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Abstract

The discovery of novel antibiotics is critical to
address the growing antimicrobial resistance
(AMR). However, pharmaceutical industries
face high costs (over $1 billion), long time-
lines, and a high failure rate, worsened by
the rediscovery of known compounds. We
propose an LLM-based pipeline that acts as
an alert system, detecting prior evidence of
antibiotic activity to prevent costly rediscov-
eries. The system integrates literature on
organisms and chemicals into a Knowledge
Graph (KG), ensuring taxonomic resolution,
synonym handling, and multi-level evidence
classification. We tested the pipeline on a pri-
vate list of 73 potential antibiotic-producing
organisms, disclosing 12 negative hits for
evaluation. The results highlight the effec-
tiveness of the pipeline for evidence review-
ing, reducing false negatives, and accelerat-
ing decision-making. The KG for negative
hits as well as the user interface for interactive
exploration are available at https://github.
com/idiap/abroad-kg-store and https://
github.com/idiap/abroad-demo-webapp.

1 Introduction

Antibiotics are naturally occurring chemical com-
pounds produced by organisms, known as natu-
ral products, that can inhibit the growth or elim-
inate bacteria and other microorganisms (Waks-
man, 1947). However, the introduction, use, and
overuse of new antibiotics inevitably lead to the
emergence of resistant pathogens (Altarac et al.,
2021), and Antimicrobial Resistance (AMR) has
been recognized as one of the top ten global pub-
lic health threats (EClinicalMedicine, 2021). This
ongoing cycle drives a continuous race to ex-
pand the antibiotic spectrum and treat patients in-
fected with multidrug-resistant pathogens (MRPs)
(Ahmed et al., 2024; Iskandar et al., 2022).

The development of new antibiotics is highly
challenging (Payne et al., 2007; Altarac et al.,

2021). The process has a high failure rate, and
the total cost from identifying lead compounds to
market approval can exceed $1 billion and take
over a decade (Årdal et al., 2020; Wouters et al.,
2020). In the initial phase, pharmaceutical compa-
nies explore ecosystems (Quinn and Dyson, 2024),
searching for exotic organisms that produce novel
bioactive compounds (see Figure 1). This phase
involves identifying and isolating these compounds
and evaluating their activity against MRPs. Iden-
tifying promising lead compounds (those with the
highest potential for success) can already require
over $1 million and years of research (Årdal et al.,
2018). A major challenge in this early phase is
avoiding rediscovery scenarios, when a potentially
active compound has already been reported in sci-
entific literature or patent databases. Such prior
knowledge often eliminates the compound’s com-
mercial value by removing its novelty. In addition,
one can consider that if an active molecule pro-
duced by an organism is publicly known but not
already commercialized, it is likely that it has al-
ready been tested but failed in later clinical stages.
Therefore, ensuring comprehensive awareness of
existing research is critical to avoid costly invest-
ments in non-viable targets. As stated by (Paul
et al., 2010), if a candidate has to fail, it is critical
to it make fail faster and less expensively.

Preventing rediscoveries requires an extensive re-
view of scientific literature, databases, and patents
related to the initial list of target organisms. This
task is firstly complicated by the unstable taxon-
omy and nomenclature of organisms (Beninger and
Backeljau, 2019). Many organisms have been re-
peatedly rediscovered and reclassified under differ-
ent names. For instance, Cephalosporium acremo-
nium, Hyalopus acremonium, Acremonium stric-
tum and Sarocladium strictum, published in 1882,
1941, 1971 and 2011 respectively, all refer to the
same organism under the most recent classification.
To capture relevant data, literature reviews must
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expand the search for such synonyms.

Figure 1: An overview of the early phase of antibiotic
development and the cost attached to lead compounds
identification.

Evidence of prior activity can appear in diverse
forms. Some references from the literature of the
organism describe its activity without identifying
specific active compounds, e.g., “The culture of A
inhibited the growth of Staphylococcus aureus."
Others may report the isolation of a compound
from the organism without detailing its biological
activity ("Compound C was isolated from organism
A"), requiring a 2-hop search for chemical activity
evidence (e.g. Compound C exhibited antibacterial
activity against Staphylococcus aureus.")

