
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 568–575
July 28-30, 2025 ©2025 Association for Computational Linguistics

EdgeInfinite: A Memory-Efficient Infinite-Context Transformer for
Edge Devices

Jiyu Chen*1,2, Shuang Peng*1, Daxiong Luo*1, Fan Yang1, Renshou Wu1,
Fangyuan Li1B, Xiaoxin Chen1

1vivo AI Lab, 2Zhejiang University
*Equal contribution BCorresponding author

jiyuchen@zju.edu.cn, {pengshuang,luodaxiong,lifangyuan}@vivo.com

Abstract

Transformer-based large language models
(LLMs) encounter challenges in processing
long sequences on edge devices due to the
quadratic complexity of attention mechanisms
and growing memory demands from Key-Value
(KV) cache. Existing KV cache optimiza-
tions struggle with irreversible token eviction in
long-output tasks, while alternative sequence
modeling architectures prove costly to adopt
within established Transformer infrastructure.
We present EdgeInfinite1, a memory-efficient
solution for infinite contexts that integrates
compressed memory into Transformer-based
LLMs through a trainable memory-gating mod-
ule. This approach maintains full compatibility
with standard Transformer architectures, requir-
ing fine-tuning only a small part of parameters,
and enables selective activation of the memory-
gating module for long and short context task
routing. The experimental result shows that
EdgeInfinite achieves comparable performance
to baseline Transformer-based LLM on long
context benchmarks while optimizing memory
consumption and time to first token.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the foundational framework for Large Lan-
guage Models (LLMs). However, the quadratic
time complexity of the classic attention mechanism
in Transformer-based model presents significant
challenges in processing long sequences. More-
over, the continuous growth of the Key-Value (KV)
cache, driven by increasing context lengths, leads
to increased memory usage. Whether in terms of
time complexity or limited memory, these chal-
lenges are particularly pronounced on resource-
constrained edge devices such as smartphones.

To address these challenges, two main solutions
have been proposed. One approach focuses on the

1The code will be released after the official audit.

KV cache optimizations (Li et al., 2024b; Xiao
et al., 2023; Zhang et al., 2023), primarily by evict-
ing tokens deemed unimportant to reduce attention
computation complexity. Though these methods
can improve efficiency, they may encounter a po-
tential issue that the evicted tokens will not be
used in the future (Tang et al., 2024), especially
in real-world scenarios, such as multi-round in-
teractions (Li et al., 2024a; Qin et al., 2024) and
long-generation Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022; Guo et al., 2025).

The second solution explores more efficient se-
quence modeling methods, such as linear recurrent
models (Katharopoulos et al., 2020; Li et al., 2025)
and state space models (Gu et al., 2021; Gu and
Dao, 2023), to address computational complexity
issues. However, most current work remains cen-
tered around Transformer-based models. Adopting
new structural models would incur substantial costs,
hindering their deployment on edge devices.

In this work, we propose EdgeInfinite, a novel
approach that efficiently handles long sequences on
edge devices. By continuing pre-training with exist-
ing Transformer-based LLMs, EdgeInfinite main-
tains compatibility with current Transformer archi-
tecture, enabling a more streamlined and resource-
efficient approach to model development. We de-
sign a trainable memory-gating module that re-
quires fine-tuning only a small subset of parameters.
This module can be selectively loaded for long text
tasks, while retaining the original parameters of
the Transformer model for short text tasks. This
flexibility ensures that the base model’s parameters
do not require additional fine-tuning, allowing for
rapid and efficient inference on long text tasks. As
a result, our approach is well-suited for deployment
on edge devices. During inference, we retain sink
tokens and window tokens in KV cache, while the
other KV pairs are compressed into the memory
block. This approach allows the model to preserve
more semantic and positional information during

1
568



inference. Moreover, EdgeInfinite demonstrates
the improvement in time to first token (TTFT), a
notable advancement among existing methods.

Our contributions can be summarized as follows:
• We propose EdgeInfinite, an edge-side infi-

nite context method that integrates compressed
memory with a trainable memory-gating mod-
ule, while maintaining compatibility with the
vanilla Transformer architecture.

• EdgeInfinite maintains the original Transformer-
based LLM’s performance on short text tasks
while supporting high-efficiency inference for
long text tasks. This mechanism is highly
suitable for model deployment on resource-
constrained edge devices.

