
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 456–468
July 28-30, 2025 ©2025 Association for Computational Linguistics

Overlapping Context with Variable-Length Stride
Increases Diversity when Training Large Language Model for Code

Geonmo Gu∗†, Jaeho Kwak∗†, Haksoo Moon§†, Hyun Seung Shim†

Yu Jin Kim‡, Byoungjip Kim§‡, Moontae Lee‡, Hyejeong Jeon¶†

†LG Electronics ‡LG AI Research

{geonmo.gu, jaeho95.kwak, hs.shim, hyejeong.jeon}@lge.com

haksoo.moon@gmail.com, {yujin.kim, moontae.lee}@lgresearch.ai, byoungjip.kim@gmail.com

Abstract

The pretraining of code LLMs typically begins
with general data and progresses to domain-
specific data through sequential stages. In the
latter stages, a challenging issue is that the data
of a target domain can be limited in size, and
conventional approach of increasing the num-
ber of epochs does not lead to a performance
gain. In this paper, we propose a novel pack-
ing method, which is extracting overlapping
contexts from the training data using variable-
length stride. Our method can mitigate the data-
scarcity issue by providing more diverse and
abundant examples of next token prediction
than non-overlapping contexts. While the train-
ing time of our approach is increased propor-
tionally to the amount of augmented examples,
we present space-efficient implementations to
store overlapping contexts. Extensive experi-
ments with real datasets show that our approach
outperforms the conventional approach of con-
trolling the number of epochs in terms of the
pass@k rate.

1 Introduction

Large language models for code (code LLMs) are
gaining more and more attention nowadays due to
their wide applicability. After Codex (Chen et al.,
2021) successfully demonstrated that LLMs are
capable of generating Python codes, extensive re-
search has been conducted to broaden their capa-
bilities such as handling multiple programming
languages (Nijkamp et al., 2023), understanding
natural language instructions (Luo et al., 2024), and
dealing with the infilling task (Fried et al., 2023).
Code LLMs can be applied to repairing faulty code,
explaining the functionality of existing code, and
generating code given natural language instructions
(Muennighoff et al., 2024), which together lead

∗Equal contribution
§Work was done while Haksoo and Byoungjip were affili-

ated with LG Electronics and LG AI Research, respectively
¶Corresponding author

Figure 1: Tokens with the same color represent that they
are from an identical file. (A) Non-overlapping contexts
with fixed-length stride. (B) Overlapping contexts with
fixed-length stride of 3. (C) Overlapping contexts with
fixed-length stride of 1. Even with stride of 1, examples
of next token prediction in two adjacent contexts can be
different (see Example 3.1). (D) Overlapping contexts
with variable-length stride, where the variable-length
is determined by the end token of a file and the default
value.

to increased productivity in software development
(Solohubov et al., 2024; Peng et al., 2023b).

Code LLMs are continually pretrained through
multiple stages from general datasets to domain-
specific datasets (Nijkamp et al., 2023; Li et al.,
2023; Rozière et al., 2023). In the early stages, they
are trained on huge datasets (over trillion tokens)
that cover diverse domains, such as code, natural
language, and math. In the latter stages, they are
trained on relatively small datasets from much nar-
rower target domains, such as Python code, code
review, and in-house code of a commercial com-
pany. Especially, for commercial companies that
utilize open code LLMs, continually pretraining
the model on their internal (private) codes is cru-
cial for the prediction accuracy, since open code
LLMs are pretrained on public source codes only.

456

A challenging issue in the latter stages of pre-
training is that the data of a target domain is often
limited and difficult to collect. For instance, it is not
possible to collect more data from public sources
if we aim to adapt the model to in-house data of a
commercial company. A conventional way to train
a model on such scarce data is increasing the num-
ber of epochs with the data at hand. However, it
is empirically shown that training LLMs for more
than 4 epochs with repeated data gives diminishing
returns (Muennighoff et al., 2023). Thus, we need
a new way to increase the prediction accuracy of
code LLMs when the pretraining data is scarce.

In this paper, to address the data-scarcity issue
when continually pretraining code LLMs, we pro-
pose to extract overlapping contexts with variable-
length stride from the training data, where overlap-
ping contexts are token sequences that can overlap.
Figure 1 shows examples of non-overlapping con-
texts, overlapping contexts, fixed-length stride, and
variable-length stride. Overlapping contexts pro-
vide more diverse and abundant examples of next
token prediction, while the variable-length stride
filters out less effective overlapping contexts. Com-
bining overlapping contexts with variable-length
stride leads to a higher prediction accuracy when
continually pretraining code LLMs. Our contribu-
tions are summarized as follows.

