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Abstract

The evolution of Large Language Models
(LLMs) has significantly advanced multi-turn
conversation systems, emphasizing the need
for proactive guidance to enhance users’ in-
teractions. However, these systems face chal-
lenges in dynamically adapting to shifts in
users’ goals and maintaining low latency for
real-time interactions. In the Baidu Search AI
assistant, an industrial-scale multi-turn search
system, we propose a novel two-phase frame-
work to provide proactive guidance. The first
phase, Goal-adaptive Supervised Fine-Tuning
(G-SFT), employs a goal adaptation agent that
dynamically adapts to user goal shifts and
provides goal-relevant contextual information.
G-SFT also incorporates scalable knowledge
transfer to distill insights from LLMs into a
lightweight model for real-time interaction.
The second phase, Click-oriented Reinforce-
ment Learning (C-RL), adopts a generate-rank
paradigm, systematically constructs preference
pairs from user click signals, and proactively
improves click-through rates through more en-
gaging guidance. This dual-phase architec-
ture achieves complementary objectives: G-
SFT ensures accurate goal tracking, while C-
RL optimizes interaction quality through click
signal-driven reinforcement learning. Exten-
sive experiments demonstrate that our frame-
work achieves 86.10% accuracy in offline eval-
uation (+23.95% over baseline) and 25.28%
CTR in online deployment (149.06% relative
improvement), while reducing inference la-
tency by 69.55% through scalable knowledge
distillation.

1 Introduction

The remarkable progress in Large Language Mod-
els (LLMs) (Achiam et al., 2023; Yang et al., 2024;
Grattafiori et al., 2024; Guo et al., 2025) has pro-
pelled conversational AI systems into a new era,
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The Round 1 of Conversation

Answer 1: the corresponding answer 

to the above query.
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that generated by our methods in round 1.

The Round 2 of Conversation

Answer 2: the corresponding answer 

to the above query.

Query 2：the input query from the user. 

User

System
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that generated by our methods in round 2.

Figure 1: Illustration of the Proactive Guidance task in
the multi-turn conversation system scenario. In each
turn, given the user’s query and the corresponding an-
swer, our method generates k proactive guidance to
guide the user to click for the next turn of the conversa-
tion.

where they are increasingly capable of understand-
ing users’ queries and providing precise answers.
This advancement has spurred the development of
multi-turn conversation systems (Aliannejadi et al.,
2020; Vadhavana et al., 2024; Yi et al., 2024; Zhang
et al., 2025).

Contemporary systems are increasingly valued
for their ability to anticipate and guide conversa-
tional turns (Zhang et al., 2018; Gao et al., 2021;
Fang et al., 2024). Instead of requiring users to
precisely formulate their next query or even fully
understand their own needs, systems can provide
proactive guidance as follow-up questions that
align with users’ conversational goals and signifi-
cantly enhance the convenience of interactions by
minimizing the cognitive load on users. Despite
their importance, crafting proactive guidance still
remains challenging, particularly in multi-turn con-
versation systems where users’ goals may undergo
multiple shifts during interactions (Deng et al.,
2023; Bordes et al., 2016).

Traditional methods that utilize LLMs with his-
torical conversation as contextual information have
shown impressive results in guidance quality (Li
et al., 2024; Duan et al., 2025; Feng et al., 2023).
However, they face several challenges when de-
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ployed in real-world scenarios. Firstly, these meth-
ods often struggle to dynamically adapt to changes
in user conversational goals (Li et al., 2024), as
incorporating the entire conversation history can in-
advertently introduce irrelevant information, which
may result in misaligned guidance (i.e., query shifts
from food allergy to the stock market may cause
LLMs to persistently recommend food safety, los-
ing track of the user’s new conversational goal).
Secondly, redundant historical context, especially
lengthy answers, introduces computational over-
head and increased latency, severely affecting real-
time interactions (Lapov et al., 2024). Lastly, the
high computational demands of LLMs further am-
plify these issues, hindering their practicality in
generating rapid responses.

To address these challenges, we propose an inno-
vative framework that combines Goal-adaptive Su-
pervised Fine-Tuning (G-SFT) with Click-oriented
Reinforcement Learning (C-RL) to solve the proac-
tive guidance task, as illustrated in Figure 1.