• We evaluate the performance of EdgeInfinite
on long context benchmark. It achieves perfor-
mance comparable to the baseline Transformer-
based models while optimizing memory con-
sumption and TTFT.

2 Related work

The quadratic time complexity of the attention
mechanism and the growing memory use of the
KV cache in classic Transformer-based LLMs
pose challenges for processing long sequences on
resource-constrained edge devices. This section
highlights recent work to address these issues.
Innovative Sequence Models Mamba (Gu and
Dao, 2023) and Mamba-2 (Dao and Gu, 2024)
represent the significant milestone in the devel-
opment of State Space Model (SSM) (Gu et al.,
2021), demonstrating outstanding performance in
natural language processing and other tasks. The
RWKV (Peng et al., 2023, 2024) combines the
advantages of RNN and Transformer, introduc-
ing innovations such as token shift and optimized
time-mixing to achieve linear complexity in infer-
ence. Titans (Behrouz et al., 2024) combine atten-
tion as short-term memory with a neural long-term
memory module. Infini-Transformer (Munkhdalai
et al., 2024) segments long sequences into multiple
blocks, incorporates a compressive memory into
the vanilla attention mechanism and builds in both
masked local attention and long-term linear atten-
tion mechanisms in a single Transformer block.
KV cache Optimizations KV Cache Optimiza-
tions primarily aim to reduce overall computational
requirements by identifying and discarding unim-
portant tokens. StreamingLLM (Xiao et al., 2023)
is a method based on sliding window attention. By

retaining both the most recent and sink tokens, it
helps maintain the model’s performance while ef-
ficiently managing memory usage. H2O (Zhang
et al., 2023) employs attention scores to identify
and retain significant tokens while simultaneously
preserving the most recent tokens. SnapKV (Li
et al., 2024b) identifies critical attention features
based on observation windows and correspondingly
compresses the KV cache. PyramidKV (Cai et al.,
2024) reduces the KV cache budget for later layers
by analyzing the attention features across different
layers. SCOPE (Wu et al., 2024) innovatively re-
fines the KV cache budget problem by considering
it separately in the prefill and decode stages.

3 EdgeInfinite

3.1 Architecture
As shown in Figure 1, the architecture of Edge-
Infinite includes three core components: (1) Seg-
mented attention with Rotary Position Embed-
ding (ROPE) for local context modeling, (2) The
memory mechanism for compressing and decom-
pressing historical context, and (3) The adaptive
memory-gating module that balances local and
memory-based attention.

3.1.1 Segmented Attention with ROPE
Given an input sequence X = [x1, . . . , xL]

T ∈
RL×d, it is divided into segments of size Lseg, re-
sulting in N segments of length Lseg and a residual
segment of length Lres. Their relationship can be
expressed as:

L = N · Lseg + Lres (1)

The full segment Xseg ∈ RLseg×d or the resid-
ual segment Xres ∈ RLres×d can be collectively
represented as Xs/r ∈ RLs/r×d, where s/r indi-
cates either a full or residual segment. We compute
the attention query Q, key K, and value V states:

Q = Xs/rW
Q,K = Xs/rW

K , V = Xs/rW
V

(2)
where WK , W V , and WQ are the trainable pro-
jection matrices. Q = [q1, q2, . . . , qLs/r

] and
K = [k1, k2, . . . , kLs/r

] denote the query and key
states in the segment Xs/r, where qi and ki repre-
sent the query and key states corresponding to the
i-th token.

Next, the ROPE model (Su et al., 2024) is inte-
grated to incorporate positional information into
the attention computation:

qrm = Rmqm, krn = Rnkn (3)

2
569



Figure 1: The overall framework of EdgeInfinite: illustrating the computation process of the attention layer in
Transformer-based LLMs, with LLaMA Attention (Touvron et al., 2023; Grattafiori et al., 2024) as an example.

where Rm and Rn are the rotary matrices situated
at positions m and n. qrm and krn represent the query
and key states after the rotary transformation. After
applying the rotary transformation, the modified
query and key states are denoted as Qr and Kr.

Subsequently, the attention computation for each
segment is performed in a manner similar to the
vanilla Transformer architecture (Vaswani et al.,
2017):

Adot = softmax(
Qr(Kr)T√

d
)V (4)

This computation enables the model to capture de-
pendencies between tokens within each segment
while incorporating positional information through
the ROPE model.

3.1.2 Memory Compression-Decompression
Inspired by the Infini-Transformer (Munkhdalai
et al., 2024) and linearized attention (Katharopou-
los et al., 2020), we introduce memory compression
and memory decompression. For all segments ex-
cept the residual segment, memory compression
is performed. For the i-th segment, the memory
Mi and the normalization term zi are calculated as
follows:

Mi = Mi−1 + σ(Kr)TV (5)

zi = zi−1 +

Ls/r∑

j=1

σ(krj ) (6)

where σ denotes a nonlinear activation function.
Mi ∈ Rd×d and zi ∈ Rd×1 are both initialized as
zero matrices for the first segment (i = 1). Here,
the memory Mi stores the associations between
the keys and values of previous segments. The
nonlinear activation function and normalization are
primarily used to ensure the stability of model train-
ing.

For all segments, the memory decompression is
executed as follows:

Amem =
σ(Qr)Mi−1

σ(Qr)zi−1
(7)

where Amem ∈ RLr/s×d represents the attention
calculated by the memory and query state of the
current segment. Since the memory encodes the
associations of key-value pairs from previous seg-
ments, decompression allows us to compute the at-
tention between the current query state and the past
key-value states. This process enables blockwise
computation to approximate the attention calcula-
tion of the original long sequence.

3.1.3 Memory-Gating Module
In contrast to the Infini-Transformer, which re-
quires training the entire model, our approach re-
quires fine-tuning only the memory-gating module.
This module can integrate memory-based attention
with local segment-based attention, enhancing the
model’s ability to handle long-range dependencies.
Additionally, our method supports switching to the
original model for inference on short context tasks.

3
570



The memory-gating module is a trainable com-
ponent that consists of a Multi-Layer Perceptron
(MLP) and a gating vector. Specifically, the mem-
ory attention Amem is first transformed through the
MLP as follows:

Ãmem = W2 · ReLU(W1Amem + b1) + b2 (8)

Here, W1 and W2 are trainable weight matrices,
while b1 and b2 are bias vectors. The ReLU acti-
vation function introduces non-linearity, enabling
the MLP to refine the memory-based attention and
capture complex interactions between the current
segment and accumulated memory.

The transformed memory attention Ãmem is then
combined with the local segment-based attention
Adot through a gating mechanism. The combined
attention Acom is computed as:

Acom = sigmoid(g)⊙ Ãmem

+ (1− sigmoid(g))⊙Adot

(9)

where g is a trainable gating vector. The sigmoid
function applied to g produces a gating factor that
adaptively controls the contribution of Ãmem and
Adot to the combined attention. This adaptive
weighting mechanism ensures that the model can
dynamically balance the importance of previous
context (encoded in Ãmem) and current context (en-
coded in Adot) based on the specific features of the
long sequence.

The memory-gating module is integrated as a
bypass in the attention pipeline. If the sequence
length is insufficient to be divided into segments,
the memory is None and the memory mechanism
is bypassed, reverting to standard Multi-Head At-
tention. The final attention output O is given by:
{
O = [A1

com; . . . A
H
com]Wo if Memory ̸= None

O = [A1
dot; . . . A

H
dot]Wo if Memory = None

(10)
where Ah

com and Ah
dot represent the combined atten-

tion and the local segment-based attention for the
h-th head. This design ensures consistency with
the base model for short context tasks, avoiding
catastrophic forgetting.

3.2 Inference Strategy
The inference strategy of EdgeInfinite is formal-
ized in Algorithm 1 and visualized in Figure 2. It
is characterized by two main components: (1) Se-
lective token preservation to ensure high-quality
inference, and (2) Adaptive long-short text routing
for handling of diverse input lengths.

Figure 2: The inference strategy of EdgeInfinite.

3.2.1 Selective Token Preservation
EdgeInfinite significantly compresses the key states
and value states associated with multiple tokens,
similar to KV cache optimization methods that dis-
card several tokens to reduce computational over-
head. However, this approach may potentially de-
grade overall inference performance.

