (SNOMED)
identifier: SCTID: 73211009.

For this, we build on the existing MedCAT (Kral-
jevic et al., 2021) implementation which is part
of the CogStack (Jackson et al., 2018) ecosys-
tem. MedCAT is an openly available and easily
fine-tunable NER+L tool designed for large-scale
clinical text processing which is integrated within
the CogStack framework, a scalable platform for
processing unstructured EHR data in real-world
healthcare environments. Appendix A.5 outlines
the Cogstack ecosystem and the MedCAT frame-
works for training and inference.

After NER+L, further contextualization is re-
quired to ensure that the extracted entities capture
the context in which the entity appears. This can
be referred to as an entity attribute (Savova et al.,
2010), property, modifier or a meta-annotation in
the MedCAT context. The modifier categories we
consider in this work are:

• Presence: (Not present | Hypothetical |
Present) - to determine if the entity is negated,
positively or hypothetically mentioned.

• Experiencer: (Other | Family | Patient) - to
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determine if the entity was experienced by the
patient, family member or is referred to in
some other way.

• Temporality: (Past | Future | Recent) - to de-
termine the time of the entity

The above tasks provide essential contextual infor-
mation whilst being suitably flexible for a range
of downstream uses. The most frequent use is to
filter only those clinical events that are Presence:
Present, Experiencer: Patient and Temporality: Re-
cent. Figure 1 describes an example clinical text
and the modifier classification output.
In the context of MedCAT, this contextualization
task is referred to as MetaCAT.

Figure 1: Example output for context modifier classifi-
cation

Text classification, particularly in the medical
domain, is challenging due to the complexity of the
data, the extensive use of medical jargon, the sen-
sitive nature of the information, and the presence
of inconsistent or missing data (Ratwani, 2017).
Additionally, medical data often suffers from class
imbalance, presenting further challenges (Khushi
et al., 2021).
To address these challenges, prior work has ex-
plored the use of Bi-directional Long-Short Term
Memory (Bi-LSTM) (Mascio et al., 2020), trans-
former approaches, i.e Bidirectional Encoder Rep-
resentations (BERT) (Devlin et al., 2019) models
(Li et al., 2024) (Si et al., 2019) and causal large
language models (Nazi and Peng, 2024).

In this study, we analyze and present a deployed
NLP solution within an the CogStack-MedCAT
framework for large-scale classification and con-
textualization of medical entities across a diverse
range of clinical NER+L projects. This ensures
that extracted entities are accurately categorized
within their clinical context, improving reliability
for downstream tasks. Specifically, we:

• Evaluate the performance of Bi-LSTM,
Masked language models (BERT, Modern-
BERT) and larger Causal language models

Table 1: Dataset description

Category Class Samples

Presence
Not present (False) 578
Hypothetical (N/A) 978

Present (True) 7430

Experiencer
Other 1002

Family 75
Patient 7908

Temporality
Past 733

Future 484
Recent 7771

(Llama, Mistral) for clinical text classification
on real-world EHR data.

• Analyze the impact of class imbalance and
explore mitigation techniques to enhance per-
formance for underrepresented classes.

• Leverage Large Language Models (LLMs)
to generate synthetic data and investigate in-
context learning for medical classification
tasks.

• Provide comprehensive tooling to users to
train, evaluate and use trained models for spe-
cific and often varied downstream uses.

Our work contributes to the deployment of NLP
in healthcare by addressing practical challenges
such as scalability, adaptability, and model per-
formance in real-world clinical settings where ex-
tracted clinical events are often mixed and diverse,
and tools are deployed and used in often low com-
pute availability settings.

2 Methodology

2.1 Dataset Description

The dataset is sourced from CogStack, deployed at
Guy’s & St Thomas’ NHS Foundation Trust and
comprises of 14 annotation projects, 1800 docu-
ments, 10252 annotations, and 203 distinct clinical
events across the 3 tasks.