In the G-SFT phase, our Goal Adaptation Agent
(GAA) dynamically identifies and adapts to user
goal shifts through three core outputs: explicit goal
analysis, shift detection signals, and concise goal-
relevant summary. By replacing redundant histori-
cal context with these signals in the generation of
guidance, we achieve 65.5% faster processing in
later turns and 10.18% higher click-through rates.
Alongside this, scalable knowledge transfer distills
LLMs’ vast world knowledge into a more compact
model, the G-SFT model, maintaining guidance
quality while further reducing inference latency.

The C-RL phase further optimizes the G-SFT
model, leveraging user click signals to construct
preference pairs for alignment. Various forms of re-
inforcement learning (Kaelbling et al., 1996; Schul-
man et al., 2017; Rafailov et al., 2023; Amini et al.,
2024; Ethayarajh et al., 2024) have been proposed
and implemented in conversation systems due to
their ability to adapt responses to better align with
user preferences. The key challenge lies in gener-
ating meaningful training samples of k guidance
from single-clicked guidance, as the model must
provide k guidance options per turn. We address
this using a generate-rank paradigm: (1) train-
ing an augmentation model on 1-pair click data,
(2) generating diverse candidate guidance groups
using Diverse Beam Search (DBS) (Vijayakumar
et al., 2016), and (3) ranking and sampling k-pair
data using a click estimator and a novel diversity-
aware group sampling strategy. Experimental re-

sults demonstrate significant improvements, with
accuracy increasing by 3.47% and click-through
rates increasing from 20.81% to 25.28% in indus-
trial deployment environments.

Our contributions can be summarized as follows:

• We introduce a goal adaptation agent that dy-
namically identifies and adapts to shifts in user
goals, generating concise, goal-aligned sum-
maries that streamline context for guidance
generation without additional latency.

• We develop a generate-rank paradigm that
leverages the DBS-based generation method,
coupled with a group sampling strategy, to ad-
dress the gap between single-preference data
and multi-output requirements, thereby fur-
ther enhancing the guidance quality.

• Comprehensive experiments demonstrate sig-
nificant improvements in accuracy, task-
related gains (∆GSB), and click-through rate,
validating the effectiveness of our framework
in real-world conversational search scenarios.

2 Methodology

In this section, we first provide a formal definition
of the proactive guidance task in the multi-turn
conversation system, then present our innovative
two-phase framework, as illustrated in Figure 2.

2.1 Proactive Guidance
The task aims to generate a set of guidance phrases,
Gi = {Gi1, Gi2, . . . , Gik}, during the i-th round
of the conversation, where k is a predefined con-
stant. Specifically, in each round i, given user’s
query Qi, the corresponding answer Ai and contex-
tual information Ci, our objective is to determine
the optimal function f∗

i to generate Gi that maxi-
mizes the well-designed evaluation function Y:

f∗
i (Qi, Ai, Ci) = argmax

Gi

Y(Gi | Qi, Ai, Ci),

(1)
where Y comprises two components: the offline
and online evaluations. Offline evaluation, Yoffline,
assesses 1) Relevance: this evaluates the relevance
of Gi in the context of the conversation; 2) Ap-
plicability: this dimension measures the practical
utility of Gi; 3) Diversity: this criterion evaluates
the variety and breadth of Gi, ensuring a relatively
comprehensive range of perspectives. The Yoffline
is conducted through manual scoring by trained
annotators, with full evaluation criteria provided in
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Figure 2: Architecture of the proposed framework.

Appendix D. Online evaluation, Yonline, evaluates
the effectiveness of the guidance Gi in stimulat-
ing user engagement and promoting users’ further
interactions, which is quantified using the Click-
Through Rate (CTR) metric.

2.2 Goal-adaptive Supervised Fine-Tuning
This phase is meticulously designed to produce a
model capable of dynamically adapting to shifts
in users’ goals, providing high-quality guidance,
and meeting the stringent latency requirements of
industrial applications.

2.2.1 Goal Adaptation Agent
Users’ goals are defined as their explicit or im-
plicit query intentions, which may undergo multi-
ple shifts during interaction. By providing Explicit
goal analysis Ei, goal-relevant Summary Si and
shift Detection signal Di, all together as contex-
tual information Ci, the Goal Adaptation Agent
(GAA) effectively assists the guidance model in
dynamically adapting to these shifts.