To address this issue, EdgeInfinite preserves two
types of important tokens in the KV cache during
the inference process: sink tokens and window
tokens. Sink tokens represent the initial tokens of
the sequence, while window tokens correspond to
the most recent tokens. These tokens are crucial
for preserving semantic and positional information
(Xiao et al., 2023), and they are retained uncom-
pressed to ensure high-quality inference outputs.

3.2.2 Long-Short Text Inference Routing
EdgeInfinite’s inference strategy adapts dynami-
cally to handle both long and short text inputs effi-
ciently. The entire inference process can be divided
into prefilling stage and decoding stage:
Prefilling Stage For long input sequences (L ≥
Lsink + Lwindow + Lseg), the sequence excluding
the sink tokens and window tokens is divided into
N chunks, each of length Lseg. Each chunk is
compressed into memory, with sink tokens concate-
nated in front. The remaining parts, including the
residual segment, are stored as KV cache. For short
input sequences (L < Lsink+Lwindow+Lseg), the
model retains the full KV cache, similar to the

4
571



Algorithm 1 EdgeInfinite Inference Strategy.
1: Input: Input sequence Xin = [x1, . . . , xL]T , memory M , nor-

malization term z, KV cache C
2: Output: Output sequence Xout = [x1, . . . , xLmax ]

T

3: // Prefilling stage:
4: Initialize memory M , normalization term z, and KV cache C
5: if L ≥ Lsink + Lwindow + Lseg then
6: C = get_kv_cache(Xin[: Lsink], C)
7: N = ⌊(L− Lsink − Lwindow)/Lseg⌋
8: for i = 0 to N − 1 do
9: Xsegment = Xin[Lsink + i · Lseg : Lsink + (i+ 1) · Lseg]

10: M, z = get_memory(Xsegment, C,M, z)

11: end for
12: Xremaining = Xin[Lsink +N · Lseg :]
13: O,C = get_model_output(Xremaining, C,M, z)

14: else
15: O,C = get_model_output(Xin, C,M, z)
16: end if
17: xnew = get_model_decode(O)

18: Xout = [Xin;xnew]
19: // Decoding stage:
20: while len(Xout) < Lmax do
21: Lres = len(Xout)− Lsink − Lwindow

22: if Lres == Lseg then
23: Xsegment = Xout[−Lseg − Lwindow : −Lwindow]

24: C = C[: Lsink]
25: M, z = get_memory(Xsegment, C,M, z)

26: O,C = get_model_output(Xout[−Lwindow :], C,M, z)

27: else
28: O,C = get_model_output(Xout[−1 :], C,M, z)

29: end if
30: xnew = get_model_decode(O)

31: Xout = [Xout;xnew]

32: end while

original attention. Here, Lsink and Lwindow are the
lengths of retained sink tokens and window tokens.
Decoding Stage The model iteratively generates
new tokens until the length of the output sequence
reaches Lmax. If the length of the residual se-
quence equals Lseg, the memory is updated by com-
pressing the corresponding segment, with the sink
tokens concatenated in front. The output is then
generated based on the updated memory, the KV
cache of sink tokens, and the KV states of window
tokens. Otherwise, the model directly generates the
next token using the current KV cache and memory.

4 Experiments

4.1 Experimental Setups

Model and Data In our experiments, we evaluate
EdgeInfinite using BlueLM-3B (Lu et al., 2024) as
the backbone, a Transformer-based LLM suitable
for edge deployment. The training dataset includes
approximately 100,000 samples, covering diverse
tasks such as text summarization and generation.
Hyperparameters The model is trained for 2
epochs with a learning rate set to 0.005. Only the
memory-gating module (0.15% of total weights)

is trained. We configure other hyperparameters
as follows: Lseg is set to 2048, Lsink to 300, and
Lwindow to 200. For sequences of varying lengths,
the total size of the retained KV cache averages
approximately 1524 tokens, which includes 300
sink tokens, 200 window tokens, and an average
residual segment length of 1024 tokens.
Benchmark We evaluate EdgeInfinite using Long-
Bench (Bai et al., 2023), a multi-task long-context
benchmark for assessing long-context comprehen-
sion abilities across diverse datasets.
Baseline We compare EdgeInfinite with three base-
line KV cache optimization methods, including
SnapKV (Li et al., 2024b), PyramidKV (Cai et al.,
2024), and StreamingLLM (Xiao et al., 2023), as
well as the original model with full KV cache. The
cache sizes for these three baselines are set to 2048,
slightly larger than the setting of EdgeInfinite.

