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Abstract

Large Language Models (LLMs) have shown
capabilities in various natural language pro-
cessing tasks, yet they often struggle with logi-
cal reasoning, particularly when dealing with
complex natural language statements. To ad-
dress this challenge, approaches that combine
LLMs with symbolic reasoners have been pro-
posed, where the LLM translates the natural
language statements into symbolic representa-
tions, which are then verified by an external
symbolic solver. However, ensuring syntac-
tic correctness in these translations remains a
significant challenge. To address this, we pro-
pose to constrain the outputs of the LLMs us-
ing Grammar Constrained Decoding (GCD),
showing that it consistently improves both syn-
tactic correctness and accuracy in logical pars-
ing tasks. Our findings demonstrate that gram-
mar constraints can complement in-context
examples, especially beneficial for resource-
constrained applications using smaller mod-
els. However, we observe that while GCD
ensures syntactic validity, semantic errors not
captured by Context-Free Grammars continue
to pose challenges. Additionally, our results
reveal a trade-off for larger models where
unconstrained generation occasionally outper-
forms constrained decoding, aligning with re-
cent theoretical work on bias introduced by
constrained decoding. Our code and data is
publicly available at: https://github.com/
federaspa/gcd-11m-logical-parsing

1 Introduction

In recent years, Large Language Models (LLMs)
(Devlin et al., 2019; Brown et al., 2020; Achiam
et al., 2023; Team et al., 2023; The; Touvron et al.,
2023) have shown increasing capabilities for logi-
cal reasoning, especially when guided with prompt-
ing techniques such as few-shot examples (Par-
nami and Lee, 2022) and Chain-of-Thought (CoT)
prompting (Wei et al., 2022).

The reasoning capabilities of these models have
traditionally been evaluated on standardized bench-
marks like GSM8K (Cobbe et al., 2021), where
LLMs are tasked with solving an arithmetic prob-
lem, demonstrating increasingly impressive perfor-
mance. This apparent progress has led to optimistic
interpretations about LLMs’ ability to perform gen-
uine reasoning.

However, recent studies have shown that pol-
luting problems, by randomly selecting symbols
or adding irrelevant information, significantly de-
grades performance in all state-of-the-art models
(Mirzadeh et al., 2024). These findings indicate
that rather than developing true reasoning capabili-
ties, LLMs may primarily be learning to reproduce
training examples with minor variations.

To tackle this challenge, an increasingly popular
approach is to decouple the reasoning process, us-
ing LLM to convert natural language problems into
symbolic representations, treating them as logical
parsers, and then using symbolic solvers to deter-
mine the outcome of the logical problem (e.g. True,
False, and in some cases Undecidable) (Pan et al.,
2023; Feng et al., 2023; Wang et al., 2024).

This approach has been shown to increase accu-
racy on symbolic reasoning tasks, but introduces
the new challenge of respecting the syntax required
by the solver when converting the problems into
symbolic representations, which has typically been
addressed in two, non-mutually exclusive ways:
by providing in-context examples to the LLM (In-
Context Learning, ICL), and by relying on the
LLM’s ability to identify and correct its own mis-
takes (Self-Verification) (Pan et al., 2023; Wang
et al., 2024; Feng et al., 2023). Both solutions
were proven to be effective in improving syntactic
correctness, but neither provides strong guarantees.

In this context, GCD emerges as a promising ap-
proach to guarantee syntactic correctness in sym-
bolic representations. GCD works by dynamically
constraining the model’s output space during gen-
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eration, ensuring that only grammatically valid se-
quences can be produced (Geng et al., 2024b; Park
et al., 2024). This approach differs from previous
methods in that it provides deterministic guarantees
about the syntax of the generated output.

Recent findings (Tam et al., 2024) demonstrated
that grammar constraints can significantly degrade
LLM reasoning abilities when reasoning is per-
formed directly by the language model. This raises
the question of whether this still holds when decou-
pling the reasoning process. We hypothesize that,
when using LLMs strictly as parsers and delegating
the reasoning to specialized solvers, the constraints
on generation will increase the syntactic correct-
ness of the symbolic representations, which will in
turn increase downstream accuracy.

This paper focuses on the following research
questions (RQs).

RQ1. Can GCD improve the performance of
LLMs as logical parsers, measured by accuracy on
a downstream task?

RQ2. How effective is GCD for compensating
in-context learning, measured by accuracy on a
downstream task?

RQ3. How does the impact of GCD vary with
model size, measured by accuracy on a downstream
task?

The paper is organized as follows. Section 2
discusses related work in LLMs as logical solvers
and GCD. Section 3 introduces our methodology.
Section 4 introduces our experimental setup and
evaluation methodology. Section 5 presents our
main results and empirical findings, discussed in
Section 6. Section 7 presents a summary of our
contributions and findings. Finally, Section 8 con-
cludes with the limitations of our approach and
discusses future work.

2 Related Work
2.1 Logical Reasoning with LLMs

The development of logical reasoning capabilities
in LLMs has seen significant progress through
various approaches. Wei et al. (2022) introduced
Chain-of-Thought (CoT) prompting to break down
complex reasoning into steps, while Kojima et al.
(2023) demonstrated that simply prompting LLMs
to "think step by step” could achieve similar results
without examples. To address inconsistencies in
LLMs’ logical reasoning, Creswell et al. (2022)
developed the Faithful Reasoning framework, com-
bining LLMs with automated reasoning tools.