• We propose a novel packing method, which is
the combination of overlapping contexts and
variable-length stride. We present three differ-
ent implementations for overlapping contexts
in terms of space complexity.

• We conduct extensive experiments to show the
effectiveness of our method in the code gen-
eration task. The experiments are two fold:
(1) training billion-scale code LLMs on in-
house dataset for deployment and (2) training
million-scale code LLMs on public dataset
for reproducibility. The experiments include
different models in terms of size and structure,
training datasets, benchmarks, and training
settings, which together show the generaliz-
ability of our method.

• Experimental results show that utilizing over-
lapping contexts with variable-length stride
outperforms the conventional approach of
controlling the number of epochs with non-
overlapping contexts in terms of the pass@k
rate.

Figure 2: Examples of next token prediction in a context.
The answer tokens are hidden by the attention mask
during training.

2 Preliminaries

2.1 Notation
A token is a positive integer that represents one
or more characters. A tokenizer maps a token to
(possibly one) characters, and the mapping in the to-
kenizer is called the vocabulary. A token sequence
is a sequence of tokens drawn from the domain of
a vocabulary. For a token sequence T , T [i : j] rep-
resents the continuous subsequence of T starting
from the i-th token and ending at the j-th token.
For a token sequence T and a positive integer l, a
context C l of T is a continuous subsequence of T
whose length is l. For the simplicity of notation,
we will omit the superscript l if the length is clear
from context.

2.2 Next Token Prediction
Next token prediction is the task of predicting
the next token that can appear after a given to-
ken sequence. An example of next token predic-
tion is denoted by (t1, t2, . . . , tl) → tl+1, where
(t1, t2, . . . , tl) is the input token sequence and tl+1

is the answer.
LLMs are trained for the next token prediction

task by minimizing the cross entropy loss of the
predicted probability of next token with respect to
the ground truth next token (Radford et al., 2018).
For what follows, let T be the token sequence cor-
responding to an entire code corpus, on which we
want the model to train. The probability of a con-
text C l in T can be expressed as the product of l−1
conditional probabilities as follows:

P (C) =
l∏

i=2

P (ti|t1, t2, . . . , ti−1), (1)

where P (ti|t1, t2, ..., ti−1) represents the probabil-

457

ity of ti (i.e., the next token) given the subsequence
(t1, t2, . . . , ti−1) of C l.

Notably, decoder-only transformers can process
the l − 1 examples of the next token prediction
in parallel for a context C composed of l tokens
(Vaswani et al., 2017). For example, consider a con-
text C = (t1, t2, t3, t4, t5) of length five in Figure
2. There are four examples of next token predic-
tion; (t1) → t2, (t1, t2) → t3, (t1, t2, t3) → t4,
and (t1, t2, t3, t4) → t5. In the remainder of the
paper, all examples of next token prediction in a
context are considered in the same manner as in
Figure 2.

2.3 Related Work

In this paper, we focus on continual pretraining
code LLMs in data-scarce scenario. Extensive
research has been conducted on pretraining code
LLMs with an unlabeled code corpus for next to-
ken prediction (see Code LLMs and Continual
Pretraining Code LLMs in Appendix A), and
many effective data augmentation techniques for
natural language processing have been proposed in
recent years (see Data Augmentation for NLP in
Appendix A). However, to the best of our knowl-
edge, this paper is the first to study pretraining code
LLMs in data-scarce scenario.

3 Overlapping Context

3.1 Packing

In pretraining, the training dataset is composed of
contexts that do not contain padding for efficiency.
A general approach of constructing such contexts
from multiple code files consists of three phases: In
the first phase, we convert each file into a sequence
of tokens using a model-specific tokenizer; In the
second phase, we concatenate all token sequences
to form one long token sequence. During the sec-
ond phase, special tokens indicating the beginning
or the end of the file can be added between token
sequences; In the third phase, we cut the long to-
ken sequence into contexts of equal length. This
process is called packing.

3.2 Non-Overlapping Context with
Fixed-Length Stride

Suppose that we are extracting contexts of length
l from token sequence T = (t1, t2, · · · , tn) in the
third phase. A conventional approach is extracting
non-overlapping contexts by adding stride s =
l to the start position of the previously extracted

context. That is, the first context is T [1 : l], the
second context is T [l + 1 : 2l], the third context is
T [2l + 1 : 3l], and so on. The last chunk of T is
dropped if its length is less than l. With stride l, the
number of extracted contexts is ⌊nl ⌋.