4.2 Results
The performance comparison between baseline and
our method is shown as Table 1. We report the
average performance for each category , as well as
the overall average performance across all 21 tasks.

Overall, EdgeInfinite demonstrates competitive
performance advantages compared to other base-
lines and even exceeds the performance of FullKV.
In specific tasks, EdgeInfinite demonstrates rela-
tively better performance in summarization and
code completion, and achieves notable superior re-
sults in multi-document QA and few-shot learning.

It can be revealed that KV cache optimization
methods generally perform similarly to or slightly
better than FullKV. However, EdgeInfinite signif-
icantly outperforms FullKV in certain tasks, such
as HotpotQA and TriviaQA. The performance en-
hancement is attributed to its strategy of segment-
ing long context sequences into multiple shorter
sequences, reducing performance degradation from
processing excessively long sequences. Meanwhile,
EdgeInfinite shows relatively weaker performance
in single-document QA than in multi-document
QA. This is because single-document QA requires
precise answers, while multi-document QA focuses
on summarizing content. The memory compres-
sion in EdgeInfinite leads to precision loss in KV
states, making it better suited for generating sum-
mary answers rather than precise retrieval.

4.3 Ablation Study
To evaluate the impact of retaining specific KV
cache during the inference process of EdgeInfinite,

5
572



Single-Document QA Multi-Document QA Summarization

NrtvQA Qasper MF-en MF-zh Avg HotpotQA 2WikiMQA MuSiQue DuReader Avg GovReport QMSum MultiNews VCSUM Avg
FullKV 5.94 31.50 34.89 47.88 30.05 21.93 26.15 2.58 24.91 18.89 12.82 7.04 10.94 18.34 12.29
SnapKV 5.53 29.80 35.04 48.97 29.84 22.51 26.04 2.14 22.77 18.37 11.09 6.68 11.08 17.74 11.65

PyramidKV 5.01 30.06 35.50 48.82 29.85 22.25 25.76 2.22 22.95 18.30 11.27 6.53 10.93 17.60 11.58
StreamingLLM 3.70 25.54 29.45 43.15 25.46 16.63 19.13 2.25 23.61 15.41 10.84 5.27 10.50 17.39 11.00

EdgeInfinite 14.16 18.68 25.58 35.56 23.50 31.67 26.08 12.06 26.87 24.17 11.28 8.18 10.76 18.18 12.10

(a) Results on single-document QA, multi-document QA, and summarization tasks.
Few-shot Learning Synthetic Code Overall

TREC TriviaQA SAMSum LSHT Avg PCount PRe-en PRe-zh Avg LCC RB-P Avg Avg
FullKV 63.00 51.98 24.50 18.00 39.37 2.50 4.50 28.00 11.67 42.96 27.81 35.39 24.20
SnapKV 60.00 51.98 24.32 17.75 38.51 1.79 5.50 30.00 12.43 43.72 27.07 35.40 23.88

PyramidKV 61.00 51.46 24.07 18.00 38.63 2.17 5.31 28.50 11.99 43.86 26.74 35.30 23.81
StreamingLLM 61.00 38.20 10.92 14.17 31.07 2.60 4.29 7.50 4.80 33.49 22.66 28.08 19.16

EdgeInfinite 55.00 79.03 33.27 24.25 47.89 3.50 6.00 24.00 11.17 42.66 33.09 37.88 25.71

(b) Results on few-shot learning, synthetic, code tasks, and overall LongBench task average results.

Table 1: Performance comparison of EdgeInfinite (Ours) with SnapKV, PyramidKV, StreamingLLM and FullKV
on LongBench.

SQA MQA Sum FS Syn Code Avg

EdgeInfinite 23.50 24.17 12.10 47.89 11.17 37.88 25.71
wo window tokens 23.28 24.36 11.74 46.44 10.00 37.74 25.18
wo sink tokens 20.43 19.12 11.60 43.78 6.12 44.28 23.17
wo sink & window 19.06 18.56 11.19 40.10 5.92 43.19 21.90

Table 2: Ablation experiment results on Long-
Bench (SQA = Single-Document QA, MQA = Multi-
Document QA, Sum = Summarization, FS = Few-shot
Learning, Syn = Synthetic).

we conduct ablation studies to assess the effects
of sink tokens and window tokens on inference
performance. These ablation experiments are also
performed on LongBench. Table 2 presents the
average scores for different task categories and the
overall average score under three conditions: re-
moving sink tokens, removing window tokens, and
removing both sink and window tokens.