The data has been collected across multiple clin-
ical specialties and clinical operational use cases
e.g. geriatrics, nephrology, ENT and metabolic dis-
orders. Table 1 shows the aggregate distribution of
annotations across all projects.
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2.2 Masked Language Models

In this study, we use a BERT (Devlin et al., 2019)
model, a Transformer (Vaswani et al., 2017) based
encoder only model as our base model to per-
form the described medical text classification task
(bert-base-uncased)1. From early experimentation,
incorporating the representation of the entire se-
quence along with the medical entity improved
performance over just including the embedding
representing of the medical entity. We used the
BERT model with 10 encoder layers, trained with
a dropout rate of 0.2, the AdamW optimizer com-
bined with a learning rate scheduler, and a batch
size of 128. Stratified splitting is employed to all
trained models to ensure that all classes are ade-
quately represented in both the training and test
datasets.

In this study, we experiment with frozen BERT
parameters and fine tuning BERT with LoRA
(Liu et al., 2022). Our experiments show LoRA-
based fine-tuning enables effective model adap-
tation. This model configuration is ablated with
alternative methodologies described in Section 2.4.

In addition to BERT, we evaluate ModernBERT
as well, given its improvements over standard
BERT in general-domain NLP tasks (Warner et al.,
2024). This allows us to assess whether recent im-
provements translate to medical text classification.

2.3 Bi-LSTM Model

We also employ a Bi-LSTM model for the given
classification task. In this workflow, the text inputs
are tokenized using Byte-Level Byte-Pair Encod-
ing (BBPE), a subword-level tokenizer adapted for
word segmentation (Sennrich et al., 2015; Wang
et al., 2020a; Wolf et al., 2019). The resulting to-
kens were embedded using pretrained Word2Vec
(Mikolov et al., 2013) embeddings, which were
fine-tuned during training to better suit the task-
specific vocabulary and semantics. Training was
conducted using the AdamW optimizer, with a
dropout rate of 0.3, 5 Bi-LSTM layers, and a batch
size of 128.

2.4 Class imbalance

Class imbalance is a common challenge in real-
world datasets, particularly in clinical data (Kumar
et al., 2022). Our dataset exemplifies this, as for
the Experiencer task, the ‘Family’ class represents
only 1% of the data compared to the ‘Patient’ class.

1https://huggingface.co/google-bert/bert-base-uncased

Despite efforts to collect additional annotated data
for underrepresented classes, the class distribution
remained unchanged, highlighting the issue of class
imbalance. To address class imbalance, we use the
below mentioned methodologies with the masked
language models and the Bi-LSTM model.

2.4.1 Class Weights
Class weights can address class imbalance by
giving different weights (importance) to the ma-
jority and minority classes. The difference in
class weights impacts training by assigning higher
weights to the minority class to penalize its mis-
classification while reducing the weight for the
majority class encourages the model to learn and
better recognize the minority classes (Johnson and
Khoshgoftaar, 2019).

2.4.2 Synthetic Data Generation using LLM
One potential solution to class imbalance is to
generate additional data for the underrepresented
classes. We use the Mistral 7B instruct model
(Jiang et al., 2023) for data generation as in our
experimentation, it demonstrated superior data gen-
eration capabilities compared to Llama 3 (Dubey
et al., 2024). The model is prompted with 10 exam-
ples from our manually collected dataset, 8 from
the minority classes and 2 from the majority classes.
Manual validation was performed to ensure the in-
tegrity of the data. The synthetic data comprises
less than 5% of the total dataset, which prevents the
data distribution from being significantly altered.
We randomly sample clinical events to generate
synthetic examples for each of the 3 tasks. Ap-
pendix A.1 shows examples of generated data for
all tasks.

2.4.3 2-Phase Learning
2-phase learning (Lee et al., 2016) is a training ap-
proach designed to fix the issue of the gradients
being dominated by the majority class. Each phase
varies class weights usage and learning rate result-
ing in majority class dominance being mitigated.
The 2 phases in this approach are:

• Phase 1: In this phase, all classes are down
sampled to a specified value N (that is close
to the number of samples for the minority
class) and training is performed with higher
class weights given to minority classes. Phase
1 allows the model to capture and learn the
details for the minority classes.
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• Phase 2: During this stage, the model under-
goes a second round of training, now on the
entire dataset. The class weights assigned
to minority classes are high but lower com-
pared to the initial phase. This phase allows
the model to capture the finer details for all
classes, leading to a more finely-tuned model.

