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Abstract
Modern text processing pipelines demand ro-
bust methods to remove extraneous content
while preserving a document’s core message.
Traditional approaches—such as HTML boil-
erplate extraction or keyword filters—often
fail in multilingual settings and struggle with
context-sensitive nuances, whereas Large Lan-
guage Models (LLMs) offer improved qual-
ity at high computational cost. We introduce
SORE (Semantic Outlier Removal), a cost-
effective, transparent method that leverages
multilingual sentence embeddings and approx-
imate nearest-neighbor search to identify and
excise unwanted text segments. By first iden-
tifying core content via metadata embedding
and then flagging segments that either closely
match predefined outlier groups or deviate sig-
nificantly from the core, SORE achieves near-
LLM extraction precision at a fraction of the
cost. Experiments on HTML datasets demon-
strate that SORE outperforms structural meth-
ods and yield high precision in diverse sce-
narios. Our system is currently deployed in
production, processing millions of documents
daily across multiple languages while main-
taining both efficiency and accuracy. To facil-
itate further research, we will publicly release
our implementation and evaluation datasets.

1 Introduction

Effective content extraction from web pages
is a critical component in many modern NLP
pipelines, enabling cleaner inputs for downstream
tasks such as summarization, classification, and
information retrieval. However, web documents
typically contain significant amounts of extra-
neous content—navigation elements, advertise-
ments, legal disclaimers, related article recom-
mendations, and other non-essential text—that can
degrade the performance of these tasks.

Traditional approaches to this problem include
HTML-structure-based methods like Readabil-
ity.js (rea) and Boilerpipe (Kohlschütter et al.,

2010), which leverage DOM and formatting pat-
terns to identify main content. While efficient,
these methods often fail when faced with diverse
HTML structures, especially across multiple lan-
guages and website designs. They also struggle to
distinguish semantically irrelevant text that shares
structural characteristics with the main content.

More recently, Large Language Models (LLMs)
have demonstrated impressive capabilities in con-
tent extraction (Brown et al., 2020), as they can
understand the semantic meaning and context of
text. However, deploying LLMs at scale incurs
substantial computational costs, introducing la-
tency and budget concerns for production sys-
tems processing millions of documents. Addition-
ally, LLMs may introduce hallucinations or unpre-
dictable behaviors that compromise reliability.

To address these limitations, we introduce
SORE (Semantic Outlier Removal), a system
that bridges the gap between traditional structure-
based methods and LLMs by utilizing multilin-
gual embedding models. SORE leverages seman-
tic similarity to identify core content by measuring
similarity to document metadata, detect outliers
by measuring distance to predefined outlier cate-
gories, and remove unwanted content while pro-
viding transparent justification.

Our approach offers several key advantages for
industrial applications. First, SORE operates in a
language-agnostic manner, enabling effective con-
tent extraction across diverse languages without
requiring language-specific rules. Second, it pro-
vides transparency with clear explanations for why
specific text segments are removed, facilitating
debugging and continuous improvement. Third,
SORE achieves near-LLM quality extraction at a
fraction of the computational cost—a critical fac-
tor for production systems processing millions of
documents. Finally, its implementation using ap-
proximate nearest neighbor search ensures scala-
bility even with large document volumes.
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This paper describes the SORE algorithm,
its implementation details optimized for produc-
tion deployment, and comprehensive experiments
demonstrating its effectiveness compared to both
traditional methods and LLM-based approaches.
We also provide a detailed cost analysis, highlight-
ing the significant efficiency gains achieved by our
approach. To promote reproducibility and facili-
tate further research, we will make our implemen-
tation and evaluation datasets publicly available.

2 Related Work

2.1 HTML Boilerplate Removal

Extracting main content from HTML documents
remains challenging in web information retrieval.
Kohlschütter et al. (2010) introduced text den-
sity features to identify boilerplate content, while
Readability.js (rea) employs heuristic rules based
on HTML structure. Despite their efficiency, these
approaches struggle with complex layouts and
multilingual content.

2.2 Embedding Models for Text Similarity

Dense vector representations have transformed
NLP by capturing semantic relationships between
texts. Evolving from word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) to sen-
tence representations, models like Sentence-BERT
(Reimers and Gurevych, 2019) adapted trans-
former architectures for similarity tasks. Multi-
lingual embedding models (Artetxe and Schwenk,
2019; Wang et al., 2024) now enable cross-lingual
applications, with commercial services like Co-
here (coh) and AWS Titan offering production-
ready solutions.