3.3 Overlapping Context with Fixed-Length
Stride

A simple way to extract more contexts in the third
phase of packing is to set the stride s to be a smaller
number than the context length. Overlapping con-
texts are contexts that are extracted with stride s
such that 1 ≤ s < l, where l is the context length.
Note that by setting s < l, two adjacent contexts
overlap l − s positions in T .

Conjecture 3.1. Overlapping contexts with a mod-
erate stride provide more diversity when training
large language model for code.

Here is an intuitive example of Conjecture 3.1
in the domain of coding. Suppose that a token
sequence T of length 8K contains eight func-
tions f1, f2, . . . , f8, and that the length of each
function is 1K. T can be partitioned into four
non-overlapping contexts, each with a length of
2K, capturing the four relationships between pairs
(f1, f2), (f3, f4), (f5, f6), (f7, f8). On the other
hand, if we extract overlapping contexts from T
with a stride of 1K, they can capture all four re-
lationships above plus additional relationships be-
tween pairs (f2, f3), (f4, f5), (f6, f7).

Lemma 3.1. Given stride s, context length l, and
a token sequence T of length n such that 1 ≤ s <
l ≤ n, we can extract ⌈n−l+1

s ⌉ overlapping con-
texts such that any two contexts share at most l− s
positions in T .

Proof. See Appendix B.

Lemma 3.1 means that we can extract about l
times more contexts if we set s = 1 compared to
the number of non-overlapping contexts with s = l.

Although two overlapping contexts share posi-
tions in T , their examples of next token prediction
can be different.

Example 3.1. Consider two overlapping contexts
C5 = (t1, t2, t3, t4, t5) and C6 = (t2, t3, t4, t5, t6)
with four tokens overlap in Figure 1. Examples
of next token prediction in C5 are (t1) → t2,
(t1, t2) → t3, (t1, t2, t3) → t4, and (t1, t2, t3, t4)
→ t5. Examples in C6 are (t2) → t3, (t2, t3) → t4,
(t2, t3, t4) → t5, and (t2, t3, t4, t5) → t6. If

458

Stride Unique Total %
2048 1,263,146,560 1,265,784,967 99.79
1024 2,524,323,164 2,530,849,390 99.74
512 5,044,421,251 5,060,978,236 99.67
256 10,078,484,177 10,121,235,928 99.57

Table 1: The number of unique examples of next to-
ken prediction in the in-house dataset for varying fixed-
length stride. The context length is 2048. Overlapping
contexts (stride < 2048) have almost the same pro-
portion of unique examples as that in non-overlapping
contexts (stride = 2048).

t1 ̸= t2, C5 and C6 do not share examples of next
token prediction.

Lemma 3.2. Consider the set of overlapping con-
texts in Lemma 3.1 with stride s and context length
l, extracted from a token sequence T of length n.
Assume that T [i] ̸= T [i+ s] for any 1 ≤ i ≤ n− s.
Then no two adjacent overlapping contexts share
examples of next token prediction.
Proof. See Appendix C.

Lemma 3.2 means that even if two adjacent over-
lapping contexts share tokens, they do not share the
identical examples of next token prediction if the
first tokens of them are different. Table 1 shows
that the proportion of unique examples is over 99%
even if we set stride to 256 for context length of
2048 (overlapping 1792 tokens) in real dataset.

Theorem 3.3. Given stride s, context length l, and
a token sequence T of length n such that 1 ≤ s <
l ≤ n, assume that T [i] ̸= T [i + s] for any 1 ≤
i ≤ n − s. We can extract ⌈n−l+1

s ⌉ overlapping
contexts such that no two adjacent contexts share
examples of next token prediction.
Proof. The proof is direct from Lemmas 3.1 and
3.2.

Implementation Details. There are multiple
implementation choices for storing overlapping-
contexts. We describe three methods and compare
their space usages.

• The first method is extracting overlapping con-
texts by sliding window and simply storing all
of them in memory. This method requires
memory proportional to the extracted con-
texts.

• The second method is extracting overlapping
contexts by sliding window and storing only
the start indices of them in memory. The ac-
tual contexts corresponding to the start indices
are extracted during training. Since only the

start indices are stored and they are not dupli-
cated, this method requires additional memory
at most twice as large as the original dataset.

• The third method is randomly sampling the
start indices of the contexts during training.
The random sampling method does not require
additional memory, but it does not guarantee
that the start indices are unique. Also, this
method cannot use the variable-length stride,
which will be described in the next subsection.

3.4 Overlapping Context with
Variable-Length Stride

An extracted overlapping context can be less effec-
tive when the context contains tokens from multiple
unrelated files (e.g., C6 in Figure 1). To avoid ex-
tracting less effective contexts, we propose a way
to set variable-length stride.