This review process is traditionally manual and
extremely time-consuming. Allen and Olkin (1999)
previously estimated that over 1,000 hours may be
required to review 2,500 citations. There is a need
for semi-automation given the expanding scien-
tific literature and the high cost of false negatives.
In this context, large language models (LLMs)
have emerged as powerful tools for assisting litera-
ture reviews, particularly in the biomedical domain
(Wysocka et al., 2024; Yun et al., 2023; Liao et al.,
2024; Hsu et al., 2024). Beyond review, an effective
solution would serve as an alert system, flagging
previously reported antibiotic activities associated
with target organisms. Compared to novelty de-
tection (Ghosal et al., 2022), we rather seek for
non-novelty detection for relations between organ-
isms, chemicals, and activities.

In this work, we propose an LLM-based pipeline
to automate the construction of such an alert sys-
tem. The system is based on a Knowledge Graph
(KG), ensuring taxonomic and nomenclature res-
olution, interoperability between natural product
resources, and classification of evidence into three
alert levels. We demonstrate the system in a real
industrial setting using a private input list of 73

organisms, identifying 12 negative hits that were
used to evaluate the system’s performance.

2 Data

Our dataset is composed of an initial private list
of 73 organism identifications, from which we dis-
closed 12 negative hits for evaluation after evidence
of already reported activity have been found. This
review was conducted by a team of three experts,
using public literature (PubMed), databases (eg.
LOTUS (Rutz et al., 2022)) and proprietary tools
(eg. CAS SciFinder (Gabrielson, 2018)). See de-
tails in appendix A. From this analysis, 27 evi-
dence triples organism-chemical-activity had been
identified for the 12 negative hits by the experts.
For the proposed alert system, we excluded propri-
etary resources and decided to primary focus on
two large public resources: PubMed and LOTUS.
LOTUS is an open, community-curated database
containing over 750,000 structure-organism pairs
which is hosted on the Wikidata KG. Taxononomic
and nomenclature information of organisms are ex-
tracted from the GBIF backbone taxonomy (GBIF
Secretariat, 2023), a comprehensive and synthetic
classification that integrates taxonomic data from
multiple sources.

3 Methodology

This section provides a step-by-step description of
the pipeline represented in Figure 2. The input
is a list of user-defined organism identifications.
Identifications can be specific, at the species level
(e.g., Aspergillus calidoustus), or unspecific (repre-
sented by the abbreviation sp.), indicating an unde-
termined species within a genus1 (e.g., Aspergillus
sp.).

In step (1), each identification is aligned with
an entity in the GBIF taxonomy. Species-level
identifications are expanded to include all known
synonyms, while genus-level identifications are ex-
panded to encompass all species within the genus
and their respective synonyms. In step (2), abstracts
and relevant paragraphs from PubMed full-text ar-
ticles are retrieved using the NCBI EUtils API2.

Step (3) filters the organism literature to ex-
clude articles irrelevant for antibiotic activity (AA)
evidence extraction (e.g., ecology, environmental

1A genus is a taxonomic rank grouping species that share
common characteristics.

2https://dataguide.nlm.nih.gov/eutilities/
utilities.html

694

https://dataguide.nlm.nih.gov/eutilities/utilities.html
https://dataguide.nlm.nih.gov/eutilities/utilities.html


Figure 2: An illustration of the proposed pipeline, step-by-step, from the initial list of organism identifications to the
extraction of AA evidence alerts in 3 levels. Intermediary annotations (in purple) describe the flow of literature,
relations, and evidence that have been processed.

studies, genetics). A lightweight lexical classifier,
trained on MeSH3 annotations, ensures efficient
filtering. In step (4) we prompt the LLM (Mixtral-
8x7b (Jiang et al., 2024)) for Zero-shot extraction
of AA evidence from the selected abstracts (Ko-
jima et al., 2022). These evidence, derived solely
from the organism’s literature, are designated as
OL-evidence (Organism-Literature). Evidence are
then categorized into three alert levels: Strong
(direct experimental evidence of activity), Medium
(indirect, imprecise, or minor evidence), and Weak
(no substantial evidence) using the LLM. More
details about the prompting strategy and concrete
examples in appendix B.

Steps (5) to (7) focus on identifying chemicals
isolated from the organisms. Similar to (3), step (5)
filters literature to retain only texts likely to report
chemical isolations. Since MeSH annotations are
unavailable for this task, we used LLM-generated
pseudo-labels to train a second lexical classifier
(Wang et al., 2023). Details on the classifiers used
for filtering are provided in Appendix C.