2.3 LLMs for Content Extraction

LLMs demonstrate strong capabilities in under-
standing contextual meaning (Brown et al., 2020;
Scao et al., 2023), making them promising for con-
tent extraction. However, they require significant
computational resources and may produce incon-
sistent outputs (Bender et al., 2021). Their effec-
tiveness varies across languages, particularly for
lower-resource ones (Nguyen et al., 2023).

2.4 Outlier Detection in Text

Text outlier detection approaches include density-
based methods (Taleb Sereshki et al., 2023) and
embedding space analysis (Hämmerl et al., 2023).
Most work focuses on document-level detection

rather than identifying outlier segments within
documents.

Our work bridges these areas by leveraging
embedding-based similarity with efficient nearest-
neighbor search for multilingual outlier content
identification, balancing traditional methods’ effi-
ciency with LLMs’ semantic understanding.

3 SORE: System Design and
Implementation

We introduce SORE (Semantic Outlier Removal),
a method for removing unwanted text segments
from documents based on semantic similarity.
SORE identifies and removes text segments that
match known patterns of boilerplate content or se-
mantically diverge from the document’s theme.

3.1 Algorithm Overview

SORE operates through four sequential steps that
transform raw HTML content into clean content:

Step 1: Segmentation and Embedding. The
document is first split into segments (sentences or
paragraphs) using an HTML parser that preserves
the document structure. Each segment is then con-
verted into a fixed-length dense vector representa-
tion using a multilingual embedding model. The
document’s metadata (e.g., title and description)
is also embedded into a vector wm, which serves
as a representation of the document’s core theme.

Step 2: Core Identification. We compute the
cosine distance between each segment’s embed-
ding and the metadata embedding wm. The seg-
ments with the smallest distances (highest similar-
ities) to wm are selected as the document’s ”core
content”. Specifically, we select the top k% of seg-
ments, where k is a configurable parameter that
controls the strictness of core content selection.

Step 3: Outlier Detection. We define ”outlier
groups” by embedding phrases indicative of un-
wanted content types (e.g., advertisements, legal
disclaimers, navigation). For each non-core seg-
ment, we compute its distance to the closest out-
lier group and its distance to the core content set.
A segment is flagged for removal if either it is too
close to an outlier group or it is too distant from the
core content (distance above threshold d), where d
is a configurable distance cutoff parameter.

Step 4: Segment Removal. Flagged segments
are removed from the document, and the removal
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Figure 1: Overall pipeline of SORE. (a) Segmentation & Embedding: We split the HTML into segments (S1–
S6) and embed them along with a metadata vector wm. (b) Core Identification: Compute similarity of each
segment to wm and select the top k% (orange outlines). (c) Outlier Detection: Embed predefined outlier groups
(purple). For each non-core segment, check distance to the core region (dashed circle) and outlier groups. Flag
segments that are too distant from the core or too close to outliers. (d) Segment Removal: Remove flagged
segments (dashed/gray), keeping the remaining set as the cleaned content.

reason is recorded (e.g., ”matched disclaimers” or
”too irrelevant”). This explanation provides trans-
parency and aids in system refinement.

Figure 1 illustrates these four steps, showing
how segments are embedded, core content is iden-
tified, outliers are detected and removed. Figure
2 provides an overview of the system architecture,
highlighting the key components and data flow.

3.2 Implementation Optimizations

For processing millions of documents daily in pro-
duction, computational efficiency is critical. We
optimized SORE through several techniques:

Approximate Nearest Neighbor Search. Com-
puting cosine distances at scale between large
numbers of high-dimensional vectors can be com-
putationally expensive. We leveraged Voyager1,
an approximate nearest neighbor (ANN) imple-
mentation that uses HNSW (Hierarchical Naviga-
ble Small World) under the hood. This provides
significant efficiency gains with high accuracy.

Precomputed Indices. During initialization, we
create an ANN index and add the outlier group
embeddings to it, generating a byte dump of this
index. For each document to be cleaned, we load
this precomputed index, add the newly computed
core content and metadata embeddings, and query
for nearest neighbors. This approach avoids re-
building the entire index for each document.