Suppose that we are extracting overlapping con-
texts by sliding window. Given a token sequence T ,
context length l, and the default stride s, let the cur-
rent window is T [i : i+ l−1]. The variable-length
stride s′ is defined as follows:

• If the current window contains at least one end
token of a file, we set s′ = j − i+ 1, where j
is the rightmost end-token’s position.

• If the current window does not contain the end
token of a file, we set s′ = s.

This approach sets a long stride when there are
multiple files in the current window, and sets a
short stride when the current window is a part of
a long file. Hence, we can filter out less effective
overlapping contexts utilizing the variable-length
stride.

4 Experimental Results

In this section we present experimental results to
show the effectiveness of overlapping context in
continual pretraining code LLMs in data-scarce
scenario. The experiments are twofold: (1) training
billion-scale LLMs on in-house dataset, which are
deployed in our company, and (2) training small
LLMs on public dataset for reproducibility.
Training Data. We collected an in-house code
dataset, which contains hundreds of private repos-
itories. After applying the filtering techniques in-
troduced in previous works (Chen et al., 2021; Ni-
jkamp et al., 2023; Kocetkov et al., 2023; Li et al.,
2023), we obtained 3.67GiB (1.49 billion tokens)
C/C++ codes.

459

For the public dataset, we use Swift codes of
TheStack (Kocetkov et al., 2023). We first applied
deduplication and filtering, and then extracted 10%
of the remaining files. The resulting dataset con-
tains 598MiB (180 million tokens) Swift codes.
Evaluation Data. To evaluate a model with re-
spect to the in-house dataset, we created a bench-
mark dataset similar to HumanEval (Chen et al.,
2021). HumanEval consists of 164 hand-written
Python problems, each of which is a task of gener-
ating a function’s body given the function’s header
and comments about the function. The generated
code is considered to solve the problem if it passes
all predefined unit tests. We extracted 100 func-
tions from the in-house dataset and created tasks of
generating a function’s body given the function’s
header, together with corresponding unit tests. The
resulting benchmark dataset is called U100.

To evaluate a model trained on the public dataset,
we use the MultiPL-E (Cassano et al., 2023)
benchmark, which is a multilingual version of Hu-
manEval. Specifically, we use the Swift version of
HumanEval.
Metric. We report the pass@k rate (Chen et al.,
2021; Kulal et al., 2019), which represents the rate
of solved problems when a model can speculate the
answer k times for each problem.
Baseline. As mentioned in Section 2.3, our paper
focuses on continual pretraining code LLMs in
data-scarce scenario. In this setup, increasing the
number of epochs has been the only way to achieve
the performance gain so far. Therefore, our primary
baseline is increasing the number of epochs with
non-overlapping contexts.
Models. For the in-house dataset, we continue
pretraining on EXACODE-8.8B-BASE, which is a
code version of EXAONE-2.0 (Research, 2024).
EXACODE-8.8B-BASE is a pretrained language
model with 8.8 billion parameters trained on TheP-
ile (Gao et al., 2020), TheStack (Kocetkov et al.,
2023), and extra natural language dataset (459 bil-
lion training tokens in total). We compare the fol-
lowing models.

• EXACODE-8.8B-OC: it is initialized with the
weights of EXACODE-8.8B-BASE, and continu-
ally pretrained full-parameter on the in-house
code dataset. It uses overlapping contexts with
a fixed-length stride.

• EXACODE-8.8B-NOC: it has the same training
setting as that of EXACODE-8.8B-OC except
that it uses non-overlapping contexts.

For the public dataset, we continue pretraining
on CodeGen-350M-Multi (Nijkamp et al., 2023).
We chose this model because its size is suitable
for conducting ablation studies. Also, for efficient
training, we use LoRA (Hu et al., 2022) in such a
way that the percentage of the trainable parameters
becomes 8%.

The detailed hyperparameter settings will be pre-
sented in Appendix D. We also apply our method to
CodeLlama (Rozière et al., 2023) in Appendices E
and F, where the effect of overlapping contexts on
CodeLlama is similar to that on EXACODE. A num-
ber of additional experiments are also performed:
effect of varying fixed-length stride and batch size
(Appendix F), applying the mix-review strategy
to alleviate the forgetting problem (Appendix G),
counting the number of unique examples with dif-
ferent context length (Appendix H), and counting
the number of unique examples with the random
sample method (Appendix I).

4.1 Unique Examples in the In-House Dataset
Table 1 shows the number of unique examples of
next token prediction in the in-house dataset for
varying values of fixed-length stride. