
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 684–692
July 28-30, 2025 ©2025 Association for Computational Linguistics

Speed Without Sacrifice: Fine-Tuning Language Models with Medusa and
Knowledge Distillation in Travel Applications

Daniel Zagyva2, Emmanouil Stergiadis1, Laurens van der Maas2, Aleksandra Dokic2

Eran Fainman1, Ilya Gusev1, Moran Beladev1,
1Booking.com 2Amazon AWS Professional Services

zagyvad@amazon.com, emmanouil.stergiadis@booking.com, laurensv@amazon.com,
dokica@amazon.com, eran.fainman@booking.com, ilya.gusev@booking.com,

moran.beladev@booking.com

Abstract

In high-stakes industrial NLP applications, bal-
ancing generation quality with speed and ef-
ficiency presents significant challenges. We
address them by investigating two complemen-
tary optimization approaches: Medusa for spec-
ulative decoding and knowledge distillation
(KD) for model compression. We demonstrate
the practical application of these techniques in
real-world travel domain tasks, including trip
planning, smart filters, and generating accom-
modation descriptions. We introduce modifi-
cations to the Medusa implementation, start-
ing with base pre-trained models rather than
conversational fine-tuned ones, and developing
a simplified single-stage training process for
Medusa-2 that maintains performance while
reducing computational requirements. Lastly,
we present a novel framework that combines
Medusa with KD, achieving compounded bene-
fits in both model size and inference speed. Our
experiments with TinyLlama-1.1B as the stu-
dent model and Llama-3.1-70B as the teacher
show that the combined approach maintains the
teacher’s performance quality while reducing
inference latency by 10-20x.

1 Introduction

Rapid growth of digital applications has intensified
the demand for real-time natural language process-
ing (NLP) capabilities. Although recent large lan-
guage models (LLMs) have achieved remarkable
generation quality through billion-scale parame-
ters (Chowdhery et al., 2022; Zhang et al., 2022;
Hoffmann et al., 2022; OpenAI, 2023; Google,
2023; Llama team, 2024), their increased inference
latency poses significant challenges for production
deployment. Studies have shown that even slight
increases in latency (100-400 ms) can measurably
decrease user engagement (Brutlag, 2009). Com-
bined with the high computational costs of large
models, these factors emphasize the need to opti-
mize both speed and efficiency for practical NLP

deployment in time-sensitive applications.
This paper explores two complementary ap-

proaches: the Medusa framework (Cai et al., 2024),
a novel approach for speculative decoding, and KD
(Hinton et al., 2015) for model compression. While
Medusa accelerates inference without modifying
the original model, KD creates smaller, efficient
models that maintain performance. We integrate
these techniques to improve both the speed and
efficiency of NLP systems in travel applications.

Our study makes three key contributions: First,
we analyze the implementation of Medusa and KD
techniques in real-world NLP tasks. Second, we
present a modified Medusa implementation that be-
gins with base pre-trained models and introduces a
simplified single-stage training process for Medusa-
2. Third, we demonstrate the complementary bene-
fits of Medusa with KD for performance and speed.
In addition, we provide practical insights and best
practices for production deployment.

2 Real-World Applications

The travel domain offers numerous applications
that can benefit from fine-tuned LLMs. At Book-
ing.com, a leading online travel agency, we fine-
tune and deploy LLMs to improve various aspects
of the user experience. In this section, we describe
three such applications. Each application goes
through the process of online A/B testing that is
conducted on real production traffic over multiple
weeks to measure its effectiveness.

2.1 AI Trip Planner

The AI Trip Planner (AITP) is a conversational
travel assistant that transforms trip planning by
integrating LLMs with internal recommendation
systems. As illustrated in Figure 1a, this chatbot
provides personalized hotel and destination recom-
mendations by extracting structured travel features
from user interactions.