Recent research has focused on integrating
LLMs with symbolic solvers, treating LLMs as
logical parsers rather than reasoners. Pan et al.
(2023) introduced Logic-LM, which combines
LLMs (GPT-3.5-Turbo, GPT-4-Turbo) with sym-
bolic solvers (Prover9, Z3, Pyke) and includes a
self-refinement loop to handle invalid formulas.
Wang et al. (2024) developed ChatLogic, integrat-
ing LLMs with a pyDatalog reasoning engine and
incorporating semantic and syntax correction mod-
ules. While their approach attempts to guide syn-
tax corrections through prompting, they noted that
these corrections were unreliable. We propose to
address this limitation by enforcing syntax using
GCD, with the aim of improving the reliability of
problem generation.

2.2 Grammar-Constrained Decoding

GCD has emerged as an effective method for con-
straining LL.M outputs to respect user-defined rules,
particularly when models haven’t been extensively
trained on domain-specific syntax. Two main ap-
proaches have been developed to achieve grammat-
ical adherence: grammar prompting, which guides
LLMs to follow specific grammars like those writ-
ten in Backus-Naur form, and GCD itself, which di-
rectly constrains the decoding process (Wang et al.,
2023).

At the core of GCD is a Context-Free Grammar
(CFG), which consists of non-terminals (V), ter-
minals (F), production rules (R), and a starting
symbol (S). A simple example of such a grammar
is shown below:

S ::= NP VP

NP ::= Det N

VP ::= V NP

Det ::= "the” | "a"

N ::= "cat” | "dog"

V ::= "chases” | "sees"”

Listing 1: An example of a CFG grammar

During the decoding process, the language
model’s output is restricted to sequences that can
be derived from the defined grammar. The model’s
vocabulary is filtered to include only grammati-
cally valid tokens at each step, with probabilities
redistributed among these options. This process
involves expanding non-terminals and backtrack-
ing when necessary until a complete, syntactically
correct sequence is generated.

Early work in this field includes GrammarCNN
(Sun et al., 2019), which incorporated grammar
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Figure 1: Full pipeline. The LLM processes a prompt
made of a task description 7, examples pexample and a
Natural Language problem x;. We use GCD to generate
syntactically valid symbolic representations Z;, which
are evaluated by a solver to produce the final solution

knowledge into convolutional neural networks, and
the CTRL model (Keskar et al., 2019), which used
control codes to generate text with specific at-
tributes. However, CTRL’s approach was limited
by the need to train the model on selected control
codes, making it less suitable for domain-specific
or data-scarce fields.

More recent developments include the sketch-
based method of Geng et al. (2024a), where a
grammar-constrained LLM rewrites the output of a
powerful black-box model.

Recently Tam et al. (2024) demonstrated that
grammar constraints can significantly degrade
LLM reasoning abilities. However, while they ar-
gue for avoiding such constraints to preserve rea-
soning capabilities of LLMs, we argue that the
benefits of reliable structured output outweigh the
potential reasoning degradation if we focus LLM
on parsing and delegate the reasoning to a symbolic
solver.

3 Method

We illustrate our methodology in Figure 1.

Step 1: Problem formulation

In the first step, we use an LLM to extract symbolic
representations of natural language problems.

Consider two labeled sets of problems, plrain —
{(2i, )} )" and P = {(i, )}y, where
x; is a problem expressed in natural language, and
y; € S is the ground truth solution to this problem
in some domain S. Let z; be a symbolic represen-
tation of the problem z; (there may be many valid
representations for a given x;).

Let G be a Context-Free Grammar, 7 a task
description, and P*™PIe 3 set of examples, with
pexample C fptrain.

Let m; = 7 @ PPl @ 2. be the prompt for
the problem x;, where & denotes concatenation
[Section A]. Then, we define Z; as:

& = LLM(r;; G) ()

where LLM(+; G) is a function that takes a
prompt as input and produces output that is consis-
tent with grammar G.

Step 2: Problem solution

Let Solver(2;) € S U {_L} be the solution returned
by the symbolic solver to a problem in its symbolic
representation Z;, where Solver(Z;) =L indicates
that 2; is invalid, i.e., it contained a syntax error
and could not be solved. We define the predicted
solution g; as:

7; = Solver(z;) 2)

4 Experiments and evaluation

4.1 Experiments

We designed three experiments to evaluate three
different aspects of GCD for LLMs as logical
parsers. First, we compare outputs between un-
constrained generation (Unc.) and generation con-
strained by domain-specific grammar (Const.). Sec-
ond, we investigate how well GCD can compensate
for In-Context Learning, by combining grammar
constraints with zero-shot, two-shot, and five-shot
prompting. Third, we assess the impact of GCD
and In-Context Learning across models of vary-
ing parameter counts. We measure performance in
terms of semantic accuracy (comparing solver out-
puts to ground truth) and syntactic accuracy (per-
centage of generated programs that parse without
errors), as described in Sec. 4.3. For each experi-
ment, we perform independent runs and report the

487



mean and standard deviation of the results in Tables
1 and 2.