Optimized Distance Calculations. Since mod-
ern embedding models typically produce normal-
ized vectors, we use inner product distance (1 - dot
product) rather than full cosine distance computa-
tion, reducing computational overhead.

1https://github.com/spotify/voyager

Batched Processing. Embedding computation
is performed in batches to maximize throughput
when processing multiple documents, optimizing
API usage and reducing per-document latency.

In our production Java implementation, the
cleanup of each HTML file takes an average of
200 milliseconds, with the external API call for
embedding computation accounting for most of
the duration (over 100 ms). This performance
enables SORE to process millions of documents
daily within reasonable time and cost constraints.

3.3 Key Design Decisions

3.3.1 Balancing Efficiency and Semantic
Understanding

SORE addresses three key challenges for indus-
trial deployment: (1) Cost efficiency: LLM in-
ference costs approximately 25× more than our
embedding-based approach, saving hundreds of
thousands of dollars monthly at scale; (2) La-
tency: SORE processes documents in 200ms com-
pared to LLMs’ 2500ms, meeting strict production
constraints; and (3) Determinism: Unlike LLMs
that may produce inconsistent results, SORE pro-
vides transparent, deterministic explanations for
content removal decisions.

3.3.2 Core Content Identification Strategy

We chose metadata similarity as our approach
for identifying core content, using document
metadata as a semantic anchor. This offers several
advantages: it typically reflects the document’s
main theme, is available for most web documents,
operates language-agnostically, and establishes a
semantic ”north star” for identifying relevant con-
tent. Empirical testing showed that selecting the
top k% of segments most similar to metadata pro-
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Figure 2: SORE architecture showing the optimized
processing pipeline. The system parses HTML doc-
uments, segments text, and processes content through
an embedding model. Core content is identified us-
ing metadata similarity, then an ANN index enables ef-
ficient outlier detection by comparing with preloaded
outlier groups. This efficient architecture processes
millions of documents daily with minimal latency.

vides a reliable core content identification mecha-
nism across diverse document types.

3.3.3 Outlier Group Development
Our outlier groups were developed through iter-
ative analysis combining data analysis and do-
main expertise. We implemented semantic clus-
tering to represent outlier groups as clusters in
the embedding space, allowing flexible match-
ing of semantically similar content even when ex-
act phrases differ. Each outlier group was tuned
through precision-recall balancing, and our pro-
duction system enables continuous refinement by
logging removal decisions for ongoing improve-
ment. The set of outliers used in this study, to-
gether with the performance analysis that SORE
enables in choosing these keywords, is provided
in Appendix A.

4 Experimental Evaluation

4.1 Datasets and Evaluation Setup

We evaluated SORE using two in-house HTML
datasets representing real-world content cleaning
challenges:

SORE-SMALL This dataset contains approx-
imately 200 samples with hand-extracted main

Method F-score Precision Recall

LLM (tag-depth) 0.765 0.895 0.711
LLM (raw html) 0.690 0.865 0.637
LLM (raw text) 0.583 0.795 0.520
SORE (cohere, c=0.5, k=10%) 0.732 0.700 0.840
ReadabilityJS 0.678 0.569 0.936

Table 1: Performance comparison on SORE-SMALL
across different content extraction methods. SORE
achieves near-LLM performance at a fraction of the
computational cost. Precision measures the proportion
of extracted text that belongs to the ground truth, while
recall measures the proportion of ground truth text that
was successfully extracted. F-score is the harmonic
mean of precision and recall.

content from various websites across multiple lan-
guages and domains. The manually extracted con-
tent serves as a high-quality ground truth for eval-
uating extraction precision and recall.

SORE-LARGE This dataset comprises approx-
imately 20,000 samples with automatically ex-
tracted ground truth using a combination of Read-
abilityJS and n-gram–based content cleanup. It fo-
cuses on high precision, removing groups of char-
acters that appear on multiple pages across the
web in a multi-million document corpus (e.g., le-
gal disclaimers that appear on every page of a
given domain).

For evaluation, we compared SORE against
several baseline approaches:

ReadabilityJS A popular open-source HTML
content extractor based on structural heuristics,
widely used in industry.

