
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 865–872
July 28-30, 2025 ©2025 Association for Computational Linguistics

Operational Advice for Dense and Sparse Retrievers:
HNSW, Flat, or Inverted Indexes?

Jimmy Lin

David R. Cheriton School of Computer Science
University of Waterloo

jimmylin@uwaterloo.ca

Abstract
Practitioners working on dense retrieval today
face a bewildering number of choices. Beyond
selecting the embedding model, another con-
sequential choice is the actual implementation
of nearest-neighbor vector search. While best
practices recommend HNSW indexes, flat vec-
tor indexes with brute-force search represent
another viable option, particularly for smaller
corpora and for rapid prototyping. In this pa-
per, we provide experimental results on the
BEIR dataset using the open-source Lucene
search library that explicate the tradeoffs be-
tween HNSW and flat indexes (including quan-
tized variants) from the perspectives of index-
ing time, query evaluation performance, and
retrieval quality. With additional comparisons
between dense and sparse retrievers, our results
provide guidance for today’s search practitioner
in understanding the design space of dense and
sparse retrievers. To our knowledge, we are the
first to provide operational advice supported by
empirical experiments in this regard.

1 Introduction

Retrieval-augmented generation (RAG), which in-
volves injecting search results into the prompt of a
large language model (LLM) to provide context or
“grounding”, is one of the most popular and effec-
tive generative AI techniques today (Lewis et al.,
2020; Gao et al., 2024). It is widely recognized that
the quality of the generated responses depends to a
large extent on the quality of the search results, i.e.,
“garbage in, garbage out”. This makes retrieval a
critical component of RAG.

Today, practitioners typically take advantage of
vector search to generate search results, but they
face a bewildering number of choices. There’s
first-stage retrieval to generate a list of candidates,
possibly followed by reranking. Even focused on
the first stage, dense retrieval models and sparse
retrieval models compete for attention, often con-
fusing newcomers; and this is only considering

single-vector variants, leaving aside multi-vector
techniques such as ColBERT (Khattab and Zaharia,
2020). To offer a conceptual structure, Lin (2021)
provides a framework for thinking about retrieval in
terms of nearest-neighbor search over vector repre-
sentations (of queries and documents), where these
representations can be dense (typically called em-
beddings, generated from transformers) or sparse
(also generated by transformers). Relevance is cap-
tured by simple vector operations such as the dot
product, and a retriever’s task is to efficiently pro-
duce the top-k documents from a corpus based on
these similarity comparisons.

The focus of most efforts today lie in dense
retrieval models (Karpukhin et al., 2020), where
queries and documents are represented by dense
vectors (i.e., embeddings), typically generated by
transformer models that have been fine-tuned on
human-labeled or synthetically generated relevance
data. This forms the starting point of our work.
Nearest-neighbor search over dense representation
vectors defines rankings of documents with respect
to queries, but says nothing about how those rank-
ings are computed efficiently at scale. Presently,
best practices recommend the use of hierarchi-
cal navigable small-world network (HNSW) in-
dexes (Malkov and Yashunin, 2020). An alterna-
tive is so-called flat indexes that take advantage of
brute-force search, which are attractive in certain
scenarios. But when? More broadly, a search prac-
titioner today faces choices between dense retrieval
models and sparse retrieval models. How do they
navigate these options?

This work attempts to sort through these myriad
options for dense and sparse retrievers, in particular
focusing on three research questions:

RQ1 For dense retrieval, when should HNSW in-
dexes be used vs. flat indexes and what are
the associated tradeoffs?

RQ2 For both HNSW and flat indexes, when

865

should quantization be applied and what are
the associated tradeoffs?

RQ3 More broadly, what are the effectiveness–
efficiency tradeoffs between dense and
sparse retrieval across different corpora?

Ultimately, our goal is to provide operational guid-
ance for a search practitioner to navigate the com-
plex design space of dense and sparse retrieval. Our
goal is to explicate the tradeoffs involving indexing
time, query evaluation performance, and retrieval
quality to help practitioners make better decisions
informed by experimental evidence.

2 The State of the Art

It makes sense to begin with a characterization of
the state of the art, not in the sense of leaderboard
chasing, but the day-to-day choices faced by search
practitioners “in the real world”. Naturally, it is not
possible to cover all aspects of retrieval, so we fo-
cus on the three main research questions articulated
in the introduction.