4.2 Models

We selected open-source LLMs from four fami-
lies: Gemma (2B, 9B, 27B), Llama (1B, 3B, 8B),
Mistral (8B, 22B), and Qwen (0.5B, 1.5B, 3B, 7B,
14B). Within each family, we chose variants of
different parameter counts, to investigate GCD’s
impact across a different model architectures and
sizes. All models are instruction-tuned variants.

4.3 Maetrics

We measure the semantic accuracy (Accuracy, Eq.
3) of the predicted symbolic representation by run-
ning all programs through the symbolic solver and
comparing the result with the ground truth. We
consider failure to parse the symbolic representa-
tion (i.e. the solver returning an error) as a wrong
answer. We also measure the syntactic accuracy
(Executable Rate, Eq. 4) of generated programs
by observing the fraction of generated programs
that the solver can run without incurring an error.

>t 1 = i)

Accuracy = N

3)

S (g #1)

Executable Rate =
xecutable Rate N

“)
where 1 is the indicator function (1 if true, O if
false).

First we highlight that, since there can only be
as many correct answers as valid symbolic repre-
sentations, Accuracy < Executable Rate.

Second, we highlight that we may achieve 0 Ac-
curacy if none of the symbolic representations
were valid. This does not mean that flipping all
predictions would yield perfect accuracy, but rather
indicates complete failure at producing syntacti-
cally valid formulas that the solver can process.

Finally, we note that while GCD ensures that
generated outputs conform to the specified gram-
mar, semantic errors can still occur that prevent
successful execution. These semantic errors are
not captured by the CFG but still result in solver
failures (y; =L). For instance, in FOL genera-
tion, a predicate with the same name may appear
with different arities in the same problem (e.g.,
Predicate(x) and Predicate(x, y)) or in arith-
metic problems, variable references might refer to
variables not previously declared in the problem.

This explains why even with grammar constraints,
we observe executable rates below 1.0, particularly
for smaller models that may struggle with main-
taining semantic consistency.

4.4 Datasets and Solvers

We evaluate the proposed method on two datasets
that contain problems from two branches of mathe-
matics: first-order logic (FOL) and arithmetic.

First-order logic

For FOL, we chose FOLIO (Han et al., 2024), a
dataset for logical reasoning constructed by do-
main experts. The problems incorporate real-world
knowledge with natural language formulations, re-
quiring complex logic reasoning to get a solution.
Our evaluation utilizes the complete FOLIO test
set, comprising 204 distinct examples.

For the solver, we chose Prover9 (McCune,
2005-2010), a widely accepted automated theorem
prover for FOL. Following the implementation ap-
proach of Pan et al. in Logic-LM (Pan et al., 2023),
we integrated Prover9 into our pipeline through
Python’s NLTK library, to evaluate both the syntac-
tic correctness and the outcome of the generated
formulas.

Arithmetic

For arithmetic, we chose GSM-symbolic (Mirzadeh
et al., 2024), a dataset derived from the GSM8K
(Cobbe et al., 2021) math word problem bench-
mark, where the problems are reformulated to
account for data contamination in previously re-
leased LLMs. The problems incorporate arithmeti-
cal knowledge with natural language formulations.
This evaluation utilizes a subset of 1000 randomly
sampled samples from the GSM-symbolic test set.

For the solver, we used SymPy, a Python library
for symbolic arithmetic. We generate the problems
in standard infix notation (SIN) and implement a
wrapper around SymPy to parse and evaluate the
symbolic representations.

5 Results

We report the average results of our runs in Tables 1
and 2, showing the impact of GCD on accuracy and
executable rate respectively. Our results indicate
that grammatical constraints provide the most ben-
efits to smaller models and in resource-constrained
scenarios where few or no examples are available.
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FOLIO GSM-symbolic
0-shots 2-shots 5-shots 0-shots 2-shots 5-shots
Model Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con.
gemma2-2b 0.02 021 )] 0.07 019 | 006 024 000 0.15 ] 0.18 0.20 | 0.18 0.21
gemma2-9b 023 051 )] 046 051|050 0511017 025] 044 039 ] 041 037
gemma2-27b | 040 0.50 | 049 0.56 | 0.51 0551 031 030 1] 054 049 ] 051 049
llama3.2-1b 0.00 0.19 | 0.00 0.15 | 0.01 0.20 | 0.00 0.03 | 0.01 0.02 | 0.01 0.03
llama3.2-3b 0.00 027 | 0.08 023 | 0.12 025 | 000 0.12] 0.13 0.18 | 0.16 0.19
llama3.1-8b 005 028 | 0.19 033 | 027 036 | 000 0.27 | 030 037 | 0.28 0.35
ministral-8b 005 029 | 0.12 0.27 | 0.15 0.28 | 0.01 0.12 ]| 026 0.27 | 0.26 0.28
mistral-22b 022 041|041 045 | 040 047 | 000 013 | 042 038 | 042 0.39
gqwen2.5-0.5b | 0.00 0.14 | 0.02 0.20 [ 0.05 0.22 | 0.00 0.01 | 0.01 0.01 { 0.02 0.02
gqwen2.5-1.5b | 0.00 0.20 | 0.05 0.22 [ 0.08 0.23 | 0.00 0.05 | 0.06 0.08 [ 0.07 0.09
gqwen2.5-3b 001 029 )] 0.16 022 | 0.19 028 [ 0.00 0.09 | 0.18 033 | 0.17 0.31
qwen2.5-7b 021 033 ] 031 032039 035|000 020] 044 045 )| 046 047
gwen2.5-14b | 0.18 0.29 | 033 031 | 0.36 0.26 | 0.29 037 | 0.57 038 | 0.56 0.36

Table 1: Accuracy of LLMs as logical parsers across different model sizes and prompting strategies (0-shot, 2-shot,
5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on GSM-symbolic and FOLIO
datasets. As highlighted in Section 4.3, Accuracy < Executable Rate in Table 2. We may achieve zero Accuracy if

all the symbolic representations were invalid.

5.1 Grammar Constraints

Both in terms of accuracy and executable rate
FOL syntax constraints outperform the uncon-
strained baseline. The impact is most significant
when looking at executable rate, where FOL con-
straints achieve above 0.70 executable rate even
with smaller models that show near-zero executable
rate in unconstrained conditions. For small models
like gemma2-2b and qwen2.5-3b, after introduc-
ing the constraints, we go from producing almost
no executable outputs to achieving high rates of
executable outputs.

5.2 In-Context Learning

Few-shot prompting enhances accuracy and exe-
cutable rate across all settings. We observe that
in many cases the relative improvement from in-
troducing few-shot examples is smaller with GCD
compared to the unconstrained baseline. Moreover,
we observe that, in most cases, GCD with 0 shots
achieves higher accuracy than unconstrained de-
coding with 5 shots, and comparable accuracy to
GCD and 5 shots. This indicates that GCD can
compensate for the absence of examples in the 0
shots setting.

5.3 Model Size

The benefits of GCD can be observed on all model
sizes, although they are proportionally more sig-
nificant for smaller models and fewer shots. For

instance, with 0 shots, smaller models show more
improvements in accuracy when using GCD com-
pared to their larger counterparts. The largest mod-
els in our test suite show increases in accuracy with
zero-shot prompting, but show diminishing returns
when example shots are increased.

Notably, for the largest models (> 14B) with
multiple shots, we observe instances where uncon-
strained decoding achieves comparable or occa-
sionally greater accuracy (Table 1), suggesting that
model capacity and number of examples can influ-
ence the effectiveness of grammar constraints.

This pattern becomes clearer when comparing
accuracy with executable rates: while larger models
maintain high executable rates under constraints,
their accuracy sometimes decreases, suggesting a
trade-off between syntactic validity and semantic
correctness.

6 Discussion

ROL.

Our results show that GCD improves the perfor-
mance of LLMs, when they are used as logical
parsers. The experiments show consistent improve-
ments in both accuracy and executable rate across
model sizes and number of examples.

This improvement in parsing execution rate di-
rectly translates to improved reasoning of the over-
all system, since the symbolic solver can only
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FOLIO GSM-symbolic
Oshots 2shots Sshots Oshots 2shots Sshots
Model Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con. | Unc. Con.
gemma2-2b 0.07 0.60 | 0.19 0.52 | 0.16 0.65 | 0.00 1.00 | 0.78 1.00 | 0.76 1.00
gemma2-9b 041 090 | 0.64 084 | 0.73 083 | 043 1.00 | 093 099 | 0.93 0.99
gemma2-27b | 0.67 094 | 0.74 092 | 0.79 0.89 | 0.64 099 | 096 1.00 | 0.96 1.00
llama3.2-1b 0.00 057 | 0.00 043 | 0.01 0.62 | 000 098 | 0.27 098 | 0.24 0.98
llama3.2-3b 0.00 072 ] 019 059|025 064 | 000 099 | 070 1.00 | 0.76 1.00
llama3.1-8b 0.09 0.78 | 0.38 0.77 | 043 0.78 | 0.00 099 | 0.76 1.00 | 0.76 1.00
ministral-8b 009 083 ] 032 076 | 0.37 0.77 | 0.02 099 | 0.83 1.00 | 0.83 1.00
mistral-22b 040 087 ] 0.72 086 | 0.69 0.86 | 0.00 099 | 093 1.00 | 0.93 1.00
gqwen2.5-0.5b | 0.00 0.40 | 0.07 0.58 | 0.13 0.65 | 0.00 094 | 0.58 098 | 0.53 0.98
gqwen2.5-1.5b | 0.01 0.56 | 0.14 0.58 | 0.18 0.58 | 0.01 097 | 0.65 0.99 | 0.69 0.97
gqwen2.5-3b 004 075] 029 054|037 065|000 097 ]| 045 098 | 0.46 0.98
qwen2.5-7b 037 072 ] 0.60 0.67 | 0.64 0.73 | 0.01 096 | 0.83 1.00 | 0.87 1.00
gwen2.5-14b | 0.30 0.71 | 0.62 0.72 | 0.65 0.62 | 0.59 1.00 | 0.95 0.99 [ 0.96 0.99

Table 2: Executable Rate of LLMs as logical parsers across different model sizes and prompting strategies (0-shot,
2-shot, 5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on GSM-symbolic and

FOLIO datasets.

process syntactically valid formulas. This en-
ables more problems to be successfully processed
through the complete reasoning pipeline, resulting
in higher end-to-end accuracy on logical reasoning
tasks.

RQ2.

We show that models using GCD with zero-shot
prompting achieve only slightly lower performance
compared to unconstrained models using five-shot
prompting. This can be valuable in domains
where creating high-quality examples requires ex-
pert knowledge or where prompt length limitations
do not allow for demonstrations.

However, our findings also indicate that GCD
and in-context learning are complementary rather
than mutually exclusive approaches. The high-
est performance was often achieved by combin-
ing GCD with multiple examples, indicating that,
while GCD can compensate for limited examples,
it does not fully replicate the guidance provided
by in-context learning. This suggests that, when
resources permit, practitioners should consider im-
plementing both strategies.

RQ3.

Smaller models experience greater improvements
from GCD compared to their larger counterparts.
This finding indicates that GCD could help de-
mocratize logical parsing capabilities by making

smaller, more accessible models perform more reli-
ably.

However, our findings also reveal that for larger
models with few-shot examples, unconstrained gen-
eration occasionally outperforms constrained de-
coding. This phenomenon has been theoretically
and empirically validated by recent work. Ye et al.
(2025) proved that constrained decoding introduces
bias into output distributions, demonstrating a sig-
nificant KL-divergence between the true distribu-
tion and the constrained decoding distribution. We
hypothesize that, for smaller models, grammatical
constraints can skew the distribution of the out-
puts towards more appropriate ones, but as models
grow in size their learned representations become
"good enough" to perform the parsing, and the bias
introduced by the constraints degrades the output.

7 Conclusion

In this work, we investigated the effectiveness
of GCD for improving Large Language Models
when used as logical parsers in problem-solving
pipelines. By separating the parsing task from the
reasoning process and delegating logical inference
to symbolic solvers, we examined whether syntac-
tic constraints could improve the accuracy of these
systems.

Our experiments across thirteen open-source
LLMs, ranging from 0.5B to 27B parameters,
demonstrate that GCD significantly improves syn-
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tactic correctness and downstream semantic accu-
racy. We found that smaller models benefit most
from grammatical constraints, with models like
gemma2-2b achieving executable rates above 60%
in FOL tasks when constrained, compared to near-
zero rates without constraints. This pattern sug-
gests that GCD could democratize logical parsing
capabilities by enabling smaller, more resource-
efficient models to perform reliably in formal rea-
soning tasks.

The results also reveal that GCD can effectively
compensate for limited in-context examples. In
many cases, zero-shot prompting with grammar
constraints achieved comparable or superior per-
formance to five-shot unconstrained generation.
This finding has practical implications for domains
where expert-annotated examples are scarce or ex-
pensive to obtain. However, we observed that
GCD and in-context learning are complementary
approaches, with the highest performance often
achieved by combining both strategies.

Our work contributes to the broader discussion
about the role of syntactic guidance in language
model generation. While recent theoretical work
suggests that constraints may introduce bias and
reduce reasoning capabilities, our empirical results
indicate that this trade-off can be beneficial when
models are used specifically as parsers rather than
reasoners. Using LL.Ms for natural language under-
standing and symbolic solvers for logical inference
appears to be a promising direction for building
more reliable Al systems that can handle formal
reasoning tasks.

8 Limitations

First, our implementation relies on CFGs that can-
not capture context-sensitive constraints found in
some reasoning tasks. While GCD based on CFGs
improves syntactic correctness, guaranteeing se-
mantic accuracy remains challenging. Our ap-
proach significantly increases syntactic validity and
downstream semantic accuracy, but it does not en-
sure that the generated formulas correctly capture
the meaning of natural language statements. As
noted in Section 5, even with grammar constraints,
executable rates below 1.0 indicate the presence of
semantic errors that pass syntactic validation but
fail during solver execution. For instance, predicate
consistency violations, variable scope constraints,
and other semantic requirements that extend be-
yond CFG expressivity continue to pose challenges.

Future work could explore extensions to context-
sensitive grammars or integration with semantic
verification systems.

Second, our evaluation focused on two specific
branches of mathematics: FOL and arithmetic rea-
soning. While these domains demonstrate the ap-
proach’s effectiveness, extending to other branches
of mathematics or fields entirely, such as computa-
tional chemistry or physics, would require domain-
specific grammar definitions and may reveal addi-
tional challenges.

Third, we observed that larger models with few-
shot examples occasionally exhibit performance
degradation under constraints. As discussed in Sec-
tion 6, this aligns with theoretical work by Ye et al.
(2025) showing that constrained decoding intro-
duces bias into output distributions. This suggests
that the benefits of GCD may be model-dependent.

Finally, our approach uses statically defined
grammars that remain fixed throughout execution.
Adaptive grammars that evolve based on solver
feedback or parsing errors could potentially im-
prove performance. Additionally, incorporating
semantic information from partial parses to opti-
mize grammar rules based on task performance
could address limitations in capturing complex log-
ical relationships (Loula et al., 2025; Albinhassan
et al., 2025).
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A Prompts

When designing our prompts, we follow the imple-
mentation of (Pan et al., 2023), adapting it to our
use-cases. We ask the model to generate its output
in JSON format, to facilitate parsing its answers to
interact with the symbolic solver by making sym-
bolic rules and questions easy to identify.

When we provide examples in the prompt, we
do so in JSON format, to guide the generation in
our desired format [Listings 2, 3, 4, 5].

A.1 First-order-logic prompts

### TASK DESCRIPTION ###

The task is to convert a natural
language reasoning problem into
first-order logic.