LLM Variants We tested three LLM-based ap-
proaches: (1) LLM (raw HTML) providing the
entire HTML content to the LLM for extraction;
(2) LLM (raw text) extracting the complete text
content from HTML as input; and (3) LLM (tag-
depth) a hybrid approach supplying text content
along with HTML tag information and tree depth.
The relevant LLM prompts and additional discus-
sions can be found in Appendix B.

4.2 Performance Comparison

4.2.1 Extraction Quality
Table 1 compares SORE against other content
extraction methods on SORE-SMALL. SORE
achieved a near-LLM level F-score with signifi-
cantly lower computational requirements.

The results demonstrate that SORE achieves
96% of the best LLM approach’s F-score (0.732
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Figure 3: Precision-recall trade-offs for different em-
bedding models and SORE parameter settings on
SORE-LARGE. AWS Titan (1024d) with core=20%
and cutoff=0.8 provides the best balance of precision,
recall, and cost. Each point on the curves represents
different parameter configurations.

vs. 0.765) while offering significant advantages in
computational efficiency. Notably, SORE outper-
forms ReadabilityJS by 7.9% in F-score, with sub-
stantially higher precision (0.700 vs. 0.569) while
maintaining strong recall.

4.2.2 Embedding Model Comparison and
Parameter Tuning

Figure 3 shows the precision-recall trade-offs for
various embedding models and parameter config-
urations on SORE-LARGE. Each point repre-
sents a different combination of core percentage
(k) and embedder type, with the best distance cut-
off (d) parameters per model family. We compare
two commercial solutions, Cohere and AWS Ti-
tan, with the open source multilingual embedding
model e5-large (Wang et al., 2024).

For this dataset, ReadabilityJS scores 0.596 pre-
cision and 0.988 recall, while LLM (tag-depth)
achieves 0.885 precision and 0.718 recall (both
outside the graph). AWS Titan emerged as the
most cost-effective choice (∼ 200 CHF/month),
with comparable performance to more expen-
sive solutions (∼ 1200 CHF/month for Cohere).
The optimal parameters for the AWS Titan-based
SORE were found to be 1024-dimensional embed-
dings, 0.8 distance cutoff, and 0.2 core percentage.

The parameter tuning experiments revealed that
higher values of distance cutoff (d) increase pre-
cision but reduce recall, lower values of core
percentage (k) make the system more selec-
tive but may miss relevant content, and higher-
dimensional embeddings generally perform better.
These findings enabled us to select parameters that

balanced performance and cost for our production
deployment.

4.3 Multilingual Capability and Case Studies

4.3.1 Multilingual Performance
A key advantage of SORE is its language-agnostic
operation. Table 2 presents examples of text seg-
ments removed by SORE across multiple lan-
guages, demonstrating the system’s multilingual
capabilities and semantic understanding.

Unlike traditional approaches that rely on
language-specific patterns or rules, SORE lever-
ages multilingual embedding models that capture
semantic relationships across languages. This en-
ables effective content extraction for documents
in Chinese, French, Spanish, and other languages
without requiring separate models or rule sets.

5 Industrial Impact and Cost Analysis

5.1 Production Deployment

SORE is currently deployed in a production envi-
ronment, processing millions of documents daily
across multiple languages. The system is im-
plemented as a scalable service that integrates
with existing data processing pipelines, providing
cleaned content for downstream tasks such as clas-
sification and information retrieval.

Our production deployment focuses on four
key aspects: (1) Horizontal scaling with mul-
tiple instances processing documents in parallel;
(2) Comprehensive monitoring capturing perfor-
mance metrics and removal decisions for continu-
ous improvement; (3) Fallback mechanisms that
revert to more conservative extraction when SORE
removes unexpectedly large portions of a docu-
ment; and (4) Configurable parameters that can
be adjusted based on specific use cases and lan-
guage requirements. To promote reproducibility
and further research, we will make our implemen-
tation and evaluation datasets publicly available.

5.2 Cost and Efficiency Comparison

A key advantage of SORE over LLM-based ap-
proaches is its significantly lower computational
cost. Table 3 compares the cost and performance
characteristics of different approaches.

SORE achieves near-LLM performance at a
fraction of the cost, with 12.5× lower latency
(200ms vs. 2500ms) and 25× lower cost ($600
vs. $15,000 per million documents) when us-
ing AWS Titan embeddings. For our produc-
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URL Title Removed Text Reason

huffpost.com/... 10 Things Guests Notice
Most About Your Home

SolStock via Getty Images Source

foodsguy.com/... Coconut Sugar Vs Brown
Sugar

*This post may contain affiliate links. Please
see my disclosure to learn more.