The process is described in the following. In the
initial round (i = 1), the GAA is not activated. Dur-
ing the second round (i = 2), it analyzes the cur-
rent query Q2 with the previous dialogue (Q1, A1)
to generate {Ei, Si, Di}. In subsequent rounds
(i > 2), besides previous QA pair, the GAA addi-
tionally incorporates Si−1 to seamlessly maintain
context. This process is facilitated through the use

of prompts, as described in Appendix A, which
details the specific prompts employed by GAA.

Explicit Goal Analysis. GAA initially performs
a detailed goal analysis by examining the correla-
tion between the current query and the previous
dialogue, identifying shifts and evolutions in the
user’s goals; then it provides explicit textual de-
scriptions of the current intentions and infers po-
tential underlying needs.

Goal-relevant Summary. GAA generates con-
cise, goal-aligned contextual information based
on Ei by (1) filtering goal-relevant segments from
Ai−1 and Si−1, and (2) inheriting pertinent infor-
mation from Si−1 while summarizing key points
from Ai−1, omitting irrelevant details, to produce
Si, which focuses on the most relevant information,
enabling the guidance agent to maintain coherence
during dynamic goal shifts.

Shift Detection Signal. The detection signal
Di serves as an indicator of whether a goal shift
has occurred. When a goal shift is detected, Di

prompts the system to reset Si, thereby eliminating
outdated information.

Two critical aspects of the GAA should be high-
lighted: First, the current answer Ai is not used
in GAA since it does not reflect the user’s intent,
allowing GAA to function simultaneously with an-
swer generation and avoiding extra latency. Second,
the contextual information Ci provided by GAA

708



is more concise than the raw chat history, signifi-
cantly reduces the computational load for guidance
generation, and ultimately decreases response la-
tency.

2.2.2 Scalable Knowledge Transfer
Although LLMs deliver impressive results, their la-
tency can be prohibitive. Conversely, smaller mod-
els often lack the world knowledge needed to han-
dle the diverse scenarios in reality. To address this,
we propose a scalable knowledge transfer method.

Initially, we utilize LLMs to process various con-
versations, denoted as Qi, Ai and Ci, where Ci is
provided by GAA. Then LLMs are prompted to
produce a chain of thought, CoTi, paired with a
list of n guidance candidates, denoted as:

{CoTi, Gi1, . . . , Gin} = LLM(Qi, Ai, Ci). (2)

Subsequently, these n candidates undergo a manual
selection process based on Yoffline, and CoTi is
strategically discarded for efficiency, resulting in
a refined subset of k guidance, where k < n. We
then fine-tune a significantly smaller model on this
refined dataset through a loss function defined as
follows:

L = −
T∑

t=1

logP (yt | y<t, x), (3)

where T is the length of the target sequence; yt
is the target word at time step t; y<t denotes the
sequence of words generated before time step t; x
is the input context.

Through scalable knowledge transfer, we have
effectively equipped a more compact model, re-
ferred to as the G-SFT model, with the capability
to offer insightful guidance whose quality rivals
that of its larger counterparts.

2.3 Click-oriented Reinforcement Learning

During the deployment of the G-SFT model, we
collected substantial data on users’ interactions that
inherently reflect user preferences. To fully exploit
these valuable data, we introduced an innovative
generate-rank paradigm, which effectively bridges
the gap between the actual single-clicked guidance
and the practical need for k instances.

2.3.1 Generate
In this section, we demonstrate the process of gen-
erating multiple guidance phrases as candidates.

Preference-Aligned Augmentation Model. We
leverage user interaction data to create training sam-
ples consisting of preference pairs. Each instance
is composed of a question, an answer, and contex-
tual information, collectively referred to as input
x. The guidance clicked by a user is considered
as the preferred response yw, while the others are
treated as dispreferred yl, forming preference pairs
(x, yw, yl). Then, we apply Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) to the G-
SFT model. The goal of the DPO loss function is
to optimize the model’s response probability, in-
creasing the relative probability of the preferred
response. The formula is as follows:

LDPO(πθ;πref) = −E(x,yw,yl)∼D
[

log σ
(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)]
.