684

mailto:zagyvad@amazon.com
mailto:emmanouil.stergiadis@booking.com
mailto:laurensv@amazon.com
mailto:dokica@amazon.com
mailto:eran.fainman@booking.com
mailto:ilya.gusev@booking.com
mailto:moran.beladev@booking.com

To enable seamless integration with our inter-
nal recommendation models, we employ the JSON
Travel Entity Extraction model, which extracts key
travel parameters from user conversations. An ex-
ample of a conversation and its extracted travel
entities is provided in Appendix A.

Since this use case requires real-time responses,
low-latency inference is critical. Deploying our
in-house fine-tuned distilled LLM with Medusa
acceleration allowed us to significantly decrease
latency. The A/B tests against OpenAI GPT-3.5
showed a +2.9% increase in clicks on the recom-
mendation cards, indicating an improved precision
of feature extraction and retrieval.

2.2 Smart Filters
Our Smart Filters feature empowers users to refine
searches through natural language queries, allow-
ing more flexible and personalized searches. Users
enter free-text queries, and we employ the JSON
Travel Entity Extraction model that extracts struc-
tured entities to apply relevant filters. Figure 1b
illustrates this process.

This feature enhances search results by enabling
fast query resolution, which is crucial to user expe-
rience. The deployment of our distilled model with
Medusa heads achieved 15x faster response times
in terms of p99, increasing scalability.

2.3 Accommodation-Level Description
Generation

Traditionally, accommodation descriptions are gen-
erated using structured templates based on accom-
modation attributes (see Appendix B.1 for an ex-
ample). Although templates ensure consistency,
they come with several challenges: maintaining
them is complex, especially with multiple tem-
plates across accommodation segments and evolv-
ing business rules. They can also be repetitive for
users, potentially lowering engagement, and limit
the integration of unstructured data, such as free
text inputs from accommodation owners or user-
generated content for personalization.

To overcome these limitations, we introduce a
generative AI-based approach capable of dynam-
ically tailoring descriptions based on the existing
set of accommodation attributes provided by the
partners. An example screenshot is provided in
Appendix B.2. The A/B testing of the genera-
tive descriptions against template-based versions
demonstrates a +1.4% increase in helpful votes,
validating the improved user experience and rele-

Figure 1: (a) The AI Trip Planner providing personal-
ized hotel and destination recommendations by extract-
ing structured features. (b) The Smart Filters application
with user input and the extracted structured filters.

vance. Given the need to process descriptions for 3
million accommodations and update them as prop-
erties change, computational efficiency is crucial.
Optimized inference enables large-scale generation
within reasonable time as detailed in Section 7.

3 Related Work

3.1 Speculative Decoding

Speculative decoding has emerged as a promis-
ing approach to address inference bottlenecks in
autoregressive LLMs. The core principle is to
predict multiple tokens in parallel followed by
verification, transforming sequential operations
into more hardware-efficient batched computa-
tions (Leviathan et al., 2023). This approach
maintains the original model’s output distribution
while providing significant speedups, typically 2-
4x, without compromising generation quality.

Medusa (Cai et al., 2024) represents a signifi-
cant advance in speculative decoding by eliminat-
ing the need for separate draft models. Instead,
Medusa augments the base LLM with additional
lightweight prediction heads that forecast tokens
at specific future positions. The architecture em-
ploys a tree-structured attention mechanism that
ensures that tokens only attend to their predeces-

685

sors in the same continuation path, maintaining
the autoregressive property while enabling efficient
parallel processing. Medusa offers two training
strategies: Medusa-1, which fine-tunes only the ad-
ditional heads while keeping the backbone frozen,
and Medusa-2, which jointly trains both compo-
nents for a larger speedup.

Recent improvements in the Medusa framework
include Hydra (Xia et al., 2024), which improves
speculation accuracy by making the draft heads
sequentially dependent rather than independent.
Other active research directions include adaptive
speculation that dynamically adjusts the number of
speculative tokens based on context, multi-modal
speculation extensions, and hardware-specific opti-
mizations (Miao et al., 2023).