Affiliate Disclosure

buzzfeed.com/... This Black Widow Mo-
ment...

03:27 PM - 29 Apr 2019 Last updated

dealmoon.com/... Dyson V12 Detect Slim
激光探测无绳吸尘器翻
新 $349.99

点击购买>> Buy

blog-rct.com/... Melvyn Jaminet fait
passer un message...

A lire ci-dessous : Also read

lapatilla.com/... ¡Únete al club ahora! Suscrı́bete al boletı́n
más importante de Venezuela

Subscribe for free

cleanmyspace.com/... Bathroom Cleaning: 10
Things...

Learn More About The 3 Wave Cleaning Sys-
tem

[too irrelevant]

jagranjosh.com/... Only People With 20/20
Vision Can Spot...

Your Way Of Clenching Your Fist Reveals
Your Hidden Personality Traits

[too irrelevant]

Table 2: Examples of text removed by SORE. The first three rows show examples of removed text with specific
reasons. The next three rows demonstrate the system’s multilingual capabilities (Chinese, French, Spanish). The
last two rows show text removed because it was semantically too distant from the core content.

Method F-score Avg. Latency Cost per 1M docs

LLM (tag-depth) 0.793 2500 ms $15,000
ReadabilityJS 0.743 50 ms $7
SORE (AWS Titan) 0.776 200 ms $600
SORE (Cohere) 0.777 250 ms $3,600

Table 3: Cost and performance comparison using
SORE-LARGE. SORE with AWS Titan provides the
best balance of performance and cost, with a latency
12.5× lower than LLMs and cost 25× lower per mil-
lion documents.

tion system processing over 30 million documents
monthly, SORE saves approximately $432,000 an-
nually compared to an LLM-based approach while
delivering comparable quality. This substantial
cost reduction has made advanced semantic con-
tent cleaning viable at scale.

6 Conclusion

We introduced SORE (Semantic Outlier Re-
moval), a cost-effective, transparent method
for removing unwanted content from web doc-
uments while preserving their core message.
By leveraging multilingual sentence embeddings
and approximate nearest-neighbor search, SORE
achieves performance comparable to LLM-based
approaches at a fraction of the computational cost.

Our experiments demonstrate that SORE
outperforms traditional structure-based methods
while maintaining high precision across diverse

multilingual scenarios. The system’s trans-
parency—providing clear reasons for why specific
content is removed—facilitates debugging and
continuous improvement.

SORE is currently deployed in production, pro-
cessing millions of documents daily across mul-
tiple languages. Its efficiency and effectiveness
make it a practical solution for large-scale con-
tent extraction and cleaning in industrial settings.
To promote reproducibility and further research in
this area, we will make our implementation and
evaluation datasets publicly available.

Future work will explore integrating SORE with
domain-specific knowledge bases, refining outlier
group definitions based on ongoing accuracy anal-
ysis, and extending its application to more nu-
anced tasks such as sentiment-based filtering.

Ethics Statement

SORE is designed to extract main content from
web pages while respecting copyright and terms
of service. The system does not alter the mean-
ing of content but rather removes extraneous el-
ements. We acknowledge the potential risk that
in some cases, SORE might remove content that
some users consider important. To mitigate this
risk, our implementation includes detailed logging
of removal reasons and fallback mechanisms when
excessive content is removed.
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man Castagné, Alexandra Sasha Luccioni, François
Yvon, Matthias Galliard, et al. 2023. BLOOM: A
176b-parameter open-access multilingual language
model. Preprint, arXiv:2211.05100.