In step (6), a natural products Relation Extrac-
tion (RE) model (Delmas et al., 2024) (fine-tuned
from BioMistral-7B (Labrak et al., 2024)) pro-
cesses selected passages to extract natural products
relations (NPR). These relations are sourced from
abstracts (TiabNPR) or paragraphs (ChunkNPR),
then augmented with relations from the LOTUS
database (LotusNPR).

3MeSH are standardized biomedical indexing terms in
PubMed.

Steps (7) to (9) mirror steps (2) to (4), but use the
extracted chemical names as input. This produces
a prioritized list of chemical literature evidence
(CL-evidence), categorized into the same three alert
levels.

All processed data, including nomenclature, re-
lations, literature, and alerts, are integrated into a
Knowledge Graph (KG) using a dedicated ontol-
ogy (see appendix E). Figure 3 provides a snapshot
centred on the example of Sarocladium strictum
and its active metabolite Cephalosporin C. The
KG supports transparent resolution of taxonomic
and synonym relations (e.g. Sarocladium strictum
hasSynonymTaxon Cephalosporium acremonium),
ensures interoperability between sources of rela-
tions (LotusNPR, TiabNPR, ChunkNPR), and, differ-
entiates evidence origins (OL vs. CL) and alert levels
(Strong, Medium, Weak).

4 Results

4.1 Natural products literature: descriptive
bibliometric analysis

Assessing the size and growth of the natural prod-
ucts and antibiotics literature is crucial to highlight
the extensive effort required by reviewers. In 2024,
it is more than 50,000 new articles that have been
indexed in PubMed for the searches "natural prod-
ucts" and "antibiotics", reporting novel links be-
tween organisms, chemicals, and activities. While
keeping up with new literature is crucial, Figure
4.A shows that a significant portion of annotated re-
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Figure 3: A snapshot of the built KG around the natural product relation between Cephalosporium acremonium and
Cephalosporine C. Taxonomic and nomenclature relationships are represented between Organism nodes in green.
Relation nodes (r1, r2, r3) describe relations between organisms and the isolated natural product Cephalosprin C
from different sources: LOTUS database (LOTUSNPR) and extracted from an abstract (TiabNPR) and a paragraph
(ChunkNPR). Text nodes connected to relation nodes (r2, r3) refer to the text from which the relation was extracted.
The evidence node e1 is an example of OL-evidence associated with a Medium alert. The node e2 is a CL-evidence
associated with a Strong alert. Literature node connected to relation and evidence nodes allow for linked to the
original reference in PubMed (or using the DOI if not available in the case of LOTUS annotations).

lations in the LOTUS database comes from older ar-
ticles (pre-1970). Given the evolution of taxonomy
and nomenclature over time, relying on original
organism identifications from the text is unreliable,
making synonym resolution essential for linking
past and novel relations. Using the publicly avail-
able literature from PubMed as a reference for an
alert system also requires evaluating its coverage.
Although PubMed includes over 38 millions arti-
cles, Figure 4.B indicates that fewer than half of
the annotated references in the LOTUS database
are actually indexed in PubMed. This observation
underscores a notable gap in PubMed’s coverage.
Nevertheless, given the extensive volume of litera-
ture within PubMed, it’s also reasonable to expect
that many relevant references may be missing from
LOTUS. Also, while we observed that most articles
are in English, this likely reflect a bias from the
resources used in LOTUS, and, other corpora (eg.
traditional Chinese medicine prescriptions) are also
expected to be relevant.

A notable example of the last points is Atra-
norin, an anti-inflammatory, analgesic, and an-
tibacterial compound, isolated from Gyrophora es-
culenta (now named Umbilicaria esculenta), de-
scribed in German by Hoppe (1958).

Figure 4: A describes the distribution of publication
years for literature references annotated in the LOTUS
database. Panels B represents the distribution of refer-
ences indexed in PubMed for natural products relations
annotated in LOTUS.
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Figure 5: Distribution of all reported alerts per class (Strong, Medium and Weak) and categories for CL (left) and OL
(center) evidence for the 12 discarded organisms. The right panel describes the reported evidence only using the
LOTUS available natural products relations.