3.2 Knowledge Distillation

KD addresses the deployment challenges of large,
parameter-heavy models by transferring knowledge
from larger "teacher" models to smaller "student"
models (Hinton et al., 2015). This approach en-
ables significant model compression while preserv-
ing much of the original performance. Sequence
KD (SeqKD) (Kim and Rush, 2016) represents a
specialized form of KD designed for sequence gen-
eration tasks. Unlike traditional word-level distilla-
tion that matches probability distributions at each
position, SeqKD focuses on transferring knowl-
edge at the sequence level. The process involves
three main steps: (1) training a large teacher model,
(2) generating new training data using the teacher’s
highest-scoring outputs, and (3) training the smaller
student on this teacher-generated dataset. This ap-
proach allows student models to achieve perfor-
mance comparable to that of teacher models.

4 Approach

4.1 Single-stage Medusa

Our methodology differs from the original Medusa
study in two aspects. While the original work
used models fine-tuned on conversations (Vicuna,
trained on ShareGPT), we start with base pre-
trained models. Furthermore, rather than targeting
general conversation, our implementation focuses
on specific travel domain tasks.

Unlike the original Medusa paper that trained
Medusa heads directly on an already fine-tuned
model, our Medusa-1 implementation follows a
two-stage process: first fine-tuning the base model
for our tasks, and then training the Medusa heads

while keeping the fine-tuned model frozen. By
keeping the fine-tuned model frozen during the
second stage, this approach achieves lossless accel-
eration.

For Medusa-2, we implement a single-stage ap-
proach that contrasts with the two-stage method-
ology presented in the original Medusa paper. In
the original work, the Medusa heads required more
extensive training than the already fine-tuned base
model. This discrepancy led to larger gradients
from the Medusa heads, distorting the base model’s
parameters. To mitigate this issue, they employed
a two-stage process: first training Medusa heads
only, and then jointly training both the base model
and Medusa heads with a warm-up strategy.

Our implementation demonstrates that a single-
stage process suffices when starting from a base pre-
trained model. Specifically, we attach the Medusa
heads to the pre-trained model and fine-tune the
entire architecture end-to-end in a single training
phase. As both our base model and Medusa heads
begin at a similar level of task-specific training,
we hypothesize that the gradient disparities would
be less pronounced. This single-stage method
achieves comparable performance and maintains
Medusa’s latency reduction benefits while stream-
lining implementation and reducing computational
requirements.

4.2 SeqKD

For the entity extraction task, we use a traditional
SeqKD approach and incorporate both labeled
and unlabeled data in the student training process.
We first fine-tune the teacher model on a human-
labeled dataset, then generate predictions on ad-
ditional unlabeled data. The final student train-
ing dataset is created by combining these teacher-
generated samples with the human-labeled dataset,
allowing the student to learn from both expert-
curated and teacher-generated examples.

For the accommodation description generation
task, we use GPT-4 (OpenAI, 2023) as a teacher
model to generate training samples from unlabeled
data, which serves as our sole training dataset.

4.3 SeqKD with Medusa

While speculative decoding primarily targets in-
ference speed, and KD focuses on model size re-
duction, these approaches can be complementary
rather than mutually exclusive. Combining these
techniques offers potential for compounded bene-

686

fits: smaller distilled models with accelerated infer-
ence.

We present a unified framework that integrates
several efficiency techniques to produce compact,
high-performance language models with reduced
latency. The framework enables efficient imple-
mentation of both techniques in a streamlined pro-
cess, making it practical for deployment in produc-
tion environments.

The proposed integration of these techniques is
the following three-stage pipeline that starts with
pre-trained base models. The two-step student’s
training dataset generation follows the SeqKD ap-
proach described previously, after which the stu-
dent model undergoes a single training phase using
the Medusa-2 architecture. Although Medusa-1
can be used, it requires an additional training step
and offers no significant advantages over Medusa-2,
which we recommend for its simplicity of imple-
mentation and superior speedup ratios.