2.5 Causal Large Language Models for
classification

Causal Large Language Models (LLMs) have seen
widespread usage in NLP and specifically in text
classification tasks (Spasic et al., 2020). We use
Llama 3.1 8B instruct (Dubey et al., 2024) and Mis-
tral 7B instruct (Jiang et al., 2023). These models
have been pre-trained on large volumes of web-
scale data (Brown et al., 2020), then further pre-
trained to follow instructions (Brown et al., 2020).

For classification, we rely solely on zero-shot
and few-shot learning, as the high computational
cost makes large-scale fine-tuning infeasible at our
clinical sites where compute resources are lim-
ited. Zero-shot learning (Radford et al., 2019)
(Larochelle et al., 2008) is where the model per-
forms classification based only on the instructions
in the prompt without any ‘training’ examples
(Rohrbach et al., 2011). In few-shot learning (Wang
et al., 2020b), the model is prompted with a limited
set of examples (inputs and their corresponding
outputs) alongside the classification instructions,
enabling it to better understand the task at hand.
For few-shot learning, the models were provided
with a total of 9 examples, distributed as 3 exam-
ples per class. The choice of 9 examples per task
aims to maintain simplicity, clarity, and concise-
ness in the prompts, with longer prompts having
the potential to reduce the model’s effectiveness in
performing these tasks (Brown et al., 2020) (Sahoo
et al., 2024). Appendix A.2 contains the prompts
used for both models. For practical use in real-
world applications, we consider the trade-offs of
using LLMs, including model size, performance
and computational resource requirements.

3 Results

This section reports model performance using
macro F1-score and recall, which are particularly
relevant given the severe class imbalance. Table
2 summarizes the results for all tasks, while Ap-
pendix A.4 presents the ablation results for each
task.

3.1 Performance of Models

BERT models consistently achieved higher macro
F1-score and minority class recall compared to both
Bi-LSTM and ModernBERT models.
Bi-LSTM models, when combined with class im-
balance mitigation techniques, showed improved
performance for one minority class but struggled
on the other. In contrast, BERT models demon-
strated consistently strong performance across both
minority classes, achieving up to 28% higher recall
for minority classes.

ModernBERT also benefited from class imbal-
ance mitigation and performed well across both mi-
nority and majority classes. However, BERT model
achieves higher macro F1-score and recall for mi-
nority class on all classification tasks. This per-
formance gap can be attributed to ModernBERT’s
design optimizations for efficiency, which could
limit its capacity to capture the complex contextual
relationships often present in medical text.

3.2 Performance of Class Imbalance
Mitigation Techniques

Synthetic data generation consistently improved
minority class recall, especially in the Experiencer
and Presence tasks. However, this did not translate
into an improved macro F1-score and in many cases
reduced performance on majority class.

2-phase learning led to enhancements in both
BiLSTM and BERT models for F1-score and espe-
cially recall for minority classes, which improved
up to 9%. In most cases, it outperformed synthetic
data generation, suggesting it is more effective at
addressing class imbalance.

The combined approach of synthetic data and
two-phase learning outperformed all other setups
across models and tasks. In addition to improving
minority class recall, it also boosted macro F1-
score and majority class performance in several
cases, indicating a more balanced and generalizable
learning process. Notably, it achieved gains with
up to 16% improvement in minority class recall
and 11% improvement in macro F1-score for the
Experience task.

3.3 Performance of LLMs for in-context
classification

This section evaluates the performance of Llama
and Mistral models in few-shot learning for our
classification tasks. As zero-shot learning pro-
duced subpar results, we plan to report on en-
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CW - class weights in favour of minority classes; 2PL - 2-phase learning fine-tuning approach + CW; SD -
inclusion of synthetically generated data + CW

* indicates the majority class for the task.
w/ = with

Table 2: Model performance for all classification tasks

Task Model Accuracy Macro Recall
F1-score Not present N/A Present*

Presence

Bi-LSTM (w/ 2PL + SD) 0.89 0.84 0.84 0.79 0.92

BERT (w/ 2PL + SD) 0.89 0.87 0.87 0.84 0.9

ModernBERT (w/ 2PL + SD) 0.89 0.85 0.86 0.8 0.93

Llama 3.1 8B (few shot) 0.84 0.45 0.6 0.03 0.97
Mistral 7B (few shot) 0.8 0.38 0.1 0.2 0.95

Other Family Patient*

Experiencer

Bi-LSTM (w/ 2PL + SD) 0.92 0.83 0.84 0.73 0.93

BERT (w/ 2PL + SD) 0.93 0.93 0.89 0.94 0.95

ModernBERT (w/ 2PL + SD) 0.93 0.87 0.83 0.84 0.95

Llama 3.1 8B (few shot) 0.69 0.51 0.05 0.9 0.75
Mistral 7B (few shot) 0.74 0.53 0.17 0.65 0.8

Past Future Recent*

Temporality

Bi-LSTM (w/ 2PL + SD) 0.91 0.84 0.75 0.84 0.93

BERT (w/ CW) 0.82 0.8 0.8 0.78 0.83
BERT (w/ 2PL + SD) 0.87 0.86 0.84 0.86 0.89

ModernBERT (w/ CW) 0.86 0.8 0.7 0.81 0.91
ModernBERT (w/ 2PL

+ SD)
0.92 0.84 0.79 0.86 0.94

Llama 3.1 8B (few shot) 0.8 0.43 0.1 0.36 0.9
Mistral 7B (few shot) 0.77 0.47 0.27 0.55 0.74

hanced performance after applying the techniques
discussed in Section 4.5. Both Llama and Mis-
tral models showed performance limitations, par-
ticularly for minority classes, as indicated by their
low macro F1-scores and recall. The lowest recall
value observed was 0.05 for the Experiencer cate-
gory (achieved by Llama). However, both models
performed well on the majority class, with Llama
reaching a high recall value of 0.97 for the Presence
task. While few-shot offers advantages, it did not
yield optimal results. Further analysis is performed
in Section 4.2.

4 Discussion

4.1 Class Imbalance Mitigation Techniques
Our analysis highlights the varying strengths of the
three imbalance mitigation strategies tested. Syn-

thetic data generation enhanced minority class per-
formance by increasing training exposure for these
classes. However, its impact was limited as models
frequently misclassified minority instances as ma-
jority class labels. This highlights the need for com-
plementary strategies as synthetic data generation
alone is insufficient to overcome strong learning
biases.

2-phase learning first trained models on a bal-
anced subset to ensure early exposure to all classes,
helping them prioritize minority class patterns be-
fore majority class dominated training. While this
led to improved performance for recall and macro
F1-score, its impact was limited by the small size,
narrow coverage and low diversity of minority
class examples in the balanced subset, reducing
the model’s ability to generalize to more complex
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instances.
The combined approach of synthetic data gen-

eration and 2-phase learning yielded the strongest
performance on recall and macro F1-score across
all tasks and models. This combination works ef-
fectively because the techniques complement each
other well: synthetic data generation enriches the
representation of minority classes, ensuring the
model is exposed to sufficient and varied examples;
and 2-phase learning then allows the model to fo-
cus on minority classes first - now with a richer
and more diverse set of examples, enhancing per-
formance on these before fine-tuning on the full
dataset. This combined approach ensures balanced
performance making the model more effective and
reliable in real-world healthcare text classification
tasks.

4.2 LLMs for in-context classification

4.2.1 Performance for classification
LLMs for in-context classification exhibited limi-
tations in consistently classifying minority classes
with high recall, except for specific cases (e.g.,
Llama for the Experiencer task). Our investigation
revealed that this is likely due to a bias towards the
majority class, where the LLMs tend to classify a
sample as the default class (majority class) unless
there are clear and explicit indicators of the minor-
ity class. This approach struggles as the indicators
for minority classes are often subtle and contextual,
not always explicit. In healthcare settings, where
nuanced language is common, this bias poses chal-
lenges for accurately classifying clinical events.