4.2 Pipeline execution
Starting from 73 initial identifications, the flow
of extracted and processed literature is outlined
in Figure 2. Over 50,000 paragraphs were pro-
cessed, yielding 2,135 organism-chemical relations
and 1,359 alerts directly from the literature of or-
ganisms. Expanding to the literature of identified
chemicals, more than 2.7 million abstracts were
processed, resulting in 33,724 alerts for potential
antibacterial activity.4

4.3 Evaluation on Discarded Hits
Among the 73 initial identifications, 12 were dis-
carded as negative hits after an extensive manual
review. Figure 5 displays the distribution of alerts
raised for each discarded organism from CL (left)
and OL (center) evidence. While the number of
alerts varies (max: 174, min: 1), each organism has
at least one Strong alert. To assess the impact of
the extraction pipeline, an ablation study (Figure
5 right) using only LOTUS database annotations
showed that only 5 of the 12 negative hits could
be identified, highlighting the added value of the
RE step. For the 12 negative hits, the reviewers
previously identified 27 evidence triples (organism-
chemical-activity). Table 1 compares these with
system-generated alerts from Figure 5, focusing on
chemical-based alerts, as all evidence provided by
the reviewers are linked to a chemical. An alert is
considered missed if the chemical was not retrieved
(via RE or LOTUS) or its activity was not reported5.

4Many alerts stem from genus-level identifications, which
expand to numerous species.

5Neither Strong, Medium

Among the 27 reviewer-reported evidence, 6 were
missed by the system, including 3 because of non-
indexed references or unavailable texts in PubMed.
Notably, 26 of the 27 chemicals were successfully
retrieved, with 22 through the RE step. A detailed
error analysis is provided in Appendix D. Except
for Acremonium butyri, all negative hits were cor-
rectly discarded. Screenshots of the user interface,
including an example for Sarocladium strictum, are
shown in Appendix F.

5 Discussion

Most alert-associated chemicals were extracted
from the public literature, suggesting an under-
estimation of PubMed’s coverage in section 4.1,
and, highlighting gaps in public databases, par-
ticularly for rarely mentioned organisms. How-
ever, given the nature of the task, and the cost of
false negatives (e.g., Acremonium butyri), public
resources alone are insufficient to prevent rediscov-
eries. Notably, half of the missing evidence could
have been recovered by incorporating non-publicly
accessible literature, beyond PubMed and LOTUS.
From the initial set of 73 organisms, over 35,000
alerts were generated, which, paradoxically, could
overwhelm the reviewers. To mitigate this, the
prioritization system, categorizing evidence into
Strong, Medium, and Weak, is essential for the re-
viewing process. Interestingly, in only 9 of the 27
evidence reported by the annotators, the activity
of the chemical was reported in the same article
as its isolation. This highlights the need for ex-
tending the search to the literature of individual
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Organisms Chemicals PubMed ID
Isolation

PubMed ID
Activity RE / LOTUS CL-evidence

A. butyri Orbuticin 8982351 8982351 ✓/✓ Missed
A. luteoalbus Acrozine A-C 31226467 31226467 ✓/✓ Strong
A. luteoalbus T988 C 35621985 35621985 ×/× Missed
A. luteoalbus Lasiodipline E 37627256 24529576 ✓/× Strong
A. luteoalbus luteoalbusin A 23079524 35621985 ✓/✓ Missed
A. tenuissima Altertoxin I, II, III 25260957 37764307 ✓/× Strong
A. tenuissima Tenuazonic acid 34575812 34575812 ✓/× Strong
A. tenuissima Alternariol mono. ether 24071643 38470179 ✓/× Strong
A. calidoustus Ophiobolin K 25812930 29375031 ✓/× Strong
A. calidoustus Strobilactone A 8698631 ext. ref(1) ×/✓ Missed
S. strictum Cephalosporin C 10397815 14126054 ✓/✓ Strong
S. strictum Isopenicillin N 575040 7107525 ✓/✓ Strong
S. strictum * Cytosporone E 29354097 22690142 ✓/× Strong
C. subaffine Chrysophanol 35761187 25821480 ✓/× Strong
C. maritima Corollosporine 16557326 16557326 ✓/× Strong
F. pseudograminearum Deoxynivalenol 35878241 38408410 ✓/× Strong
F. pseudograminearum Zearalenone 24291181 37929585 ✓/× Strong
H. aurantius * Cladobotryal 9586194 12934912 ×/✓ Strong
H. aurantius * Furopyridine antibiotics 11918067 11918067 ✓/× Strong
H. aurantius Hypomycetin ext. ref(2) ext. ref(2) ×/✓ Missed
N. inventa Chaetocin 31569621 21140472 ✓/× Strong
N. inventa Verticillin B 31569621 31569621 ✓/× Missed
P. byssoides Pericosine A 18043803 26928999 ✓/✓ Strong
P. byssoides Macrosphelide A 15895526 19298513 ×/✓ Strong
P. bakeri Cytochalasin X 35841670 35841670 ✓/× Strong
P. bakeri Chaetoglobosin B 36104717 26669098 ✓/× Strong
P. bakeri Chaetoglobosin A 36104717 26669098 ✓/× Strong