5 Experimentation

5.1 Experimental Setup

Our experiments encompasses three investigation
paths: Medusa acceleration techniques, KD meth-
ods and their combination. Each training exper-
iment uses full model fine-tuning, as opposed to
parameter-efficient methods.

In our implementation of the Medusa framework,
we build five Medusa heads, with each head consist-
ing of a single ResNet layer. For all predictions and
evaluations, we employ greedy decoding, which
leads to a deterministic acceptance scheme, where
candidates are accepted only if the base model gen-
erates the same sequence.

In the extraction task, we additionally experi-
ment with SeqKD. These experiments use a fine-
tuned Llama-3.1-70B as the teacher model, generat-
ing 17,000 pseudolabels on an unseen dataset. This
dataset is derived from Booking.com production
environment and covers various query patterns to
ensure robust generalization. The entire data gen-
eration process by doing inference on the teacher
model takes approximately 10 hours. We then com-
bine these pseudo-labeled examples with the origi-
nal 9,000 observation training set. We explore dif-
ferent mix ratios of the datasets and achieve the best
result by up-sampling the original 9,000 observa-
tions until it matches the generated one in size, lead-
ing to 34,000 samples of which 50% are annotated
by humans and 50% by the teacher model. This

dataset is then used to fully fine-tune a TinyLlama-
1.1B student, a process that takes two hours.

5.2 Tasks and Datasets
Our experimental setup includes a dataset for each
real-world application in Section 2 and include:
User preference extraction across (1.1) dialog and
(1.2) query inputs and (2) Accommodation Descrip-
tion Generation.

This set covers a wide range of use cases often
encountered in industrial settings: structured (1.1
and 1.2) versus natural language (2) outputs; multi-
turn dialog (1.1) versus single-turn inputs (1.2 and
2); and short versus long input/outputs that may
require truncation.

For entity extraction, we use human annotators
to extract up to 35 different fields from AI Trip
Planner dialogues and search queries, see Table
1 for exact sizes. The full list of extracted fields
is shown in Appendix C. For description genera-
tion, we prompt the GPT-4 (teacher) model with
information on 10,000 accommodations, and a set
of instructions is provided by the content experts
team in our organization. The content experts team
edits another small set of 273 GPT-4 outputs to
meet all guidelines. The cost of GPT-4 generation
is $354.68.

Metric AITP Smart Filters Desc Gen
Size Train 5,562 4,230 9,500
Size Dev 310 300 500
Size Test 310 300 273
Input Mean 222 29 1,100
Input Max 6,955 87 2,795
Input Min 21 21 222
Output Mean 66 30 1,339
Output Max 194 185 2,051
Output Min 9 2 774

Table 1: Statistics for the datasets used in entity extrac-
tion. During training and inference we truncate inputs to
the last 1024 tokens when sequences exceed this length.

5.3 Evaluation Metrics
Entity Extraction Our main performance metrics
are precision and recall, and we use their harmonic
mean (F1 score) aggregated among topics. We
use micro-averaging to address class imbalance as
certain topics are very rare.

In addition to performance, the main metric we
wish to improve is latency. We report the median
(p50) and the 99th percentile (p99) measured using
a TGI (Text Generation Inference, 2023) container

687

at moderate load (1 RPS). Since we are interested
in real-time use cases, we do not use batching (each
request consists of a single query).

Accommodation Description Generation
We report ROUGE metrics (Lin, 2004) and
BERTScore (Zhang et al., 2019). For BERTScore,
we use DEBERTA-XLARGE-MNLI (He et al., 2020)
as the backbone model 1, which currently shows
the strongest correlation to human judgment
(BERTScore, 2023). We report the F1 score
without the TF-IDF weighting.

Another important metric is the cost per million
input and output tokens. For the GPT-4 model
we report the official cost mentioned by OpenAI 2.
For our fine-tuned models, we report the estimated
hardware cost measured using a TGI container at
moderate load (1 RPS).