4.2.2 Deployment challenges
Deploying LLMs in real-world applications poses
challenges, primarily due to their high computa-
tional cost. While fine-tuning LLMs would allow
for a fairer comparison with other methods, it is
largely impractical given the substantial compute
and time requirements involved. Hence in-context
learning is considered due to its ability to be used
directly for inference.

Although in-context learning with LLMs elim-
inates the need for labeled data and excels in ma-
jority class performance, these benefits are out-
weighed by model size, inference cost, and real-
time deployment challenges. From experience, our
typical project will assess multiple years of EHR
data, potentially looking to classify many tens of
thousands of clinical events for their contextual at-
tributes. More widely running these models over

the entirety of multi-decade EHR records will in-
volve millions of potential contextual classifica-
tions, which is challenging in healthcare IT settings
due to hardware constraints.

4.3 Classification Task Analysis

The modifier classification tasks are essential for
contextualizing medical entities, ensuring accurate
presence, attribution, and timing, which enhances
clinical decision support by reducing misinforma-
tion. We analyzed these classification tasks to un-
derstand the complexity each task poses in real-
world healthcare settings. The models performed
best on the Experiencer task due to clear class
boundaries. The Presence task was more challeng-
ing, as ‘Not present’ and ‘N/A’ can overlap de-
spite conceptual differences. The Temporality task
was the most difficult, with ‘Recent’ being well-
defined, while ‘Future’ and ‘Past’ varied widely in
time range and often lacked explicit quantification,
adding to the complexity.

4.4 Beyond Experimentation: Real-world
applications in Healthcare

4.4.1 Typical workflow for NLP project
Typically, clinical academic researchers or a health-
care data analyst will present a research question
or project. This will first define a set of relevant
EHR data. The project will then evaluate, fine-tune
and run provided models to extract a structured and
contextualized representation of the unstructured
clinical data.

4.4.2 Real-world deployment projects
This system is deployed in multiple healthcare
projects, including: early detection of high-risk
Chronic Kidney Disease patients, identification of
Brugada Syndrome cases, and the Fluoropyrimi-
dine Audit, where majority-class performance is
critical. These projects leverage structured entity
classification to enhance risk stratification, patient
outcomes, and clinical workflows. We have nu-
merous projects where the minority classes of spe-
cific tasks provide an important distinction. E.g.
the ‘Armed Forces Identification’ looks to identify
relatives of military personnel (Experiencer: Fam-
ily), ‘Cardio Myopathy’ aims to identify prognosis
(Temporality: Future).

The findings of this study provide guidance for
real-world deployment: for projects where majority
class performance is the primary focus—such as
the Fluoropyrimidine Audit, Bi-LSTM presents a
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viable choice due to its lower computational cost,
faster training time and high performance on ma-
jority class. Conversely, BERT is the most reliable
option when identifying minority classes is criti-
cal, as it consistently outperforms Bi-LSTM and
ModernBERT in recall for underrepresented cate-
gories. BERT’s higher computation cost and higher
training time (up to 32% slower) is justified by
its superior overall and specifically minority class
performance, while Bi-LSTM offers a lightweight
solution for majority class tasks. ModernBERT is
more efficient than BERT but sacrifices some abil-
ity to capture complex medical contexts. For tasks
requiring high accuracy, especially with minority
classes, BERT remains the better choice.

These insights enable the development of a suite
of models tailored to different needs and use cases,
supporting scalable, high-accuracy NLP applica-
tions with significant implications for patient care.