Table 1: Comparison of reviewers extracted CL-evidence and system-extracted evidence for each discarded hits.
When an organism is marked with a *, it indicates that the chemical has been retrieved for a synonym (eg.
Cladobotyryum varium in the case of Hypomyces aurantius). "PubMed ID Isolation" and "PubMed ID Activity"
list PubMed references for chemical isolation and antibiotic activity extracted by reviewers. The "RE/LOTUS"
column uses a tick (✓) and a cross (×) to show whether the relationship organism-chemical is present or missing.
The left symbol represents extraction from the Relation Extraction (RE) pipeline, while the right symbol indicates
whether it is annotated in the LOTUS database. CL-evidence indicates the system’s alert level (Strong, Medium,
Weak, or Missed). Ext. ref(1) and ext. ref(2) are non-PubMed references: doi:10.1515/znb-2007-1218 and
10.3891/acta.chem.scand.51-0855.

chemicals, and reflects the 2-hop nature of the task.
Moreover, accurate nomenclature resolution, inher-
ently supported by the KG, remains critical. This
is exemplified by the case of Hypomyces auran-
tius, where key evidence were retrieved under its
synonym Cladobotryum varium. While a single
(Strong) evidence is enough to discard an organ-
ism, comparing Table 1 and Figure 5 suggests that
many pieces of evidence may have been overlooked
by reviewers, considering the vast amount of liter-
ature to examine. Paradoxically, in the proposed
scenario, a "positive" result is therefore an "empty"
result, such that no external evidence was found
to challenge the novelty. Finally, the versatility of
LLMs has been instrumental in the development
of the system, particularly for Zero-shot inference,
reasoning-based activity extraction, and pseudo-
labeling (see 3). This adaptability was crucial due
to the lack of pre-existing models designed for such
tasks. LLMs clearly open new opportunities for

assisting large literature reviews in the pharmaceu-
tical domain and, more broadly, across the biomed-
ical domain. However, LLMs are also prone to
hallucinations and can misinterpret evidence from
the source text (context inconsistency (Huang et al.,
2025)). While incorrect associations between or-
ganisms and natural products, or misidentified an-
tibiotic activity evidence, can lead to false positives,
it is the omission of such relations that is more detri-
mental for the alert system by introducing false
negatives. Various strategies have been proposed
to mitigate these errors in biomedical texts, such as
adapting the decoding process (Xu et al., 2024) or
incorporating a self-reflection mechanism (Ji et al.,
2023).

6 Conclusion

Avoiding rediscoveries and dead-end paths is cru-
cial in industrial antibiotic developments, saving
time and resources. Yet, this process is itself
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resource-intensive, highlighting the need for semi-
automatic reviewing. We present a practical ap-
plication of LLMs to build an alert system that,
given a list of organisms, flags evidence of previ-
ously reported activity from both the organism and
chemical literature. We demonstrated the value
of the system using 12 disclosed organisms and
identified key factors: literature coverage, efficient
natural products RE, synonym resolution and alert
prioritization. The subset of the KG related to
the negative hits, along with the code to repro-
duce the user interface and explore the results in-
teractively, are available at https://github.com/
idiap/abroad-kg-store and https://github.
com/idiap/abroad-demo-webapp.
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A Manual review and evaluation

The review was conducted by a team of three ex-
perts (one biologist and two chemists) over several
weeks (> 400 hours). In the process, they used
PubMed, GBIF, CAS SciFinder (Gabrielson, 2018),
and LOTUS (Rutz et al., 2022). CAS SciFinder,
a proprietary tool, facilitating the retrieval of sci-
entific literature and patents related to chemical
names and structures.

In the initial phase, reviewers examined litera-
ture associated with the target organisms, focusing
on OL-evidence and chemicals produced by the or-
ganisms (natural products). They also used GBIF
to retrieve associated synonyms, and the LOTUS
database to extend the search for natural products.
As expected, few matches were found with the
database, as the initial organism selection only in-
volved weakly characterized organisms. No fil-
ters were applied to the original studies, but, only
secondary metabolites were retained and primary
metabolites (those involved in growth, develop-
ment or other essential pathways) were automati-
cally excluded.