First, identify the predicates and

constants required to build the

first order logic formulas.
use them to build the rules and
the conclusion.

Do not attempt to prove or disprove the
conclusion, limit yourself to
converting.

Then,

You reply strictly in JSON format, with

the following schema:

nnn

{

"fol_preds”: [list of required FOL
Predicates],

"fol_consts”: [list of required FOL
Constants],

"fol_rules”: [list of generated FOL
Rules],

"fol_conc": [generated FOL Conclusion]

nnn

### NATURAL LANGUAGE PROBLEM ###

Now let's convert this problem to first-
order logic:

NL premises:

nnn

[[nl_problem]]

nnn

NL conclusion:

nnn

[[nl_conclusion]]

nnn

### TASK DESCRIPTION ###

The task is to convert a natural
language reasoning problem into
first-order logic.

First, identify the predicates and

constants required to build the

first order logic formulas.
use them to build the rules and
the conclusion.

Do not attempt to prove or disprove the
conclusion, limit yourself to
converting.

Then,

You reply strictly in JSON format, with

the following schema:

nann

{

"fol_preds”: [list of required FOL
Predicates],

"fol_consts”: [list of required FOL
Constants],

"fol_rules”: [list of generated FOL
Rules],

"fol_conc”: [generated FOL Conclusion]

### EXAMPLES ###

Here's an example of how to perform the
conversion:

[[examplel]]

###

Here's another example:
[[example2]]

##t#

### NATURAL LANGUAGE PROBLEM ###

Now let's convert this problem to first-
order logic:

NL premises:

nonn

[[nl_problem]]

nnn

NL conclusion:

nnn

[[nl_conclusion]]

nnn

Listing 2: Zero-shot prompt template for generating
FOL problems

Listing 3: Few-shot prompt template for generating
FOL problems
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A.2 Arithmetic prompts

### TASK DESCRIPTION ###

The task is to convert a natural
language reasoning problem into
standard infix notation.

First, identify all the relevant

variables and their values or

expressions.
write each variable assignment in
standard infix notation.

Finally, formulate the equation to solve

using these variables, also in
standard infix notation.

Do not attempt to solve the problem,
limit yourself to converting

Then,

You reply strictly in JSON format, with

the following schema:

nnn

M

"data": [list of relevant variable
assignment],

"question”: [equation to solvel]

\}

nnn

### NATURAL LANGUAGE PROBLEM ###

Now let's convert this problem to
standard infix notation.

nnnn

[[nl_problem]]

nnn

Listing 4: Zero-shot prompt template for generating
GSM problems

### TASK DESCRIPTION ###

The task is to convert a natural
language reasoning problem into
standard infix notation.

First, identify all the relevant

variables and their values or

expressions.
write each variable assignment in
standard infix notation.

Finally, formulate the equation to solve

using these variables, also in
standard infix notation.

Do not attempt to solve the problem,
limit yourself to converting

Then,

You reply strictly in JSON format, with

the following schema:

nnn

\{

"data": [list of relevant variable
assignment],

"question”: [equation to solve]

\}

nnn

### EXAMPLES ###

Here's an example of how to perform the
conversion:

[[examplel]]

###

Here's another example:
[[example2]]

###

### NATURAL LANGUAGE PROBLEM ###

Now let's convert this problem to
standard infix notation.

nnnn

[[nl_problem]]

nonn
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B Grammars

We write our grammars in the GBNF (Graydon’s
BNF) format, a variation of the Backus-Naur Form
specifically designed for use with language models
(GBNF Guide).

Due to limitations in the llama.cpp library (Re-
cursive Grammar Issue), we modified our approach
by unrolling the grammars to handle formulas
nested up to arbitrary depth [Listings 6 and 7].

#### Wrap data and question in a valid
JSON ####
root ::= "{" ws data ws quest ws "}"

ws ::= | "\n"

non |

[ \tl{e,53

data ::= "\"data\":" ws "[" ws datalist
WS II] , n
datalist ::=

non

,"wWs

n \ nn
n \ nn

ASSIGNMENT
ASSIGNMENT

AT (s
TATTY %

n

quest ::= ws "\""

EXPRESSION

"\"question\":
N

#### Mathematical Expressions ####

ASSIGNMENT ::= variable " = " EXPRESSION
EXPRESSION ::=
TAIL ::=

TERM TAIL{0,5}
OPERATOR TERM

# Terms can be numbers, variables, or
parenthesized expressions

TERM ::= number | variable | "("
EXPRESSION ")"

# Operators

OPERATOR ::= " + " w o_ m ey

# Basic elements

number ::= [0-9]+ ("." [0-9]+)?

variable ::= [a-z_][a-z0-9_71*

Listing 6: Grammar for generating valid SIN problems

#### Wrap predicates, constants, rules
and conclusion in a valid JSON ####

root ::= "{" ws preds ws consts ws rules
ws conc ws "}"

WS = | noon I n\nn [ \t]{@,S}
preds ::= "\"fol_preds\":" ws "[" ws
predslist ws "], "
predslist ::= "\"" ATOMIC "\"" (ws ","
ws "\"" ATOMIC "\"")«
consts ::= "\"fol_consts\":” ws "[" ws
constlist ws "1, "
constlist ::= "\"" constant "\"" (ws ","
ws n\un constant n\nu)*
rules ::= "\"fol_rules\":" ws "[" ws
rulelist ws "], "
rulelist ::= "\"" FORMULA "\"" (ws ","
ws "\"" FORMULA "\"")x
conc ::= "\"fol_conc\”":" ws "\"" FORMULA
ny