Mahnaz Taleb Sereshki, Morteza Mohammadi Zan-
jireh, and Mahdi Bahaghighat. 2023. Textual outlier
detection with an unsupervised method using text
similarity and density peak. Acta Univ. Sapientiae,
Informatica, 15(1):91–110.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

832

https://cohere.ai
https://github.com/mozilla/readability
https://github.com/mozilla/readability
https://arxiv.org/abs/2306.00458
https://arxiv.org/abs/2306.00458
https://arxiv.org/abs/2306.00458
https://arxiv.org/abs/2306.00458
https://arxiv.org/abs/2309.09400
https://arxiv.org/abs/2309.09400
https://arxiv.org/abs/2309.09400
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://doi.org/10.2478/ausi-2023-0008
https://doi.org/10.2478/ausi-2023-0008
https://doi.org/10.2478/ausi-2023-0008


A Outlier Groups

SORE uses a carefully curated set of outlier
groups to identify and remove unwanted content.
These groups were developed through extensive
analysis of web content patterns and iteratively re-
fined based on performance metrics. Each group
represents a category of content typically not part
of the main article text.

A.1 Outlier Group Performance

We analyzed the accuracy of removal for different
outlier keywords. Table 4 shows the least accurate
keywords from our analysis.

Phrase Occurrence Accuracy

Home 9777 0.510
Frequently asked questions 822 0.540
Similar 1559 0.543
dd/mm/yyyy 117 0.556
Not found 532 0.564
21.02.2023 2219 0.591
Order 1996 0.599
Error 2600 0.600
URL 1177 0.601
404 3391 0.602

Table 4: Removal accuracy for the 10 least accurate
outlier keywords. Even the least accurate keywords ex-
hibit accuracy above 0.5, with most outlier groups per-
forming significantly better.

The results indicate that some ambiguous terms
like ”Home” have relatively lower accuracy due to
their context-dependent nature—they may appear
in both navigation elements and legitimate main
content. However, even these challenging outlier
groups achieve better than random performance,
and the system’s overall accuracy benefits from the
combination of multiple outlier detection signals.

A.2 Outlier Group Keywords

The outlier groups are represented as sets of
phrases and patterns that, when embedded, cre-
ate semantic clusters in the embedding space. The
following list shows our production outlier groups
organized by category:

A.2.1 Date-time Related Content

”Date”, ”21.02.2023”, ”21.02.2024”,
”21.02.2025”, ”Published at”, ”Last updated”,
”Time”, ”Published”, ”Updated”, ”dd/mm/yyyy”,
”mm/dd/yyyy”, ”yyyy-mm-dd”, ”dd.mm.yy”

A.2.2 Authorship Information
”Author”, ”Writer”, ”Contributor”, ”Editor”,
”Posts”, ”Written by”

A.2.3 Comment Sections
”Comment”, ”Reply”, ”Feedback”, ”Discussion”,
”Leave a comment”

A.2.4 Source Attribution
”Source”, ”Website”, ”Publisher”, ”URL”, ”Link”

A.2.5 Related Content Links
”Related”, ”Read more”, ”Look:”, ”Similar”, ”See
also”, ”Also read”, ”Read next”, ”Get more”,
”Frequently asked questions”

A.2.6 Calls to Action
”CTA”, ”Buy”, ”Shop”, ”Order”, ”Click here”,
”Check out”, ”View more”, ”Visit”, ”Let me
know”, ”Download”, ”Subscribe”, ”Sign up”,
”Contact us”, ”Receive notifications”

A.2.7 Navigation Elements
”Breadcrumbs”, ”Home >”, ”Home > About”,
”Navigation”, ”Home”, ”About”

A.2.8 Contact Information
”Contact”, ”Email”, ”Phone”, ”Address”, ”Con-
tact us”

A.2.9 Social Media Elements
”Social”, ”Facebook”, ”Twitter”, ”Instagram”,
”LinkedIn”, ”TikTok”, ”Share”, ”Like”, ”Follow”,
”3425 views”

A.2.10 Legal Content
”Legal”, ”Terms”, ”Privacy”, ”Policy”, ”Dis-
claimer”, ”Cookie”, ”Accept”, ”Policy”, ”Set-
tings”

A.2.11 Page Infrastructure
”Footer”, ”Copyright”, ”All rights reserved”,
”Search”, ”Find”, ”Look for”, ”Explore”, ”Error”,
”404”, ”Not found”, ”Page not found”, ”Error”,
”Try again later”

A.2.12 Commercial Content
”Advertisement”, ”Sponsored”, ”Promotion”,
”Sponsor”, ”Subscription”, ”Subscribe”,
”Newsletter”, ”Membership”, ”Join”, ”Affili-
ate”, ”Affiliate links”, ”Disclosure”, ”Affiliate
Disclosure”
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A.2.13 Miscellaneous Boilerplate
”Refresh this page”, ”Login required”, ”License”,
”Enter your email”, ”Thank you for reading”,
”Subscribe for free”