(4)

Through this process, we produce a preference-
aligned model that has the ability to generate guid-
ance that users are more likely to click on.

DBS-based Decoding. To generate multiple
guidance outputs using the aligned model trained
with single guidance, we incorporate the Diverse
Beam Search (DBS) (Vijayakumar et al., 2016) de-
coding strategy. DBS is an enhanced version of
the beam search algorithm. It employs a grouping
strategy that divides beams into multiple groups Y
to explore different sequences independently. Ad-
ditionally, DBS imposes a similarity penalty, dis-
couraging the selection of tokens similar to those
in other sequences.

For a sequence y[t], its dissimilarity against the
group g at time step t, Yg

[t] , is measured as:

∆(y[t],Y
g
[t]) =

B′∑

b=1

δ(y[t],y
g
b,[t]), (5)

where δ(·, ·) quantifies sequence dissimilarity, e.g.,
a negative cost for each co-occurring n-gram in two
sentences, distance between distributed sentence
representations.

DBS decoding allows the aligned model to pro-
duce multiple responses in a single inference, pro-
viding guidance with significant differences in se-
mantics, styles, or structures as candidates.

2.3.2 Rank
This section describes how to construct preference
pairs with k guidance phrases.
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Click Estimator. The Click Estimator is devel-
oped to predict the clicking likelihood of the guid-
ance. It employs a sophisticated 12-layer ERNIE
encoder (Sun et al., 2020) that processes user in-
teractions through a triplet format (Qi, Gij , y),
j = 1, . . . , k and distinguishes between clicked
(y = 1) and unclicked (y = 0) guidance. The
training objective is:

L(y, ŷ) = − 1

N

N∑

m=1

[
ym · log(ŷm)

+ (1− ym) · log(1− ŷm)
]
, (6)

where ŷ denotes the predicted probability. This ap-
proach enables the click estimator to effectively pre-
dict the probability that a guidance Gij is clicked.

Diversity-Aware Group Sample Strategy. The
sampling strategy that relies solely on click proba-
bility suffers from semantic redundancy, since the
click estimator tends to assign similar scores to
semantically equivalent guidance.

Based on the traits of DBS, we propose a
diversity-aware group sampling strategy that en-
sures semantic richness. It works as follows: (1) Or-
ganize candidates into n groups where each group
Pi contains the i-th candidate from each beam, then
select the highest-CTR candidate per group to yield
n diverse choices as a candidate pool P ; (2) Apply
Maximum Marginal Relevance (MMR) (Guo and
Sanner, 2010) with

argmax
gi∈P

[
λ ·CE(gi)− (1− λ) ·max

gj∈S
sim(gi, gj)

]
,

(7)
where P denotes the candidate pool and S denotes
the selected set, CE(·) is the click probability pre-
dicted by the click estimator. λ is a trade-off param-
eter that balances click probability and semantic
diversity, which is set to 0.5 in our implementation.
The selecting procedure starts with the guidance
clicked by real users as the initial point, then se-
lects k − 1 guidance from P . These k guidance
are combined and seen as the preferred response.
Then we randomly sampled k guidance from the
unselected ones as dispreferred, ensuring that the
maximum CE(·) score of the dispreferred guidance
is less than the minimum score of the preferred
guidance. The formats of training data are detailed
in Appendix B.

Through this meticulous process, we create the
k-pair preference-aligned dataset. Subsequently,
we employed DPO to optimize the G-SFT model,

resulting in the development of our final model
being perceptible to user click preferences, referred
to as the C-LR model. This model has significantly
improved CTR in real-world application scenarios.

3 Experiments

To validate the effectiveness of our proposed
method, we conducted comprehensive offline eval-
uations and online experiments within the Baidu
Search AI assistant.

3.1 Experimental Setup

Datasets. We evaluate our models using QA pairs
collected from the Baidu Search AI assistant, an
industrial-scale multi-round conversation system,
to ensure authenticity and diversity. For the G-SFT
model, we constructed a training set of 6,072 QA
pairs following Section 2.2.2. The C-RL model
utilizes 12,000 preference pairs constructed using
the generate-rank paradigm described in Section
2.3.

Evaluation Metrics. We evaluate the model’s
performance using three metrics: 1) Accuracy
(ACC): The proportion of guidance that meets the
Yoffline as introduced in Section 2.1; 2) Good vs.
Same vs. Bad (∆ GSB): Comparatively evalu-
ates the performance of two models (details in Ap-
pendix E); 3) Click-Through Rate (CTR): The ratio
of turns with click behavior to total turns.

Baselines. We adopt ERNIE Speed (21B) (Sun
et al., 2020, 2021), a publicly accessible foundation
model1, as our baseline model. The predefined
number of guidance phrases k is set to 3.

3.2 Implementation Details

G-SFT Phase. We use ERNIE Speed as the base
model, where the learning rate is 3e-6, the max se-
quence length is 4,096, the batch size is 16, and the
model training epoch is 3. For scalable knowledge
transfer, GPT-4o is chosen as the teacher model
(Hurst et al., 2024).

C-RL Phase. Parameters are initialized with the
best checkpoint of the G-SFT model. During the
DPO process, the learning rate is set to 1e-6 with
a batch size of 16, and the validation steps are set
to 8. The training is conducted for 2 epochs. For
DBS decoding parameters, the batch size is set to
16, the number of beam groups is 4, and the beam
size within each group is 4.

1https://cloud.baidu.com/product-s/qianfan_home
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Table 1: Performance comparison of different models.

Model
Offline Online

ACC ∆ GSB CTR

BaseLine 62.15% — 10.15%
SKD model 71.82% +2.43% 14.62%
G-SFT model 82.63% +4.24% 20.81%
C-RL model 86.10% +5.60% 25.28%

Note: SKD model refers to the model after Scalable
Knowledge Transfer without the use of GAA. The G-SFT
model is the model produced after the G-SFT stage of our
proposed method, which incorporates both SKD and GAA.
The C-RL model is the G-SFT model fine-tuned with DPO
on the dataset constructed using our proposed generate-rank
method.

3.3 Results and Analysis

Overall Results. Experiments demonstrate sig-
nificant improvements across offline and online
metrics. As shown in Table 1, the baseline model
achieves 62.15% ACC and 10.15% CTR, while the
C-RL model achieves improved performance with
86.10% ACC, +5.60% ∆GSB and 25.28% CTR.
In particular, compared to the SKD model, the G-
SFT model increases ACC by 10.81% and CTR by
6.19%, validating the superior goal management
capabilities of GAA. Meanwhile, the C-RL phase
further enhances CTR by 4.47% with ACC gains
(+3.47%), demonstrating the ability of the C-RL
model to capture implicit user preferences through
click data. These results confirm the effectiveness
of our two-phase framework, which excellently per-
forms the task of proactive guidance. Appendix C
provides a real sample.

Consistency Analysis. There is a strong corre-
lation between offline and online metrics (Spear-
man’s ρ = 0.986, p < 0.01), indicating that our
proposed strategy not only improves objective ac-
curacy but also effectively enhances user expe-
rience. The scalable knowledge transfer model
shows improvements in ACC and CTR of +9.67%
and +4.47% respectively, GAA with improvements
of +10.18%/+6.19%, and C-RL with improvements
of +3.47%/+4.47%. In particular, the excess gain
in CTR of the reinforcement learning phase high-
lights its ability to capture implicit features of user
goals through click behavior.

Latency Analysis. Our system achieves
industrial-grade efficiency through two techniques:
(1) Scalable knowledge transfer, transferring
LLMs’ world knowledge to a more compact model

Table 2: Ablation Studies of Goal Adaptation Agent
(GAA).

Model
Offline Online

ACC ∆ GSB CTR

SKD model 71.82% — 14.62%
+ S 75.62% +2.97% 16.43%
+ SD 78.21% +3.11% 17.81%
+ DE 81.16% +3.67% 19.72%
+ GAA 82.63% +4.24% 20.81%

Note: SKD model refers to the model after Scalable
Knowledge Transfer without the use of GAA. The table
illustrates the impact of different components on model
performance. S represents the goal-relevant summary, D
denotes the detection signal of goal shift, and E stands for
explicit goal analysis.

and further removing the CoT, significantly re-
duces inference latency by 69.55% (from 2.89s
to 0.88s). (2) by replacing raw chat history with
GAA-generated concise contextual information, la-
tency decreases by 65.5% (3.25s → 1.12s). The
combined optimizations enable real-time respon-
siveness with end-to-end latency around 1s, meet-
ing industrial deployment requirements.