5.4 Hardware Requirements
We use Amazon SageMaker AI g5.2xlarge in-
stances with NVIDIA A10G GPUs (24GB GPU
memory) for TinyLlama-1.1B full fine-tuning,
which takes 2-3 hours. Llama-3.1-70B full fine-
tuning requires 2 p4d.24xlarge instances with 16
NVIDIA A100 GPUs (640GB total GPU mem-
ory) using DeepSpeed ZeRO Stage 3 with CPU
offload (DeepSpeed team, 2021), completing in 7-
8 hours. The Medusa experiments are conducted
on the same fine-tuning infrastructure, with five
Medusa heads (each a feed-forward layer with
residual connection) adding approximately 750 mil-
lion parameters (5× (d ·V + d2), where d = 4096
is the hidden dimension and V = 32000 is the vo-
cabulary size) without requiring additional GPU
resources. The generation of KD data using the
fine-tuned Llama-3.1-70B model is performed on
g5.48xlarge instances equipped with 8 NVIDIA
A10G GPUs (192GB total GPU memory).

6 Experiment Results and Analysis

6.1 Entity Extraction
Table 2 presents the entity extraction results for
the dialog and search query distributions using the
TinyLlama-1.1B model. We also present GPT-4o
and GPT-4o-mini as proprietary model baselines,
evaluated both in a zero and 3-shot setting.

We observe that trained models perform well,
significantly exceeding even the few shot GPT-4o

1Model hashcode: MICROSOFT/DEBERTA-XLARGE-
MNLI_L40_NO-IDF_VERSION=0.3.12(HUG_TRANS=4.43.1)-
RESCALED

2https://openai.com/api/pricing/

baseline, which confirms that our training pipeline
is effective and the backbone model has sufficient
capacity despite its relatively small size for LLM
standards. We then implement both Medusa vari-
ants (Medusa-1 and Medusa-2) and achieve sig-
nificant improvements. Medusa-1’s deterministic
acceptance mechanism maintains performance met-
rics (within floating-point precision) while reduc-
ing latency by factors of 2.0x and 3.6x for search
and dialog tasks, respectively. Medusa-2 achieves
comparable efficiency gains while requiring only
a single training stage, making it particularly at-
tractive for practical applications. The relatively
smaller improvement in p50 measurements for sin-
gle queries is due to their short output lengths
(see 1), which limit the utilization of the Medusa
heads. In particular, note that 18% of the sam-
ples in the Search test set include fewer than 5
tokens in their output, rendering at least 1 Medusa
head completely useless. Medusa speedup relies
on the assumption that the output distribution is
long enough to utilize the added heads; the less this
assumption holds, the smaller the speedup can be
expected.

AI Trip Planner Smart Filters
Technique Model Micro-F1 P50 P99 Micro-F1 P50 P99
SFT TinyLlama-1.1B 89.4 449 995 85.8 89 406
SFT + M1 TinyLlama-1.1B 89.4 171 379 85.8 53 196
M2 TinyLlama-1.1B 89.9 160 316 87.7 53 180

SFT Llama-3.1-70B 91.7 3149 7167 89.1 669 2502
SeqKD TinyLlama-1.1B 91.4 475 1022 88.8 138 416
SeqKD + M1 TinyLlama-1.1B 91.3 170 359 88.7 78 184
SeqKD + M2 TinyLlama-1.1B 91.8 150 293 88.0 73 162

OpenAI
Zero Shot GPT-4o-mini 46.4 1262 5645 46.7 819 4979
Few Shot GPT-4o-mini 74.2 1290 5070 70.4 890 6305
Zero Shot GPT-4o 54.9 1328 6122 53.8 1012 8899
Few Shot GPT-4o 77.8 1652 6657 66.1 982 11597

Table 2: Performance and efficiency results across two
use cases. We report vanilla supervised fine-tuning
(SFT), Medusa-1 applied on top of SFT (SFT + M1),
and Medusa-2 trained in a single step (M2). We report
(SeqKD) from our teacher model (Llama-3.1-70B) to
the student. Micro F1 is presented in % and P50 and
P99 represent latency in ms.