B LLM Prompts

For the LLM baseline comparisons, we system-
atically developed and tested several prompting
strategies. Through empirical evaluation, we
found that providing structured context about
HTML tags and their depth in the document tree
(”tag-depth” approach) yielded the best results, as
it strikes a balance between:

1. Providing sufficient structural context that
pure text approaches lack

2. Avoiding overwhelming the model with full
HTML markup

3. Creating a constrained output format (line
numbers) that prevents hallucination.

The tag-depth approach also significantly out-
performed both raw HTML and raw text ap-
proaches in our experiments, as shown in Table 1.
Below are the three prompting strategies we eval-
uated:

Raw HTML Prompt

Analyze the given HTML and extract only
the main article/post/discussion content,
ensuring that the extracted content meets
the criteria for a perfect extraction as de-
fined below.
1. Include All Core Content: - Extract the
complete core content of the main article,
which are exclusively: - Title - Headings
and Subheadings - All paragraphs that form
the continuous, coherent text of the article
2. Exclude All Irrelevant Elements: -
Do not include any peripheral or irrele-
vant elements such as: - Headers, foot-
ers, navigation bars, sidebars - Comments,
author bios, blog names, date stamps, au-
thor names, etc. - Advertisements (e.g.,
”Buy now”) - Breadcrumbs (e.g., ”Home >
Category > Subcategory”) - Promotional
teasers (e.g., ”Sign up for our newslet-
ter”) - Navigation links (e.g., ”Go to the
next article”) - Irrelevant image captions
(e.g., ”Source: Getty Images”) - Calls-to-

action (e.g., ”Join our group”) - Recom-
mendations for other articles (e.g., ”See
related article: ...”) - Contact information
(e.g., ”Reach us at...”) - Social media links
(e.g., ”Connect with @...”) - Disclaimers or
cookie notices
3. Output Format: - Provide only the main
article content without any additional text
or commentary. - Do not include any for-
matting tags or metadata.
Input HTML: text
Output format: text

Raw Text Prompt

Analyze the given text and extract ONLY
the main article content:
1. Identify the core article content, focus-
ing on continuous, coherent text that with
a clear title. 2. Ignore all peripheral con-
tent: headers, footers, navigation, sidebars,
comments, author bios, blog names, date
stamps, author names, etc, but do not ig-
nore the content that is included in the main
article. 3. Output the main article content.
Input text: text
Output format: text

Tag-depth Prompt (Best Performing)

For the given numbered lines of text from
an HTML with their parent tags and the tag
depths in the HTML tree, extract the core
content (like ReadabilityJS).
1. IDENTIFY CORE CONTENT - Each
page has a main content, which can be an
article, blog post, forum thread, etc. - Ex-
tract the main content, which includes the
title, headings, paragraphs, and any other
relevant text. - Exclude all peripheral con-
tent: headers, footers, navigation, sidebars,
comments, author bios, blog names, date
stamps, author names, etc.
2. EXCLUDE IF ANY OF THESE ARE
TRUE: - Appears in site navigation sec-
tions - Contains ANY of these patterns:
* Social media handles or URLs * Date
stamps or bylines * Copyright notices *
Contact information * Newsletter signup
text * ”Related article” references * Adver-
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tisement markers * Image credits or cap-
tions * Tags or categories * Call-to-action
phrases * Navigation instructions * Com-
ment section markers * Share button text *
Footer content - Some examples are: ’Re-
lated: you will not believe what happened
next’ or ’Sign up to our newsletter’ or
’Source: Getty Images’ or ’Contact us via
Instagram’ or ’Date: 2022-01-01’”
3. VALIDATE SELECTION - Verify se-
lected lines form a coherent narrative -
Check that no essential context is lost -
Confirm removal of ALL peripheral con-
tent
Input: text
Output format: [comma-separated list of
line numbers containing ONLY the essen-
tial content]
Notes: - Include ONLY numbers in the out-
put, no explanations - If a line contains
mixed content, exclude it entirely - When
in doubt about a line, exclude it - Aim for
maximum precision over recall
Example output: 1,2,3,5,8,...
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