3.4 Ablation Studies

Goal Adaptation Agent. The ablation studies of
the GAA in Table 2 highlight the critical roles of
its components: (1) goal-relevant Summary, (2)
Detection signal of goal shift, and (3) Explicit goal
analysis. The complete GAA achieves optimal
performance with 82.63% ACC and 20.81% CTR,
underscoring the importance of component synergy
for effective multi-turn guidance.

Retaining only S results in a notable perfor-
mance decrease (ACC -7.01% , CTR -4.38%),
emphasizing the necessity of comprehensive goal
management to maintain conversational coherence.
Adding D helps recover some performance (ACC
78.21%, CTR 17.81%) by detecting goal shifts and
prompting adjustments. However, E has a greater
impact, achieving 81.16% ACC and 19.72% CTR,
by providing a deeper understanding of user inten-
tions. The results indicate that D and E are essential
for maintaining coherent and context-aware guid-
ance in multi-turn conversation.

DBS Decoding Strategies. This study examines
the impact of the BEAM_GROUP_NUM B on gen-
eration quality using the DBS decoding strategy.
As shown in Table 3, setting B to 4 achieves the op-
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Table 3: Ablation studies of DBS decoding parameters.

Model
Offline Online

ACC ∆ GSB CTR

G-SFT model 82.60% — 20.81%
B = 1 82.14% +2.88% 22.54%
B = 2 84.87% +3.23% 24.78%
B = 4 86.10% +3.60% 25.28%
B = 8 84.31% +3.11% 24.16%

Note: B represents the BEAM_GROUP_NUM used in the
diverse beam search decoding strategy.

timal balance with an ACC of 86.10% and a CTR
of 25.28%. A group count of 1 limits the diversity,
reducing CTR to 22.54%, while 8 groups introduce
noise, lowering CTR to 24.16%. Notably, setting B
to 2 maintains a high CTR of 24.78% and improves
decoding efficiency, offering a practical strategy
for real-world deployment.

4 Conclusion

In this paper, we propose a novel framework for
proactive guidance in multi-turn conversation sys-
tems, integrating G-SFT with C-RL to address chal-
lenges in dynamic goal adaptation and real-time
responsiveness. Our approach demonstrates signif-
icant improvements in both guidance quality and
system efficiency. Experimental results demon-
strate that the framework effectively encourages
user interaction and significantly increases click-
through rates, highlighting its practical value in
industrial scenarios.

5 Future Work

Despite the progress made in the proactive guid-
ance for multi-turn conversation systems, there re-
main several areas for improvement and further
investigation:

• Refinement of summary reset mechanisms:
our current methodology resets Si when goal
shifts are detected, failing to accommodate
temporary shifts in user goals, resulting in
loss of information when users return to pre-
vious intentions. Future enhancements could
utilize a more sophisticated state-tracking sys-
tem, allowing for a more flexible and coherent
interaction experience.

• Exploring more diverse baseline models:
The comparison with baseline models in the

current study has provided a foundational un-
derstanding of our framework’s capabilities.
However, the rapid advancement in neural net-
work architectures and language models sug-
gests that integrating and comparing newer
models could yield further insights.

• Expansion of evaluation metrics: the offline
evaluation metrics used in this study, while
comprehensive, could be expanded to include
more diverse criteria that capture other aspects
of user experience, such as user satisfaction
or the system’s ability to handle unexpected
queries. Future studies could explore addi-
tional metrics that provide a deeper under-
standing of the qualitative aspects of conver-
sation.

By addressing these future directions, we aim
to enhance the functionality and applicability of
proactive guidance, paving the way for more intel-
ligent, adaptable, and user-centric conversational
agents. This continued research could have a pro-
found impact on the development of AI-driven com-
munication tools across various domains.
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A Prompt for the Goal Adaptation Agent

This appendix presents the structured prompt for the goal adaptation agent.