Removing sink tokens significantly impacts the
results of most tasks, as the initial tokens often con-
tain important positional and semantic information
for many tasks. Additionally, removing window
tokens also affects overall performance. Retain-
ing a fixed number of window tokens avoids the
issue of Lres being too short, which would result
in too few tokens retained as KV cache at the end
of the sequence during memory compression. This
mechanism effectively maintains semantic continu-
ity during inference.

4.4 Efficiency

We compare TTFT and memory usage between
EdgeInfinite and the original BlueLM-3B model,
as shown in Figure 3. The results demonstrate that
EdgeInfinite exhibits significant advantages in han-
dling long sequences, with resource consumption

16k 32k 48k 64k 80k 96k 112k 128k
Sequence Length

0
10
20
30
40
50
60
70
80

GP
U 

M
em

or
y 

(G
B)

Baseline Memory
Baseline OOM
EdgeInfini Memory
Baseline TTFT
Baseline OOM
EdgeInfini TTFT

0

2

4

6

8

10

12

14

Ti
m

e 
To

 Fi
rs

t T
ok

en
 (s

)

Figure 3: Efficiency of EdgeInfinite. We demonstrate
GPU memory consumption and TTFT for varying input
sequence lengths.

not increasing rapidly with sequence length. This is
attributed to our method’s ability to process long se-
quences in chunks within the segment size, thereby
substantially reducing the computational resource
requirements.

5 Conclusion

In this study, we propose EdgeInfinite, an effi-
cient method for long context tasks on edge de-
vices. By integrating compressed memory into the
Transformer-based LLMs with a trainable memory-
gating module, we enable efficient inference on in-
finite context while maintaining compatibility with
the vanilla Transformer architecture. Additionally,
we design an effective strategy to retain important
tokens during inference for long context tasks to
enhance the inference performance, and switch to
the original backbone model for short context tasks.
Our evaluation on long context benchmarks reveals
that EdgeInfinite achieves performance compara-
ble to baseline methods. In summary, EdgeInfinite
offers an efficient solution for long context tasks
on resource-constrained edge devices.

6
573



References
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,

Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. 2024.
Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic
kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint
arXiv:2405.21060.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi-
ciently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International conference on machine
learning, pages 5156–5165. PMLR.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang
Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo,
Da Chen, Dong Li, et al. 2025. Minimax-01: Scaling
foundation models with lightning attention. arXiv
preprint arXiv:2501.08313.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo,
Surin Ahn, Chengruidong Zhang, Amir H Abdi,
Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al.
2024a. Scbench: A kv cache-centric analysis of long-
context methods. arXiv preprint arXiv:2412.10319.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024b. Snapkv:
Llm knows what you are looking for before gener-
ation. Advances in Neural Information Processing
Systems, 37:22947–22970.

Xudong Lu, Yinghao Chen, Cheng Chen, Hui Tan, Bo-
heng Chen, Yina Xie, Rui Hu, Guanxin Tan, Ren-
shou Wu, Yan Hu, et al. 2024. Bluelm-v-3b: Al-
gorithm and system co-design for multimodal large
language models on mobile devices. arXiv preprint
arXiv:2411.10640.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143, 101.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, et al.
2023. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon
Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław
Kazienko, et al. 2024. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv
preprint arXiv:2404.05892, 3.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu Moon-
cake. 2024. Kimi’s kvcache-centric architecture for
llm serving. arXiv preprint arXiv:2407.00079.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan
Hong, Yiwu Yao, and Gongyi Wang. 2024. Razo-
rattention: Efficient kv cache compression through
retrieval heads. arXiv preprint arXiv:2407.15891.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai,
Yulan He, and Deyu Zhou. 2024. Scope: Optimizing
key-value cache compression in long-context genera-
tion. arXiv preprint arXiv:2412.13649.

7
574



Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H2o: Heavy-hitter oracle for efficient generative
inference of large language models. Advances in
Neural Information Processing Systems, 36:34661–
34710.

8
575