For KD we additionally train a much larger
teacher model: Llama-3.1 70b. Due to its scale,
the teacher model achieves optimal performance
but exhibits prohibitive latency for online deploy-
ment, not to mention its sizable cost and memory
footprint.

We then use SeqKD, where the teacher’s greedy
decoding output gets concatenated with the original

688

human annotated dataset to train the small student
model. We observe that in this setup, the distilled
model almost eliminates the performance gap rel-
ative to the teacher model, effectively combining
efficiency with high performance.

To investigate the complementarity between
Medusa and SeqKD, we then apply both Medusa-1
and Medusa-2 to the distilled student model. The
results demonstrate complete performance reten-
tion with consistent speed improvements, confirm-
ing the complementarity of these approaches. The
final models maintain the teacher model’s perfor-
mance with negligible degradation while achieving
substantial inference speed-ups of 10-20x.

6.2 Accommodation Description Generation

Quality Cost ($) / 1M tokens
Technique Model R-1 R-2 BERTScore Input Output
Zero Shot GPT-4 57.5 25.6 53.2 30.00 60.00
SFT TinyLlama-1.1B 58.4 27.3 53.4 0.063 3.476
SFT + M1 TinyLlama-1.1B 58.3 27.3 53.3 0.063 1.810
M2 TinyLlama-1.1B 58.3 27.2 53.1 0.063 1.095

Table 3: Results for the Accommodation Description
Generation task. We report vanilla supervised fine-
tuning (SFT), Medusa-1 applied on top of SFT (SFT +
M1), and Medusa-2 (M2). R-1 and R-2 stands for the
ROUGE-1 and ROUGE-2 metrics, respectively. Quality
metrics are presented in %.

Table 3 presents the results of the Accom-
modation Description Generation task using the
TinyLlama-1.1B model variations. For compari-
son, we also include GPT-4 baseline evaluated in a
zero-shot setting.

Our results show that fine-tuned models perform
as well as or better than GPT-4 in terms of qual-
ity, demonstrating the effectiveness of our training
pipeline and the performance of the TinyLlama-
1.1B model despite its relatively small size. Fur-
thermore, both Medusa variants achieve substantial
computational efficiency, reducing costs by 1.9 and
3.2 times, respectively. Cost estimates were per-
formed using a single g5.2xlarge machine.

7 Model Serving and Deployment

Our models are deployed on Amazon SageMaker
AI g5.2xlarge instances using the TGI 2.2.0 con-
tainer for optimized inference (Ifs et al., 2023).
To ensure scalability and efficiency, we employ
an auto-scaling mechanism that dynamically ad-
justs the number of instances based on request vol-
ume. This approach improves system robustness

by efficiently handling peak loads while reducing
costs during off-peak periods. Model-serving per-
formance metrics (e.g., throughput, inference time)
are continuously monitored through in-house dash-
boards and Amazon CloudWatch to maintain relia-
bility and optimize resource utilization. The final
models support both real-time prediction services
and batch-based backfilling workflows.

7.1 Real-time Invocations

Both AI Trip Planner and Smart Filters require
real-time inference, as user queries and conversa-
tions arrive dynamically and demand low-latency
responses. To support this, we deploy a real-time
service that: (1) Receives and processes user inputs
(queries/conversations); (2) Invokes the appropri-
ate model endpoint for inference; (3) Processes the
model output before delivering the final response
to the user.

7.2 Batch Invocations

For Accommodation Description Generation, in-
ference runs in batch mode when property meta-
data is updated. This process consumes metadata
events and triggers predictions asynchronously, us-
ing event-driven batch processing for efficient scal-
ing and throughput optimization. To manage batch
workloads, the system auto-scales model endpoints
to handle peak demand while optimizing resource
usage. Batch inference results are stored in a dedi-
cated data pipeline before being consumed by the
front-end application. This setup allows for con-
trolled updates and periodic backfilling, ensuring
that predictions remain accurate and up-to-date as
new data becomes available.