Brute-force search with flat indexes was in-
troduced in Elasticsearch v8.13 (released March
2024). As Elasticsearch is built on the Lucene
search library used in our experiments, it provides
an appropriate starting point for our discussions.
An official blog post1 accompanying the release
offers the following advice: “when the size of the
set. . . is rather small, it is usually better to rely on
brute-force vector search rather than on HNSW-
based vector search.” But what does “rather small”
mean? And what other factors matter? This advice
cannot be easily operationalized, making it unhelp-
ful for search practitioners (RQ1). Elsewhere, we
find advocates for flat indexes using DataFrames,
or even Numpy,2 especially for rapid prototyping.
The same Elasticsearch blog post discusses int8
quantization, but is similarly vague about specific
guidance (RQ2). Finally, “heads up” fair compar-
isons between dense retrievers and alternative mod-
els are difficult to find (RQ3).

While we point to this specific instance to illus-
trate a gap in the state of the art, the general sen-
timents expressed in the blog post are not unique.
Other documents found on the web and on social
media are similarly handy-wavy in providing guid-

1https://www.elastic.co/blog/
whats-new-elasticsearch-platform-8-13-0

2https://x.com/softwaredoug/status/
1802433164201415000

ance, and what few specifics offered are unsup-
ported by empirical evidence. To our knowledge,
the concrete advice offered in this paper using an
existing, widely adopted benchmark does not exist
anywhere else, and represents the contribution of
our work. Of course, specific application deploy-
ments require balancing many competing factors,
and it is impossible to offer “one-size-fits-all” ad-
vice. Nevertheless, we provide empirical evidence
that accurately characterizes the design space to
inform system builders.

It is obvious that performance is affected by scale
(e.g., size of corpora and length of individual docu-
ments), the embedding model, the types of queries,
as well as many other factors, but it would be de-
sirable to provide search practitioners today more
specific guidance. According to a talk by Chroma,
a vector database vendor,3 most of their customers
manage corpora ranging from “several hundreds of
thousands” to “several millions” vectors. This is
consistent with other discussions on social media,
and provides us a point of calibration. We structure
our study in terms of corpora in this range of sizes
to benefit the broadest audience.

3 Methods

We begin by describing and justifying our exper-
imental setup. All experiments in this paper take
advantage of BEIR (Thakur et al., 2021), which
comprises a large collection of individual retrieval
datasets and has emerged as the standard bench-
mark for evaluating retrieval applications. We pro-
vide detailed experimental results over 29 different
individual datasets,4 each with different corpora,
queries, and task definitions. This variety provides
a cross section of search tasks and realistically re-
flects real-world scenarios.

Our evaluations were conducted with the open-
source Lucene search library, a choice that deserves
some discussion and justification. We provide two
main reasons: First, Lucene is the most widely de-
ployed search library in the world, mostly via plat-
forms such as Elasticsearch, Solr, and OpenSearch.
Devins et al. (2022) have shown that implementa-
tions in Lucene simplify many aspects of IR ex-
periments, but yet can be easily ported over to
Elasticsearch—this combination facilitates proto-
typing while preserving fidelity to real-world sce-

3https://www.youtube.com/watch?v=E4ot5d79jdA
4Note that CQADupStack is actually comprised of 12 different
“verticals”.

866

https://www.elastic.co/blog/whats-new-elasticsearch-platform-8-13-0
https://www.elastic.co/blog/whats-new-elasticsearch-platform-8-13-0
https://x.com/softwaredoug/status/1802433164201415000
https://x.com/softwaredoug/status/1802433164201415000
https://www.youtube.com/watch?v=E4ot5d79jdA

narios. Thus, our results would be of broad interest
to many practitioners in the community.

Second, our work with Lucene provides a com-
parison across dense and sparse techniques that is
as fair as possible given currently available soft-
ware. While Lucene provides a production-grade
implementation of HNSW indexes, it is one of
many existing options currently available on the
market. Faiss (Johnson et al., 2019) is another
popular option, and there is a vibrant ecosystem of
vendors providing vector search capabilities (Weav-
iate, Chroma, Pinecone, Vectara, Vespa, and many
others). Vector search has also been integrated into
relational databases (Xian et al., 2024), for exam-
ple, pgvector for Postgres.

However, we selected Lucene because it pro-
vides implementations of both dense and sparse
retrieval, making comparisons reasonably fair. For
example, comparing Faiss HNSW indexes (im-
plemented in C++) with Lucene inverted indexes
(implemented in Java) or even Numpy would be
conflating too many non-relevant factors (e.g., lan-
guage choice). Within the same project (Lucene),
we would expect different retrieval techniques to
have comparable implementation quality. While
Vespa does provide dense and sparse vector search
capabilities, it remains niche and lacks the wide
install base of Lucene, making results of limited
interest to the broader community.