For each organism, reviewers compiled a list
of compounds and primarily relied on SciFinder
to explore associated literature and patents. Any
evidence of antibiotic activity (growth inhibition,
organism elimination, etc.) was considered as a
hit, even if quantitative measurements (e.g., IC50
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values) were not specified. From these steps, they
identified 27 organism-chemical-activity evidence
triples corresponding to the 12 disclosed negative
hits.

The reviewers emphasized that the first phase,
identifying related natural products, is critical.
Once compounds were identified, resources like
SciFinder, alongside with expert knowledge, pro-
vide a detailed overview of the compounds’ prop-
erties, literature, and associated patents. Neverthe-
less, the initial link between the organism and its
chemical compounds remained often poorly docu-
mented. Finally, the goal is not to identify exhaus-
tively all active molecules, rather, only identifying
one or a few associated active compounds is suffi-
cient to discard the organism.

B Activity Evidence Classification

Concrete examples of Strong, Medium and Weak
antibiotic evidence alerts, extracted using the
prompting strategy described in Figure 6.

Strong Activity Evidence: Cephalosporin C
The following evidence text has been extracted
and classified as Strong from PMID:4078571: The
text provides evidence that Cephalosporin C has
antibacterial activity, particularly against Staphy-
lococcus aureus. It is stated that Cephalosporin
C has roughly the same activity as benzylpeni-
cillin against several Gram-positive organisms and
about one-eighth of the activity of benzylpenicillin
against penicillin-sensitive strains of Staphylococ-
cus aureus. Additionally, Cephalosporin C shows
4 to 8 times the activity of methicillin against
penicillinase-producing staphylococcal strains. It
also exhibits synergism in protection experiments in
mice infected with a strong penicillinase-producing
strain of Staphylococcus aureus when combined
with benzylpenicillin.". Here, the evidence of activ-
ity is supported by quantitative measurements.

Medium Activity Evidence: Cephalosporin C
The following evidence text has been extracted and
classified as Medium from PMID:22136576: The
evidence of the potential antibiotic activity of Acre-
mostrictin is found in the statement "The new com-
pound exhibited weak antibacterial activities." This
suggests that Acremostrictin showed some level of
antibacterial effect, although it was classified as
weak. Here, the article only reports weak antibac-
terial activity.

Weak Activity Evidence: Dipeptide delta-(L-
alpha-aminoadipyl)-L-cysteine The following
evidence text has been extracted and classi-
fied as Weak from PMID:6684424: The text
describes the biosynthesis of two compounds,
the tripeptide delta-(L-alpha-aminoadipyl)-L-
cysteinyl-D-valine and the dipeptide delta-(L-
alpha-aminoadipyl)-L-cysteine, using a cell-free
extract of Cephalosporium acremonium. However,
it does not provide any information about the
potential antibiotic activity of the dipeptide
delta-(L-alpha-aminoadipyl)-L-cysteine. Therefore,
there is No evidence found in this text to support
the potential antibiotic activity of this chemical
compound.

C Filtering Classifiers

Considering the massive amount of literature to
be processed for both NPR and activity extraction,
it is essential to integrate a pre-filtering step to
exclude out-of-scope references. It is also par-
ticularly essential for the RE step, which uses a
decoder-only architecture, where sending out-of-
distribution abstracts (not mentioning any relations)
lead to chaotic outputs.

C.1 NPR Filtering
From the LOTUS database, we extracted the top-
200 organism entities with the most associated re-
lations and extracted 5k annotated abstracts, com-
pleted with 5k other abstracts not indexed in LO-
TUS. As LOTUS relations may not have been re-
ported from the abstract (but from the full-text
for instance) we annotated the dataset with LLM-
generated pseudo-labels (prompt in Figure 7). We
trained a simple lexical Naive Bayes classifier
and compared the performance against more com-
plex transformer architecture (BioBERT (Lee et al.,
2020) and SciBERT (Beltagy et al., 2019)) in Table
2.

Model Recall Precision F1
Naive Bayes 96.8 77.9 86.4
BioBERT 89.8 91.6 90.6
SciBERT 91.1 88.3 89.7

Table 2: Performance comparison of different models
on NPR classification.