Prompt: You are a Goal-Tracking Model specifically designed for multi-turn dialogue
scenarios. Your task is to understand and track the user’s evolving goals throughout the
dialogue and produce coherent summaries that capture the history and progression of the
conversation. This process involves preserving contextual continuity and relevance to the
user’s current objectives. To accomplish this, you will utilize the following inputs:
• [ Qi ]: The current user question in the dialogue, which may indicate a continuation of

previous goals or the introduction of new goals.
• [ (Qi−1, Ai−1) ]: The immediate previous question and answer pair, providing context for
Qi and potentially containing clues about changes in the user’s intent since the last turn.

• [ Si−1 ]: A comprehensive summary of the dialogue history up to the interaction immedi-
ately preceding Qi, encapsulating key points and actions taken that are relevant to the
evolving goals of the user.

Task:

(1) Explicit Goal Analysis:

• Perform a detailed analysis of [ Qi ] in the context of [ (Qi−1, Ai−1) ], to detect
nuanced changes in the user’s goals. Provide a clear and explicit textual explanation
that articulates the current user’s intent, and infer any underlying or potential needs
that may be driving this intent.

(2) Goal-relevant Summary:

• Based on the results of the explicit goal analysis, selectively extract content from
[ Si−1 ] and [ (Qi−1, Ai−1) ], that is directly related to the user’s current goals. Inte-

grate these key points into a new, updated summary [ Si ], ensuring that it is concise
yet comprehensive. Prune any elements that are no longer relevant to the current
context or the user’s goals to maintain focus and clarity in the evolving conversation.

(3) Detection Signal:

• Provide a detection signal [ Di ] that indicates whether a goal transition has occurred
between the previous turn and the current turn. If such a transition is detected, trigger
a reset of [ Si ] to ensure that the summary remains relevant and does not retain
outdated information that could interfere with the user’s current goal orientation.

Expected Output Format:

The expected output should be a structured JSON object, as follows:
{
"explicitGoalAnalysis": "Description of the user's current intent, and inferred
potential needs of the user",
"goalRelevantSummary": "Coherent summary incorporating key points relevant
to the user's current goals",
"detectionSignal": "Boolean indicating whether a goal transition has been
detected"

}
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B Data format of G-SFT and C-RL

B.1 Prompt format
Here is the detailed prompt used for G-SFT and C-RL.

Background: As a Proactive Guidance Model, you are tasked with enhancing user experi-
ence in a multi-turn dialogue system by predicting potential future inquiries. Through careful
analysis of the current and past interactions, you will help drive the conversation towards
fulfilling the user’s objectives.
Input Explanation: The following elements are provided for your analysis:

• Current round’s user query ([ Q ]).

• The corresponding system’s answer ([ A ]).

• Contextual information from previous rounds, which includes:

– A summary of the dialogue thus far ([ S ]).
– Explicit goal analysis, detailing the objectives and needs of the user ([ E ]).

Thought Process: In predicting the user’s next questions, you should:

1. Assess if the current round’s answer ([ An ]) has adequately addressed the user’s
query ([ Qn ]).

2. Utilize the contextual information, particularly the summary and explicit goal analysis,
to comprehend the user’s continuous journey and objectives within the dialogue.

3. Anticipate the user’s potential next steps by considering the dialogue’s progression and
any identified goals or needs.

4. Generate k relevant and contextually appropriate questions as guidance that the user
might ask next.

Output Format Requirements: Present your predictions structured as follows:

Guidan_1\n...\nGuidance_k

B.2 Response format:
Here shows the response format of different tasks.

For G-SFT:

response: Guidan_1\nGuidance_2\nGuidance_3

For 1-pair DPO(Augmentation model as in section 2.3.1):

Chosen: Guidance(clicked)
Rejected: Guidance(unclicked)

For k-pair DPO(C-RL model as in section 2.3):

Chosen: Guidance_pos1\nGuidance_pos2\nGuidance_pos3
Rejected: Guidance_neg1\nGuidance_neg2\nGuidance_neg3

note: Guidance_pos∗ stands for the chosen guidance sampled through the method in
section 2.3.2, while Guidance_neg∗ stands for rejected guidance.

715



C Showcase

Figure 3 demonstrates proactive guidance in the
Baidu Search AI assistant, an industrial-scale multi-
turn conversation system.