Retrieval models. We examined the follow-
ing retrieval models in this study: (1) BGE
bge-base-en-v1.5 (Xiao et al., 2024) was selected
as a representative dense retrieval model. (2)
SPLADE++ EnsembleDistil (ED) (Formal et al.,
2022) was selected as a representative sparse re-
trieval model. (3) BM25 (Robertson and Zaragoza,
2009) provides the baseline; here we use the variant
where all document fields are concatenated prior to
indexing (Kamalloo et al., 2024).

For the dense retrieval model (BGE), our work
examined two index types. First, we considered hi-
erarchical navigable small-world network (HNSW)
indexes (Malkov and Yashunin, 2020), which rep-
resent best practices today for nearest-neighbor
search over dense vectors. Most “vector DB” ven-
dors today offer variants of such indexes.

Alternatively, we evaluated so-called “flat” in-
dexes, where the dense vectors are simply stored
sequentially, one after the other. “Indexing” in this
case is simply rewriting the embedding vectors in
an internal representation. Top-k retrieval is imple-

mented as brute-force search: the retriever simply
scans the vectors, computing (in our case) the dot
product between the query and each document vec-
tor, retaining only the top k results.

For SPLADE++ ED, we used standard inverted
indexes, taking advantage of the widely known
“fake words” trick, where quantized impact scores
replace the term frequency component in the post-
ings, and query evaluation uses a “sum of term
frequencies” scoring function. See Mackenzie et al.
(2022) for more details. BM25 also used standard
inverted indexes.

Implementation details. All experiments were
conducted using the Anserini open-source IR
toolkit (Yang et al., 2018), based on Lucene 9.9.1
(released Dec. 2023). We used bindings for Lucene
HNSW indexes recently introduced in Ma et al.
(2023). We set the HNSW indexing parameters M to
16 and efC to 100, both representing typical configu-
rations. Lucene’s HNSW indexing implementation
generates different index segments and then merges
them as needed in a hierarchical manner; we used
all default settings here. On the retrieval end, we
set efSearch to 1000, another common setting. The
flat index implementation in Anserini is adapted
from Elasticsearch.

All experiments were performed on a circa-2022
Mac Studio with an M1 Ultra processor containing
20 cores (16 performance, 4 efficiency) and 128 GB
memory, running macOS Sonoma 14.5 and Open-
JDK 21.0.2. We enabled the jdk.incubator.vector

module for more efficient vector operations. Both
indexing and retrieval experiments used 16 threads.
In all cases (HNSW, flat, and inverted indexes), we
retrieved 1000 hits and evaluated retrieval quality in
terms of nDCG@10, per BEIR guidelines. Query
evaluation performance was measured in terms of
queries per second (QPS) using 16 threads.

4 Experimental Results

We begin with a comparison between flat, HNSW,
and inverted indexes in terms of effectiveness and
efficiency, shown in Table 1. Each row captures
a dataset from BEIR. The rows are sorted by the
size of each corpus (number of documents, |C|), so
scanning down the rows, we encounter datasets of
increasing size. The table is informally divided into
three sections that we characterize as “small” (less
then 100K documents), “medium” (between 100K
and 1M), and “large” (more than 1M). The column
marked |Q| shows the number of queries in each

867

nDCG@10 QPS (cached) QPS (ONNX) QPS
Dataset |C| |Q| Dense Sparse BM25 Flat HNSW INV Flat HNSW INV BM25

NFCorpus 3,633 323 0.373 0.347 0.322 270 280 430 210 200 220 480
SciFact 5,183 300 0.741 0.704 0.679 260 260 280 200 190 140 280
ArguAna 8,674 1,406 0.636 0.520 0.397 440 430 320 240 260 23 360
CQA Mathematica 16,705 804 0.316 0.238 0.202 330 340 350 240 240 210 390
CQA webmasters 17,405 506 0.406 0.317 0.306 320 330 290 210 220 180 340
CQA Android 22,998 699 0.507 0.390 0.380 310 320 350 220 220 190 380
SCIDOCS 25,657 1,000 0.217 0.159 0.149 290 330 330 240 230 190 190
CQA programmers 32,176 876 0.424 0.340 0.280 340 390 350 220 230 200 390
CQA GIS 37,637 885 0.413 0.315 0.290 350 360 380 220 230 190 380
CQA physics 38,316 1,039 0.472 0.360 0.321 360 360 410 220 230 200 420
CQA English 40,221 1,570 0.486 0.408 0.345 400 430 440 230 240 200 480
CQA stats 42,269 652 0.373 0.299 0.271 290 310 350 200 210 180 340
CQA gaming 45,301 1,595 0.597 0.496 0.482 410 430 430 230 240 210 460
CQA UNIX 47,382 1,072 0.422 0.317 0.275 360 360 410 210 230 200 390
CQA Wordpress 48,605 541 0.355 0.273 0.248 310 350 310 190 200 180 320
FiQA-2018 57,638 648 0.406 0.347 0.236 290 330 300 190 220 170 340
CQA tex 68,184 2,906 0.311 0.253 0.224 400 480 520 210 240 220 490

TREC-COVID 171,332 50 0.781 0.727 0.595 66 100 65 58 76 52 92
Touché 2020 382,545 49 0.257 0.247 0.442 38 85 52 33 61 47 68
Quora 522,931 10,000 0.889 0.834 0.789 75 200 420 61 110 180 770
Robust04 528,155 249 0.447 0.468 0.407 57 150 150 48 89 86 110
TREC-NEWS 594,977 57 0.443 0.415 0.395 29 72 54 27 67 47 47

NQ 2,681,468 3,452 0.541 0.538 0.305 15 140 130 14 90 85 470
Signal-1M 2,866,316 97 0.289 0.301 0.330 8.8 60 59 8.5 41 46 180
DBpedia 4,635,922 400 0.407 0.437 0.318 7.7 72 80 7.4 52 63 300
HotpotQA 5,233,329 7,405 0.726 0.687 0.633 7.6 74 69 7.4 52 46 460
FEVER 5,416,568 6,666 0.863 0.788 0.651 7.3 63 65 7.2 47 49 470
Climate-FEVER 5,416,593 1,535 0.312 0.230 0.165 7.1 62 73 6.9 44 47 290
BioASQ 14,914,603 500 0.415 0.498 0.522 2.6 56 24 2.6 40 23 210

Table 1: Main results comparing flat and HNSW indexes (BGE) and inverted indexes (SPLADE and BM25) in
terms of effectiveness (nDCG@10) and query evaluation performance (queries per second, QPS). For nDCG@10,
“Dense” refers to BGE and “Sparse” refers to SPLADE; “INV” refers to inverted indexes.

dataset; note that performance measurements are
noisier with fewer queries. The next three columns
show the effectiveness of the dense model (BGE),
the sparse model (SPLADE), and BM25.

Query evaluation performance is captured in
terms of queries per second (QPS). Due to the in-
herent noise in these measurements, we only re-
port figures to two significant digits because any
addition precision is unlikely to be meaningful.
Our experiments are divided into two conditions,
cached queries and “on-the-fly” query encoding us-
ing ONNX (not applicable to BM25). With cached
queries, we are not measuring the latency associ-
ated with query encoding, whereas with ONNX,
latency includes query encoding. These two mea-
surements bookend the performance range: our
ONNX encoding is performed on the CPU, and
hence can be accelerated with GPU inference, but
performance cannot exceed the cached condition.
More details about ONNX integration in Anserini
are discussed in Chen et al. (2023).

Obviously, in production settings, query evalu-
ation performance must necessarily include query
encoding, as the system does not know the queries
in advance. However, in a prototyping setting,

or when running benchmarks repeatedly, it makes
sense to cache the query representations. Thus, we
believe that both ways of measuring performance
are informative, but for different scenarios.

4.1 Flat vs. HNSW Indexes

RQ1 For dense retrieval, when should HNSW in-
dexes be used vs. flat indexes and what are
the associated tradeoffs?

Table 1 provides guidance for this research ques-
tion, illustrated with the BGE model. Most per-
tinent is the comparison between flat and HNSW
indexes under the “cached” and “ONNX” condi-
tions. We make the following observations:

• For “small” corpora less than 100K documents,
there appear to be negligible differences between
flat and HNSW indexes. For example, in an ex-
ploratory or prototyping setting, we do not see
the differences in QPS as meaningful.