8 Conclusions

This work demonstrates the practical viability of
combining speculative decoding and model com-
pression techniques to optimize industrial scale
NLP systems. Our experiments show that the pro-
posed combined framework delivers an improve-
ment of inference latency larger than an order of
magnitude while maintaining the performance of
the best and largest open-source LLMs.

References

BERTScore. 2023. Bertscore default layer performance
on wmt16.

689

https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit#gid=0
https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit#gid=0

Jake Brutlag. 2009. Speed matters. https://
research.google/blog/speed-matters/. Ac-
cessed: 2025-03-04.

Tianle Cai, Yuhong Gao, Zhengyan Li, Hongyi Yang,
Jiang Li, Jungo Kasai, Matei Zaharia, and Percy
Liang. 2024. Medusa: Simple llm inference accelera-
tion framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

DeepSpeed team. 2021. Zero-offload: De-
mocratizing billion-scale model training.
https://www.deepspeed.ai/2021/03/07/
zero3-offload.html. Accessed: 2024-03-18.

Google. 2023. Palm 2 technical report.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Hassan Ifs, Philip Schmid, and Nicolas Patry. 2023.
Text generation inference.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. arXiv preprint arXiv:2308.00264.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Llama team. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Xupeng Miao, Yujie Gu, Zhihao Huang, Xin Qu, Miao
Huang, Xiaoyi Li, Zhihui Chen, Tong Zhang, Yihua
Lin, Mingyu Jin, et al. 2023. Specinfer: Accelerating
generative large language model serving with spec-
ulative inference and token tree verification. arXiv
preprint arXiv:2305.09781.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Text Generation Inference. 2023. Text generation in-
ference (tgi). https://github.com/huggingface/
text-generation-inference.

Tianhua Xia, Patrick Lewis, and Baolin Peng. 2024. Hy-
dra: Sequentially-dependent draft heads for medusa
decoding. arXiv preprint arXiv:2402.05109.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A AI Trip Planner Input and Output
Example

Conversation:

Assistant: Hello! I’m the AI Trip Planner.
How can I help you?
User: I want to travel in August.
Assistant: Great!
Where are you thinking of going?
User: Paris.

Model Output:

{"location": {"country": "France",
"city": "Paris"},

"checkin_month": 8}

B Accommodation Description

B.1 Template Example
Hotel {{name}} is a {{num_of_stars}}-star hotel,
located in {{city_name}}. The hotel provides {{fa-
cility_1}}, ..., and {{facility_n}}. Rooms include
{{room_amenity_1}}, ..., and {{room_amenity_n}}.
The nearest airport is {{nearest_airport_name}},
located {{distance_from_nearest_airport}} km
away.

B.2 Description Generation Example
See Figure 2.

C Extracted Fields

The full schema, including filter names, types and
where applicable the list of valid values, is shown
below in JSON format.

690

https://research.google/blog/speed-matters/
https://research.google/blog/speed-matters/
https://www.deepspeed.ai/2021/03/07/zero3-offload.html
https://www.deepspeed.ai/2021/03/07/zero3-offload.html
https://ai.google/static/documents/palm2techreport.pdf
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference

Figure 2: Illustration of Accommodation Description
Generation.