#### Generate FOL Formulas ####
FORMULA ::= BASIC TAIL{0,5}
TAIL ::= BINOP BASIC

# Basic formula without recursion
BASIC ::= "="? ATOMIC | QUANTIFIED
II? II(II FORMULA IV)II

n
| -

# Quantified formulas

QUANTIFIED ::= (quantifier variable " ")
{1,4} "(" FORMULA ")"

quantifier ::= "v" | "3"

variable ::= [a-z]

# Binary operators

BINOP ::2 " @ " | "V " | "A" | "—"
| n H n

# Atomic formulas

ATOMIC ::= predicate "(" terms ")"

# Terms in predicates

terms ::= term | term ", " terms

# Individual terms

term ::= constant | variable

# Basic elements
predicate ::= [A-Z][a-zA-Z0-9]1+
constant ::= [a-zA-Z0-9]+

Listing 7: Grammar for generating valid FOL problems
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C Detailed results

Tables 3-6 provide performance metrics (Accu-
racy and Executable Rate) for all evaluated models
across both datasets (FOLIO and GSM-symbolic)
under different prompting conditions (0-shot, 2-
shot, and 5-shot) with both unconstrained and
grammar-constrained decoding. All results are pre-
sented as mean + standard deviation.
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FOLIO
Oshots 2shots Sshots
Model Unc. Con. Unc. Con. Unc. Con.
gemma2-2b | 0.02F00T 0217004 | 0071001 0,1970-09 | 0,0610-03  ,2470-02
gemma2-9b | 0.23%0-01  .51%004 [ 0461006 ,51%0-07 | 0,50+0-01 51001
gemma2-27b | 0.40T0-01  0,50%0-01 | 0.49%0-03 561002 | 0,51+0-04 (554003
llama3.2-1b | 0.00=0-00 0.19%001 | 0.00F000 ,15+0-07 | 0.01F0-0T  .20+001
llama3.2-3b | 0.00%000 (.27%0-04 | 0 0g8+0.01 (,23+0-01 | 0 124002 (,25+0.02
llama3.1-8b | 0.05%000 (.28+0-01 | 0.19+0:05 ,33+0-10 | 0 27+0.05 ¢ 36+0-09
ministral-8b | 0.05F0-00 ,29+0.04 | (123004 ¢ 27001 |  15+0.04 ¢ 28+0.01
mistral-22b 0.22%004 0 41+001 | 0.41£006 . 45+0.01 | (40004 (. 47+0.02
qwen2.5-0.5b | 0.00T900 (,1470-03 | 0,02%0-00 ¢,20+0-03 [ 0.05+0-0T  ¢,22+0:01
qwen2.5-1.5b | 0.00%900 .20%+0-00 | 05001 22+0-01 [ 9 g+0-01  ¢,23+0-00
qwen2.5-3b | 0.01%0:00  29+001 [ 0 16004 ,22%0.02 | (. 19+0.02 284004
qwen2.5-7b | 0.21F901 331000 | 371001 ¢ 32+0.04 [ ,39+0.01 () 35+0.01
qwen2.5-14b | 0.18%0-01 294004 | ¢, 33+0.04 (9 31£0.04 | 361002 (264000

Table 3: Accuracy of LLMs as logical parsers across different model sizes and prompting strategies (0-shot, 2-shot,
5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on the FOLIO datasets. As
highlighted in Section 4.3, Accuracy < Executable Rate in Table 5. We may achieve zero Accuracy if all the
symbolic representations were invalid.

GSM-symbolic
Oshots 2shots Sshots
Model Unec. Con. Unec. Con. Unec. Con.
gemma2-2b | 0.00F900 ,15F0-00 | 0 18001 ¢20+0.00 [ 0 18+0.01 ¢,21+0.01
gemma2-9b | 0.17F0:00  25%0-01 | ,44%0-00 (39000 | 0 g41+0.05 ( 37+0.03
gemma2-27b | 0.31%0-01  .30+0:00 [ 54000 () 49+0.00 | 514002 ( 49+0.00
llama3.2-1b | 0.00F900 0,03+0-01 | 0,01=0-00 (. 02+0-00 [ 0.01+0-00 ,03+0:01
llama3.2-3b | 0.00%0-00 ,12+00% [ 0. 13+0.00 ,18+0-00 | . 16+0-04 ,19+001
llama3.1-8b | 0.00%900 27+0.01 | 30002 ,37+0.02 [ 9 28+0.01  ,35+0.05
ministral-8b | 0.01F001 0, 12F001 | 026F00T  0,27+0.01 | 0 26+0-01  ,28+0.01
mistral-22b 0.0010:00  ,13+001 | ,42+0-01 ( 38+0.01 [ 42+0.00 ( 39+0.01
qwen2.5-0.5b | 0.00900 0,0110-00 | 0.01F0-00 . 01+0-0T [ 0.02%0-0T  (,02+001
qwen2.5-1.5b | 0.00£0-00  0,05%0-00 | 0,06%0-00 0,08%0-01 | 0,07+0-01  (,09+0-01
qwen2.5-3b | 0.00%900  ,09%0-00 | 0 18+0-11 ,33+0.01 [ o 17+0-11  (,31+0.01
qwen2.5-7b | 0.00%900 20001 | 044%0-06 . 45+0.03 [ 0 46+0-08 @ 47+0.01
qwen2.5-14b | 0.29+001  ,37+0.01 | 0 57+0.01 (0 38+0.03 [ ¢ 56+0-02 () 36+0.01