4.5 Limitations and Future Work

The data for this study was sourced from a sin-
gle, albeit multi-hospital provider site. We plan
to expand our dataset and run further experiments
across multiple sites, supporting more diverse use
cases of these models. We used the ’bert-base’
variant in this study. We will incorporate ’bert-
large’ and domain-specific models such as Clini-
calBERT (Huang et al., 2019) and BioBERT (Lee
et al., 2020) as they can improve performance. We
also plan further experiments with ModernBERT
to explore potential improvements and evaluate its
performance with all class imbalance mitigation
techniques across tasks. For in-context classifica-
tion with LLMs, we plan to: tweak the prompts
to encourage the inclusion of subtle indicators of
minority classes, investigate the impact of using
higher number of samples per class for few-shot
prompting on performance and also utilize Human-
in-the-loop and Chain-of-thought prompting tech-
niques to boost performance (Wei et al., 2022).
Furthermore, we intend to explore the parameter-
efficient approach of prompt tuning (Lester et al.,
2021), which enables task adaptation without fine-
tuning the model. This method is well-suited to
settings with limited computational resources and
provides a more practical and equitable comparison
with the fine-tuning approaches discussed.

5 Conclusion

The BERT model, combined with synthetic data
generation using LLMs and 2-phase learning, de-
livered the best performance, particularly in im-
proving recall for minority classes. This highlights
an effective strategy for addressing class imbal-
ance in medical text classification. This research
contributes to the field of medical NLP by develop-
ing a suite of models tailored to diverse use cases
for extracting clinical event data from unstructured
medical text, thereby enhancing clinical decision
support and patient care.
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A Appendix

A.1 Examples generated from LLMs
For Experiencer:

• His younger sibling is receiving chemotherapy
for colon cancer. They attend oncology visits
together; ‘colon cancer’ - Family

• The physician diagnosed her with Hodgkin
Lymphoma during last tuesday’s session;
‘Hodgkin Lymphoma’ - Patient

• The support group aimed at creating aware-
ness among individuals suffering from mul-
tiple sclerosis in their community; ‘multiple
sclerosis’ - Other

For Presence:

• At my annual checkup, the GP recommended
having a colonoscopy due to family history;
‘colonoscopy’ - Present
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• Patients who have severe kidney damage
might require dialysis therapy temporarily or
permanently; ‘kidney damage’ - N/A

• Upon reviewing the patient’s file, it appears
there have been no diagnoses related to asthma
or allergies; ‘asthma’ - Not present

For Temporality:

• Based on current symptoms and test re-
sults, the patient will require hip replacement
surgery in a couple of months; ‘hip replace-
ment surgery’ - Future

• The patient underwent routine mammography
today and has received the imaging results;
‘mammography’ - Recent

• Past X-ray examination indicated signs of
osteoporosis, calling for medications and
lifestyle changes; ‘osteoporosis’ - Past
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A.2 LLM prompts for zero and few shot approaches
A.2.1 Prompt for Mistral 7B instruct model
""" <s>[INST]You are a text classification bot.
Your task is to assess intent and categorize the input text into one of the following predefined categories:
2: Experiencer - Patient / default, 1: Experiencer - Family, 0: Not applicable
Explanation of labels: Label 2 (patient / default) is the class where the context strongly indicates that
the given medical entity is for the patient. The text will not explicitly contain mention that it is for the
patient, you have to infer it. Label 1 (family) is the class where the context clearly indicates that the given
medical entity is for the family. Label 0 (not applicable) is when the input data does is not applicable to
the category.
You will only respond with the predefined category. Do not provide explanations or notes.
Inquiry: text [/INST] """

A.2.2 Prompt for Llama 3.1 8B instruct model
"""<|begin_of_text|><|start_head_id|>system <|end_header_id|> You are a text classification bot. Your
task is to assess intent and categorize the input text into one of the predefined categories. <|eot_id|>
<|start_head_id|> user <|end_header_id|> Classify the input text into one of the following predefined
categories:
2: Experiencer - Patient / default, 1: Experiencer - Family, 0: Not applicable
Explanation of labels: Label 2 (patient / default) is the class where the context strongly indicates that
the given medical entity is for the patient. The text will not explicitly contain mention that it is for the
patient, you have to infer it. Label 1 (family) is the class where the context clearly indicates that the given
medical entity is for the family. Label 0 (not applicable) is when the input data does is not applicable to
the category.
You will only respond with the predefined category. Do not provide explanations or notes.
Inquiry: text <|eot_id|> <|start_header_id|> assistant <|end_header_id|> """

A.3 Summary of the modeling approaches employed

Figure 2: Overview of modelling workflow
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A.4 Results from the ablation study across models and tasks
CW - class weights in favour of minority classes; 2PL - 2-phase learning fine-tuning approach + CW; SD -

inclusion of synthetically generated data + CW
* indicates the majority class for the task.

Note: The baseline models (models with CW) for Bi-LSTM, BERT and ModernBERT have been
fine-tuned on the dataset

Table 3: Model performance for all tasks - ablated

Task Model Accuracy Macro Recall
F1-score Not present N/A Present

Presence

Bi-LSTM (w/ CW) 0.89 0.78 0.77 0.72 0.93
Bi-LSTM (w/ SD) 0.87 0.8 0.79 0.75 0.9
Bi-LSTM (w/ 2PL) 0.88 0.81 0.76 0.77 0.91

Bi-LSTM (w/ 2PL + SD) 0.89 0.84 0.84 0.79 0.92

BERT (w/ CW) 0.86 0.82 0.8 0.77 0.91
BERT (w/ SD) 0.87 0.82 0.8 0.79 0.88
BERT (w/ 2PL) 0.88 0.85 0.85 0.78 0.91

BERT (w/ 2PL + SD) 0.89 0.87 0.87 0.84 0.9

ModernBERT (w/ CW) 0.86 0.83 0.83 0.79 0.9
ModernBERT (w/ 2PL + SD) 0.89 0.85 0.86 0.8 0.93

Llama 3.1 8B (few shot) 0.84 0.45 0.6 0.03 0.97
Mistral 7B (few shot) 0.8 0.38 0.1 0.2 0.95

Other Family Patient

Experiencer

Bi-LSTM (w/ CW) 0.9 0.77 0.77 0.64 0.92
Bi-LSTM (w/ SD) 0.91 0.78 0.75 0.68 0.92
Bi-LSTM (w/ 2PL) 0.92 0.82 0.83 0.7 0.93

Bi-LSTM (w/ 2PL + SD) 0.92 0.83 0.84 0.73 0.93

BERT (w/ CW) 0.87 0.84 0.83 0.81 0.9
BERT (w/ SD) 0.88 0.87 0.84 0.85 0.91
BERT (w/ 2PL) 0.91 0.87 0.82 0.82 0.94

BERT (w/ 2PL + SD) 0.93 0.93 0.89 0.94 0.95

ModernBERT (w/ CW) 0.9 0.8 0.76 0.78 0.94
ModernBERT (w/ 2PL + SD) 0.93 0.87 0.83 0.84 0.95

Llama 3.1 8B (few shot) 0.69 0.51 0.05 0.9 0.75
Mistral 7B (few shot) 0.74 0.53 0.17 0.65 0.8

Past Future Recent

Temporality

Bi-LSTM (w/ CW) 0.87 0.79 0.72 0.78 0.91
Bi-LSTM (w/ SD) 0.87 0.8 0.75 0.77 0.9
Bi-LSTM (w/ 2PL) 0.87 0.81 0.74 0.82 0.91

Bi-LSTM (w/ 2PL + SD) 0.91 0.84 0.75 0.84 0.93

BERT (w/ CW) 0.82 0.8 0.8 0.78 0.83
BERT (w/ SD) 0.84 0.81 0.79 0.79 0.85
BERT (w/ 2PL) 0.84 0.84 0.82 0.85 0.85

BERT (w/ 2PL + SD) 0.87 0.86 0.84 0.86 0.89

ModernBERT (w/ CW) 0.86 0.8 0.7 0.81 0.91
ModernBERT (w/ 2PL + SD) 0.92 0.84 0.79 0.86 0.94

Llama 3.1 8B (few shot) 0.8 0.43 0.1 0.36 0.9
Mistral 7B (few shot) 0.77 0.47 0.27 0.55 0.74957



A.5 Summary of the existing NLP ecosystem

Figure 3: Overview of CogStack ecosystem

Figure 4: MedCAT framework for training
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Figure 5: MedCAT framework for inference
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