C.2 Activity Filtering
While MeSH terms index articles in PubMed with
relevant concepts such as Anti-Bacterial Agents,
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Figure 6: Schema of the prompting strategy for the extraction and classification of antibiotic activity evidence from
the literature of chemicals (the strategy is equivalent for the literature of organisms). When an organism has multiple
synonyms, evidence extraction is performed independently for each synonym based on its associated literature. For
chemicals, we rely on the labels provided by LOTUS or those extracted by the RE model. No synonym resolution is
applied to chemicals.

Figure 7: Prompt instructions for pseudo-labeling of natural products relationships.

most recent articles are not indexed, which can
be critical for the alert system. Therefore, given
the previously extracted top-200 organisms and
their associated chemicals, we extracted their ab-
stracts along with the MeSH annotations to build
our dataset. We considered every article indexed
with the concept Anti-Bacterial Agents (or narrower
in the hierarchy) as positive examples and the rest
as negatives. From the total set, we re-sampled 5k
positives and negatives. Similarly to C.1 we trained
a Naive Bayes classifier, BioBERT and SciBERT
models (see Table 3)

As expected, simple lexical approaches compete
in practice with more complex transformers archi-
tecture, given the simplicity of the task. Indeed, in
both cases, a keyword matching strategy is suffi-
cient to efficiently classify the abstracts. We logi-
cally decided to use the simpler Naive Bayes Clas-

Model Recall Precision F1 F2
Naive Bayes 94.2 90.2 92.2 93.4
BioBERT 96.8 94.9 95.8 96.4
SciBERT 96.8 95.6 96.2 96.5

Table 3: Performance comparison of different models
on AA classification.

sifer in both cases

D Error analysis

This section provides a detailed error analysis on
the 6 evidence the system failed to retrieve.

Acremonium butyri - Orbuticin: While the chem-
ical has been correctly extracted from the title of
PMID:8982351 the abstract and full-text of the arti-
cle are not publicly available on PubMed, hence the
system failed to extract the activity. The reported
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Strong evidence Acremonium butyri in Figure 5
actually refers to "Isoprenoids", which is a chemi-
cal family and not a single molecule. The Strong
evidence is erroneously linked to articles reporting
that the biosynthesis pathway for Isoprenoids is a
target for many antibiotics.

Acrostalagmus luteoalbus - T988 C: The RE
model failed to extract the natural product from
PMID:35621985. This relation is also not anno-
tated in LOTUS.

Acrostalagmus luteoalbus - Luteoalbusin A:
The chemical has been correctly extracted from
PMID:35621985 but the activity information from
PMID:35621985 have not been extracted as only
the abstract was processed.

Aspergillus calidoustus - Strobilactone A: The ar-
ticle reporting the relation in LOTUS is not publicly
available (DOI:A10.7164/antibiotics.49.505)

Hypomyces aurantius - Hypomycetin: The
reference article identified by the reviewers
(DOI:10.3891/acta.chem.scand.51-0855) is
indexed in LOTUS. This article also describes
the antifungal activity of Hypomycetin. However,
since the article is not indexed in PubMed, the
evidence of its activity has not been extracted.

Nectria inventa - Verticillin B: The relation has
correctly been identified in PMID:31569621, but
the activity information from PMID:31569621 have
not been extracted as only the abstracts are pro-
cessed.

E Ontology schema

Figure 8 presents the main classes and properties
of the proposed ontology used in the KG.

F Screenshots of the User Interface

Figures 9 and 10 present screenshots of the user
interface.
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Figure 8: The core structure of the proposed ontology, forming the backbone of the KG. Taxonomic relation-
ships between abroad:AcceptedTaxon instances are defined via the transitive property abroad:hasChildTaxon.
Synonyms are linked using the similarly symmetric and transitive abroad:hasSynonymTaxon property. Both
abroad:AcceptedTaxon and abroad:SynonymTaxon are subclasses of dwc:Taxon (Darwin Core). Organ-
isms are connected to chemical entities (chebi:23367, molecular entity) using abroad:taxonProduces.
The abroad:NaturalProductRelationship class defines a hierarchy of extracted relationships, integrat-
ing data from LOTUS and from the RE pipeline. Antibiotic evidence is categorized into disjoint classes:
abroad:WeakActivityEvidence, abroad:MediumActivityEvidence, and abroad:StrongActivityEvidence

Figure 9: Screenshot of the CL-evidence alert panel for S. strictum
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Figure 10: Screenshot of the OL-evidence alert panel for S. strictum
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