1 [
2 {
3 "key": "price_sensitivity",
4 "type": "str",
5 "valid": [
6 "Cheap",
7 "Luxurious"
8]
9 },

10 {
11 "key": "currency",
12 "type": "str",
13 "valid": [
14 "Euro",
15 "US Dollar",
16 "British Pound",
17 "SG Dollar"
18]
19 },
20 {
21 "key": "property_type",
22 "type": "str",
23 "valid": [
24 "hostel",
25 "hotel",
26 "apartment",
27 "villa",
28 "chalet/cabin/lodge"
29]
30 },
31 {
32 "key": "facilities",
33 "type": "List[str]",
34 "valid": [
35 "Swimming pool",
36 "Bed (King/Queen)",
37 "Bed (Double)",
38 "Bed (Twin)",
39 "Spa",
40 "Jacuzzi/hot tub",
41 "Airport service (shuttle)",
42 "Airconditioning",
43 "Garden",
44 "Private bathroom",
45 "Shower",
46 "Wifi",
47 "Parking",
48 "Breakfast",
49 "Restaurant",
50 "Kitchen",
51 "Sauna",
52 "Balcony"
53]
54 },

55 {
56 "key": "city_center",
57 "type": "bool"
58 },
59 {
60 "key": "deals",
61 "type": "bool"
62 },
63 {
64 "key": "free_cancellation",
65 "type": "bool"
66 },
67 {
68 "key": "sustainability",
69 "type": "bool",
70 "test_only ": true
71 },
72 {
73 "key": "lgbt_friendly",
74 "type": "bool"
75 },
76 {
77 "key": "family_friendly",
78 "type": "bool",
79 "test_only ": true
80 },
81 {
82 "key": "pet_friendly",
83 "type": "bool"
84 },
85 {
86 "key": "nature_trip",
87 "type": "bool"
88 },
89 {
90 "key": "accessibility",
91 "type": "bool"
92 },
93 {
94 "key": "beach_trip",
95 "type": "bool"
96 },
97 {
98 "key": "ski_trip",
99 "type": "bool"

100 },
101 {
102 "key": "length_of_stay",
103 "type": "int"
104 },
105 {
106 "key": "num_adults",
107 "type": "int"
108 },
109 {
110 "key": "num_children",
111 "type": "int"
112 },
113 {
114 "key": "max_price_per_night",
115 "type": "float"
116 },
117 {
118 "key": "min_price_per_night",
119 "type": "float"
120 },
121 {
122 "key": "max_price_total",
123 "type": "float",
124 "test_only ": true

691

125 },
126 {
127 "key": "chain_name",
128 "type": "str",
129 "test_only ": true
130 },
131 {
132 "key": "hotel_name",
133 "type": "str"
134 },
135 {
136 "key": "landmark",
137 "type": "str"
138 },
139 {
140 "key": "district",
141 "type": "str"
142 },
143 {
144 "key": "airport",
145 "type": "str"
146 },
147 {
148 "key": "city",
149 "type": "str"
150 },
151 {
152 "key": "region",
153 "type": "str",
154 "test_only ": true
155 },
156 {
157 "key": "country",
158 "type": "str"
159 },
160 {
161 "key": "continent",
162 "type": "str"
163 },
164 {
165 "key": "checkin",
166 "type": "str"
167 },
168 {
169 "key": "checkout",
170 "type": "str"
171 },
172 {
173 "key": "strategy",
174 "type": "str",
175 "valid": [
176 "Popular",
177 "Nearby",
178 "Deals",
179 "Attractive",
180 "Similar"
181]
182 },
183 {
184 "key": "month",
185 "type": "int",
186 "test_only ": true
187 },
188 {
189 "key": "romantic",
190 "type": "bool"
191 },
192 {
193 "key": "season",
194 "type": "str",

195 "valid": [
196 "winter",
197 "summer",
198 "spring",
199 "fall"
200],
201 "test_only ": true
202 },
203 {
204 "key": "num_beds",
205 "type": "int"
206 },
207 {
208 "key": "num_bedrooms",
209 "type": "int"
210 },
211 {
212 "key": "num_bathrooms",
213 "type": "int"
214 },
215 {
216 "key": "minimum_stars",
217 "type": "float"
218 },
219 {
220 "key": "minimum_review",
221 "type": "int"
222 },
223 {
224 "key": "sorter",
225 "type": "str"
226 }
227]

692