Table 4: Accuracy of LLMs as logical parsers across different model sizes and prompting strategies (0-shot, 2-shot,
5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on the GSM-symbolic dataset.
As highlighted in Section 4.3, Accuracy < Executable Rate in Table 6. We may achieve zero Accuracy if all the
symbolic representations were invalid.
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FOLIO

Oshots 2shots Sshots
Model Unec. Con. Unc. Con. Unec. Con.
gemma2-2b | 0.07%0-05  0.60+0-1* | 0.19F008  ,52%0-28 | 0.16+007 ¢,65%0-00
gemma2-9b | 0.410:03  0,90%0-00 | 0,640-09 (,84+0-09 | (73+0.00 () ,g3+0.00
gemma2-27b | 0.67t0-00 .94+00L [ 74000 ,92+0.01 | (79+0.01  ( g9+0.01
llama3.2-1b | 0.00%0-00 0.57%002 [ 0.00F0-00 ,43+0-07 | 0,01F090 ¢,62%0-00
llama3.2-3b | 0.00%900 ,72+0-01 | 0 19%0-03 ¢ 59+0.04 [ (25+0.01 @ g4+0-01
llama3.1-8b | 0.09%0-02 (,78+0.03 | 38+0.05 ¢77+0.06 | (43+0.04 ¢ 78+0.03
ministral-8b | 0.09%0-05 (.83+0:00 [ 0.32F0.01 ,76+0-01 | .37+004  ¢77%0.02
mistral-22b 0.4010-06  (,87+0-03 | 9 72%0.05 ¢ 86+0-01 | 0.69+0-00 (,86+0-04
qwen2.5-0.5b | 0.00F900 0.4010-06 | 0,07+0-00 ¢,58+0.05 [ 0 13+0.02  (,65+0-01
qwen2.5-1.5b | 0.01%0-01  0.56+000 [ 0.14%002  (,58+0.06 | ( 18+0.01 ¢ 58+0.03
qwen2.5-3b | 0.040-01  0,75%0.01 | 029+0.04 54001 | (9 37+0.04 ¢ 65+0.06
qwen2.5-7b | 0.37%0:04 721001 [ 0 60+002  0,67%0-07 | 0.64%0-01 ,73+0.01
qwen2.5-14b | 0.301908 711003 | 0,62+0-04 72%0.08 [ 9,65+0-00 ( 62+0.02

Table 5: Executable Rate of LLMs as logical parsers across different model sizes and prompting strategies (0-shot,
2-shot, 5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on the FOLIO datasets.

GSM-symbolic
Oshots 2shots Sshots
Model Unc. Con. Unc. Con. Unc. Con.
gemma2-2b | 0.00%0-09 1,00F00T [ 0.78F0-02  1,00+0-01 | 0.76+0-00 1,00%0-00
gemma2-9b | 0.43%0902  1,00+0-01 | 0.93+0-01  ,99+0.00 [ 9 g3+0.01  (,99=+0.00
gemma2-27b | 0.64%0-01  (,99+0:00 [ 0 9a+0.00 7 ,@+0-00 | .96+0-01 1 00+0-00
llama3.2-1b | 0.000-00 (.98+0:00 [ 0 27+001 —,98+0-0I 1 (24+0.03  ( 9g8+0.01
llama3.2-3b | 0.00%900 ,99+0.01 | 70002 1,00%0-01 | 076%0-07 1,00+0-01
llama3.1-8b | 0.00%0-00 ,99+0:00 [ 9 76+0.08 7 gg+0-01 | 0.76+0-08 1,00+001
ministral-8b | 0.02+0-00  (,99+0:00 [ 9 g3+0.00 7 9¢+0-00 | .83+0.0 1,00+001
mistral-22b | 0.00%000  0,99+0.00 | (0 93+0.00 7 0*0-01 | 9 93+0.01 7 @+0-00
qwen2.5-0.5b | 0.00F900 ,94+0-01 | ( 58+0.03 ¢ 9g+0.01 [ 53+0.10 () 9g+0.01
qwen2.5-1.5b | 0.01%0:01  0,97+0-01 | ,6510-02  (,99+0.00 | ( 69+0.04  (,97+0.03
qwen2.5-3b | 0.00%900  ,97+0.00 | (45030  9g+0.01 [ 0 46+0-28  (,98+0-00
qwen2.5-7b | 0.01%0-01  0.96+001 [ 0.83+0-09 1,00+0-00 | .87+0-15 1,00%0-00
qwen2.5-14b | 0.59+001  1,00+0-01 | 0.95+0-00 ,99+0.00 [ ( 96+0-01  (,99+0.01

Table 6:

datasets.

Executable Rate of LLMs as logical parsers across different model sizes and prompting strategies (0-shot,
2-shot, 5-shot) with unconstrained (Unc.) versus grammar-constrained (Con.) decoding on the GSM-symbolic
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