On the left side of the image, the user poses the
question "How to manage emotions?" The guid-
ance is organized into three key areas: cultivating
long-term emotional management habits, recom-
mending books on emotional management, and
identifying actions for immediate mood improve-
ment. Cultivating long-term habits focuses on sus-
tainable practices, building resilience over time.
Book recommendations offer resources for deeper
learning, while immediate mood improvement ac-
tions provide practical strategies for real-time relief.
This structured approach effectively refines the in-
quiry into specific, actionable advice, enhancing
user satisfaction.

On the right side of the image, the user inquires,
"Which Taylor Swift song is suitable for a mar-
riage proposal?" The guidance here is thoughtfully
structured into three suggestions: Are there any
more song recommendations for a proposal? What
are the lyrics to "Love Story"? What other classic
songs does Taylor Swift have? Each recommen-
dation serves a distinct purpose, ensuring compre-
hensive support for the user’s inquiry. The first
expands song options, enhancing satisfaction by of-
fering a wider array of choices. The second caters
to users interested in song lyrics, allowing a deeper
connection with the thematic elements. The third
broadens the user’s musical horizon with classic
Taylor Swift songs, aiding in discovering songs that
resonate with their proposal vision.

Overall, the guidance in both scenarios is diverse
and non-overlapping, addressing potential user
goals and enhancing engagement through struc-
tured, actionable advice.

D Evaluation Criteria

This appendix outlines the evaluation criteria used
for assessing the effectiveness of the guidance
phrases generated during the conversation rounds.
Our evaluation framework consists of three main
components: relevance, applicability, and diversity.
Each component is crucial for ensuring the quality
and utility of the guidance provided. The evalua-
tion is conducted by trained annotators based on
the following detailed criteria:

Proactive Guidance Proactive Guidance

Figure 3: Proactive guidance in Baidu Search AI assis-
tant. The left query is "How to manage emotions?" and
the right query is "Which Taylor Swift song is suitable
for a marriage proposal?"

D.1 Relevance

• Contextual Relevance: The guidance phrases
must be directly related to the user’s query
and the ongoing conversation. They should
address the user’s needs without introducing
unrelated topics.

• Coherence: The phrases should maintain log-
ical consistency with the conversation history,
avoiding contradictions and repetition.

D.2 Applicability

• Intent Clarification: When the user’s intent
is unclear or comprises multiple potential di-
rections, the guidance should help the user to
clarify their intent.

• Identifying Hidden Demands: If the current
query is only part of the user’s fundamental
needs, the guidance should aim to uncover
underlying requirements, offering comprehen-
sive or extended guidance.

• Personalized Information Supplementa-
tion: When the user’s intent is clear but re-
quires personalized information, the guidance
should prompt the user to provide necessary
context for a tailored response.
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D.3 Diversity
• Comprehensiveness: The guidance should

cover a wide range of dimensions or options.
It should be supported by expert knowledge
or strong a posteriori information justifying
the necessity of each guidance element.

• Mutual Exclusivity: The guidance should
not repeat or overlap with the user’s original
query or with content already adequately ad-
dressed in previous answers. Different guid-
ance options should be distinct from one an-
other, avoiding intersections or inclusions.

D.4 Redline Criteria
• Legal and Ethical Compliance: Guidance

must not violate national laws, involve sen-
sitive political or adult content, or touch on
sensitive topics.

• Accuracy and Truthfulness: The informa-
tion provided must be factual and free from
rumors or misinformation.

• Emotional Impact: Guidance should avoid
content that is excessively violent, discomfort-
ing, or sensationalist, such as exaggerated or
eye-catching lowbrow titles.

E Good vs. Same vs. Bad (GSB)
Calculation Details

Good vs. Same vs. Bad (GSB) is a metric judged
by professionally trained annotators. For each user
query, annotators are presented with the answer,
historical conversations, and the guidance gener-
ated from both model A and model B. Based on the
quality of the guidance, annotators independently
assign one of the following labels:

• Good: Results from model A are better than
model B.

• Bad: Results from model B are better than
model A.

• Same: Results from model A and model B
are of equal quality (either good or bad).

To quantify the human evaluation, we use a uni-
fied metric ∆GSB, defined as:

∆GSB =
#Good −#Bad

#Good +#Same +#Bad
.
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