• For “medium” corpora (between 100K and 1M),
the performance differences between flat indexes
and HNSW indexes become larger: very roughly,
flat indexes are 2–3× slower with cached query

868

Index Time nDCG@10
Dataset |C| Flat HNSW avg ∆ min, max

TREC-COVID 171k 0.9 1.8 0.781 0.000 [0.000, 0.000]
Touché 2020 383k 1.0 1.9 0.257 0.000 [0.000, 0.000]
Quora 523k 1.0 2.4 0.889 0.000 [0.000, 0.000]
Robust04 528k 1.0 2.1 0.447 0.001 [0.000, 0.001]
TREC-NEWS 595k 1.0 2.1 0.443 0.001 [−0.004, 0.007]

NQ 2.7m 2.4 15.6 0.541 0.002 [0.001, 0.003]
Signal-1M 2.9m 2.3 14.5 0.289 0.010 [0.006, 0.013]
DBpedia 4.6m 3.2 31.5 0.407 0.001 [−0.001, 0.004]
HotpotQA 5.2m 4.1 33.3 0.726 0.010 [0.009, 0.011]
FEVER 5.4m 4.2 35.0 0.863 0.005 [0.004, 0.006]
Climate-FEVER 5.4m 4.1 35.2 0.312 0.000 [0.000, 0.000]
BioASQ 14.9m 10.1 76.3 0.415 0.015 [0.011, 0.020]

Table 2: Comparing flat vs. HNSW indexes using BGE.
Indexing times are reported in minutes. The “avg
∆” column reports the average degradation of HNSW
scores over five trials; min/max report the observed min
and max values across the trials; negative values indi-
cate that HNSW indexes achieved higher scores.

representations, but after factoring in query en-
coding (ONNX), the gap is reduced. For a prac-
titioner prototyping with a small set of queries,
we would recommend flat indexes, since opera-
tionally, the QPS differences are likely not mean-
ingful. As an example, on TREC-NEWS, the
wallclock difference in evaluating on the set of
57 queries is around a second at the most.

• For “large” corpora (more than 1M), the per-
formance differences can be quite large: flat in-
dexes are up to an order of magnitude slower
than HNSW indexes for corpora in the 2M–5M
documents range, and even slower for BioASQ,
the largest BEIR corpora, at ∼15M documents.

To more fully characterize these tradeoffs, we
need to examine two additional aspects of the
design space: indexing time and retrieval quality.
Once again, we focus on the BGE dense retrieval
model. In Table 2, the columns “Flat” and “HNSW”
compare indexing time, averaged over five trials,
rounded to the nearest tenth of a minute. Rows are
sorted by increasing size, same as in Table 1. For
brevity, we omit results for small corpora, where
the indexing times are for the most part well under
a minute and the results are uninteresting.

For medium corpora (under 1M documents), we
argue that the differences in indexing times are not
meaningful, but the differences appear to grow as
the corpus size increases; for corpora with more
than 1M documents, the HNSW indexing time
can be several times longer. With flat indexes,
“indexing” simply involves reading input vectors
and rewriting them in Lucene’s internal representa-
tion. On the other hand, Lucene’s HNSW indexing

implementation requires building traversal graphs
over segments of documents and then hierarchi-
cally merging them; indexing time does not appear
to be linear with respect to corpus size.

The retrieval quality (effectiveness) implications
of flat vs. HNSW indexes using the BGE em-
bedding model are also shown in Table 2, in the
columns grouped under nDCG@10. The scores are
the same as in Table 1, under the “Dense” column.
Flat indexes, which yield exact similarity scores,
provide the ground truth reference. Since HNSW
indexes enable fast approximate nearest-neighbor
search, there is typically some effectiveness degra-
dation, i.e., scores from HNSW indexes are usually
lower. Furthermore, since HNSW index construc-
tion is non-deterministic, scores from each trial
may differ slightly. The “avg ∆” column reports
the average degradation of HNSW scores over five
trials. The “min” and “max” columns report the
observed min and max values across the trials; neg-
ative values indicate that a particular HNSW trial
achieved a higher score than the corresponding flat
index (sometimes possible).

Tables 1 and 2 together characterize the tradeoffs
between flat and HNSW indexes. For “medium”
corpora, HNSW indexing is slower than flat in-
dexing, but we argue that the differences are not
meaningful. There are also some effectiveness dif-
ferences, but they are mostly small. For “large”
corpora (more than 1M documents), we see in-
teresting tradeoffs in indexing time versus query
evaluation performance. The much higher QPS we
report in Table 1 comes at a large cost in indexing
time; HNSW indexes can take much longer to build
than flat indexes. Also, we observe that retrieval
quality degrades more as corpus size increases.

4.2 The Impact of Quantization

RQ2 For both HNSW and flat indexes, when
should quantization be applied and what are
the associated tradeoffs?

Here, we examine flat and HNSW indexes sepa-
rately. Results comparing flat and quantized (int8)
flat indexes are reported in Table 3. Our analysis is
organized into three relevant factors, as before: in-
dexing time, query evaluation performance (QPS),
and retrieval quality (nDCG@10). Note that in-
dex quantization in Lucene is not deterministic,
and we report figures averaged across five trials.
The reference indexing times for flat indexes are
copied from Table 2 (measured in minutes), with

869

Index Time QPS (Cached) QPS (ONNX) nDCG@10
Dataset |C| ∆ ∆ ∆ avg ∆ min max

TREC-COVID 171,332 0.9 ∼ 66 +3.8% 58 ∼ 0.781 −0.003 [−0.003 −0.002]
Touché 2020 382,545 1.0 ∼ 38 +31% 33 +25% 0.257 0.007 [0.006 0.008]
Quora 522,931 1.0 +6% 75 +26% 61 +15% 0.889 0.001 [0.001 0.001]
Robust04 528,155 1.0 ∼ 57 +28% 48 +21% 0.447 0.001 [−0.001 0.001]
TREC-NEWS 594,977 1.0 ∼ 29 +48% 27 +48% 0.443 0.009 [0.007 0.012]

NQ 2,681,468 2.4 ∼ 15 +35% 14 +29% 0.541 0.002 [0.002 0.003]
Signal-1M 2,866,316 2.3 +10% 8.8 +63% 8.5 +62% 0.289 0.004 [0.002 0.006]
DBpedia 4,635,922 3.2 +17% 7.7 +47% 7.4 +45% 0.407 −0.001 [−0.002 0.000]
HotpotQA 5,233,329 4.1 +14% 7.6 +36% 7.4 +33% 0.726 0.000 [0.000 0.000]
FEVER 5,416,568 4.2 +13% 7.3 +36% 7.2 +33% 0.863 0.001 [0.000 0.001]
Climate-FEVER 5,416,593 4.1 +15% 7.1 +39% 6.9 +38% 0.312 0.003 [0.002 0.004]
BioASQ 14,914,603 10.1 +12% 2.6 +38% 2.6 +37% 0.415 0.003 [0.003 0.003]

Table 3: The effects of (int8) quantization for flat indexes, compared to non-quantized versions.

Index Time QPS (Cached) QPS (ONNX) nDCG@10
Dataset |C| ∆ ∆ ∆ avg ∆ min max

TREC-COVID 171,332 1.8 ∼ 100 ∼ 76 ∼ 0.781 −0.003 [−0.003 −0.002]
Touché 2020 382,545 1.9 ∼ 85 +6% 61 +11% 0.257 0.006 [0.006 0.007]
Quora 522,931 2.4 ∼ 200 +44% 110 +29% 0.889 0.001 [0.001 0.001]
Robust04 528,155 2.1 ∼ 150 +21% 89 +22% 0.447 0.001 [−0.001 0.003]
TREC-NEWS 594,977 2.1 ∼ 72 +22% 67 ∼ 0.443 0.011 [0.009 0.013]

NQ 2,681,468 15.6 +33% 140 +47% 90 +29% 0.541 0.003 [0.002 0.004]
Signal-1M 2,866,316 14.5 +46% 60 +57% 41 +63% 0.289 0.010 [0.007 0.015]
DBpedia 4,635,922 31.5 +55% 72 +76% 52 +58% 0.407 −0.001 [−0.004 0.000]
HotpotQA 5,233,329 33.3 +60% 74 +130% 52 +90% 0.726 0.018 [0.016 0.019]
FEVER 5,416,568 35.0 +73% 63 +143% 47 +104% 0.863 0.010 [0.008 0.012]
Climate-FEVER 5,416,593 35.2 +79% 62 +142% 44 +98% 0.312 0.001 [0.000 0.002]
BioASQ 14,914,603 76.3 +5% 56 +29% 40 +25% 0.415 0.017 [0.011 0.024]

Table 4: The effects of (int8) quantization for HNSW indexes, compared to non-quantized versions. Note that exact
rankings from flat indexes provide the reference nDCG@10 scores.

∆ reporting the increase in indexing time due to
quantization (as a percentage). Similarly, query
performance (QPS) under the cached and ONNX
conditions are copied from Table 1 for the refer-
ence (non-quantized) condition: the ∆ columns
show increases in QPS from quantization. In the
table, ∼ refers to differences less than 5%, since
our measurements are noisy and we do not wish to
draw attention to small differences that are likely
not meaningful. Overall, we see that quantization
provides a big boost in performance (QPS) at a
relatively low cost in additional indexing time.

Finally, nDCG@10 differences are organized in
the same way as in Table 2, where we report aver-
age, min, and max with respect to (non-quantized)
flat indexes. Negative values indicate that quan-
tization increased effectiveness (possible in some
cases). Nevertheless, quantization has a relatively
minor impact on retrieval quality overall.

Results comparing HNSW and quantized (int8)
HNSW indexes are reported in Table 4, which is or-
ganized in the same manner as Table 3. Note, how-
ever, that the reference nDCG@10 scores here are
taken from exact rankings using flat indexes. This
means that the measure of degradation includes
both HNSW indexing and quantization.

For HNSW indexes, we observe quantization

tradeoffs that are different from flat indexes. With
medium corpora, there does not appear to be mean-
ingful increases in indexing time, but with large cor-
pora, indexing appears to be much slower. Interest-
ingly, for BioASQ, the increase in indexing time is
only marginal,5 which suggests that the additional
costs associated with quantization are masked by
other components of the indexing pipeline.

Quantization for HNSW indexes, however, deliv-
ers large benefits in increased QPS, even more than
for quantization in flat indexes. The effectiveness
degradation of quantized HNSW indexes is com-
parable to non-quantized HNSW indexes, which
suggests that the effectiveness impact of quantiza-
tion is minor at most.

4.3 Dense Retrieval in a Broader Context
RQ3 More broadly, what are the effectiveness–

efficiency tradeoffs between dense and
sparse retrieval across different corpora?

Effectiveness comparisons of dense and sparse re-
trieval abound in the literature. Overall, one ap-
proach does not appear to be dominant, and it might
be fair to characterize dense and sparse models as
comparable in terms of effectiveness.
5Nope, verified that this isn’t a bug.

870

However, query evaluation performance has re-
ceived little attention by researchers, and we con-
tribute a comparison between SPLADE++ ED and
BGE in a fair setting, shown in Table 1. In terms
of QPS, both appear to be comparable, looking at
the “HNSW” vs. “INV” columns.6 There does not
appear to be a compelling reason to choose dense
retrieval over sparse retrieval (or vice versa) from
the performance point of view. Indeed, the litera-
ture is consistent in advocating hybrid techniques
that combine both approaches (Thakur et al., 2021;
Ma et al., 2022; Kamalloo et al., 2024).

Table 1 also provides a comparison between
SPLADE++ ED and BM25. In terms of effec-
tiveness, the SPLADE model dominates BM25
and outperforms it for nearly all of the datasets
in BEIR; the exceptions are Touché, Signal-1M,
and BioASQ. In the first case, Thakur et al. (2024)
provides a detailed error analysis explaining these
results. However, we see from the final column that
BM25 is much faster than SPLADE++ ED; the dif-
ference is close to an order of magnitude in the case
of BioASQ, the largest corpus. For some points in
the effectiveness–efficiency tradeoff space, there is
still a role for BM25.

5 Discussion

The primary goal of this paper is to replace “hand
waving” with empirical evidence for the benefit
of search practitioners. Our experimental results
illustrate the tradeoff space with BEIR, a widely
adopted retrieval benchmark. While the ultimate
choices of system builders will depend on the real-
world scenario (from prototyping to proof of con-
cept to production deployment), we can offer some
advice. At a high level, for corpora with fewer than
1M documents, we do not see a compelling advan-
tage to using HNSW indexes. For larger corpora,
however, we feel that the advantages of HNSW
indexes in terms of query evaluation performance
offset the downsides.

Another issue worth discussing is the retrieval
quality degradation associated with HNSW index-
ing and quantization. These factors are not typi-
cally discussed in academic research, but are im-
portant from the perspective of building real-world
systems. A recap of the issues: both HNSW in-
dexing and quantization are non-deterministic and
typically degrade retrieval effectiveness with re-

6ArguAna appears to be an outlier for SPLADE; we verified
that this was not a bug.

spect to exact similarity comparisons (captured
in flat indexes). As an example, BioASQ results
from Table 4 show that, with HNSW and quantiza-
tion, nDCG@10 scores are 0.017 lower (averaged
across five trials), with a max difference of 0.024;
this translates into 4.1% and 5.8%, respectively—
relatively large differences. These effects are po-
tentially problematic when comparing different em-
bedding models that are “close” in terms of quality,
because it would be hard to tease apart model qual-
ity from an “unlucky” sub-optimal index. Nearly
all academic papers sweep these differences un-
der the rug, but they represent important practical
considerations. For this reason, flat indexes are
appealing for rapid prototyping in order to isolate
the quality of embedding models.

6 Conclusions

There are three main limitations to this work worth
pointing out. First, we study only a single instance
of a dense and sparse retrieval model (BGE and
SPLADE++ ED). While both are popular and rep-
resentative, there are many other models worth
considering and new ones appearing all the time.
Second, we only evaluate performance on a single
system. An exhaustive matrix experiment involv-
ing different models and systems (architectures,
OSes, etc.) would be impractical, and we expect
the broad contours of our findings to remain in-
variant. However, more experiments are needed to
confirm the generalizability of our findings.

Another limitation is our focus on Lucene, even
though there are many other HNSW implementa-
tions available. This issue has already been dis-
cussed in Section 3, and it may be the case that
other system combinations will alter our conclu-
sions. However, as we pointed out, such compar-
isons are difficult to set up in a fair manner. Never-
theless, the dominance of Lucene means that our
findings are of broad interest, worthy of considera-
tion even for users of other platforms.

There are many more decisions that a search
practitioner needs to make when building a full
RAG system, beyond the explicit research ques-
tions that we consider in this work. For example,
what are the roles of reranking and prompt engi-
neering? How do we deal with dynamically chang-
ing documents? The list goes on. Nevertheless, we
hope that this work offers a starting point in pro-
viding empirically grounded guidance for search
practitioners building real-world applications.

871

Acknowledgements

This research was supported in part by the Nat-
ural Sciences and Engineering Research Council
(NSERC). We’d like to acknowledge Snowflake
for additional funding. Thanks to Steven Chen for
helpful comments on an earlier draft of this paper.

References
Haonan Chen, Carlos Lassance, and Jimmy Lin. 2023.

End-to-end retrieval with learned dense and sparse
representations using Lucene. arXiv:2311.18503.

Josh Devins, Julie Tibshirani, and Jimmy Lin. 2022.
Aligning the research and practice of building search
applications: Elasticsearch and Pyserini. In Proceed-
ings of the 15th ACM International Conference on
Web Search and Data Mining (WSDM 2022).

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2022. From dis-
tillation to hard negative sampling: Making sparse
neural IR models more effective. In Proceedings of
the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. 2024. Retrieval-augmented
generation for large language models: A survey.
arXiv:2312.10997.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Ehsan Kamalloo, Nandan Thakur, Carlos Lassance,
Xueguang Ma, Jheng-Hong Yang, and Jimmy Lin.
2024. Resources for brewing BEIR: Reproducible
reference models and statistical analyses. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR 2024).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and effective passage search via contextu-
alized late interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2020).

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.

Retrieval-augmented generation for knowledge-
intensive NLP tasks. In Advances in Neural Informa-
tion Processing Systems 33, pages 9459–9474.

Jimmy Lin. 2021. A proposed conceptual framework
for a representational approach to information re-
trieval. arXiv:2110.01529.

Xueguang Ma, Kai Sun, Ronak Pradeep, Minghan Li,
and Jimmy Lin. 2022. Another look at DPR: Repro-
duction of training and replication of retrieval. In
Proceedings of the 44th European Conference on
Information Retrieval (ECIR 2022), Part I.

Xueguang Ma, Tommaso Teofili, and Jimmy Lin. 2023.
Anserini gets dense retrieval: Integration of Lucene’s
HNSW indexes. In Proceedings of the 32nd Inter-
national Conference on Information and Knowledge
Management (CIKM 2023).

Joel Mackenzie, Andrew Trotman, and Jimmy Lin.
2022. Efficient document-at-a-time and score-at-a-
time query evaluation for learned sparse representa-
tions. ACM Transactions on Information Systems,
41:Article No. 96.

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and
robust approximate nearest neighbor search using
hierarchical navigable small world graphs. Transac-
tions on Pattern Analysis and Machine Intelligence,
42(4):824–836.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Nandan Thakur, Luiz Bonifacio, Maik Fröbe, Alexan-
der Bondarenko, Ehsan Kamalloo, Martin Potthast,
Matthias Hagen, and Jimmy Lin. 2024. Systematic
evaluation of neural retrieval models on the Touché
2020 argument retrieval subset of BEIR. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR 2024).

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Proceedings of
NeurIPS 2021, Datasets and Benchmarks.

Jasper Xian, Tommaso Teofili, Ronak Pradeep, and
Jimmy Lin. 2024. Vector search with OpenAI em-
beddings: Lucene is all you need. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining (WSDM 2024).

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-Pack:
Packaged resources to advance general Chinese em-
bedding. arXiv:2309.07597.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible ranking baselines using Lucene. Jour-
nal of Data and Information Quality, 10(4):Article
16.

872

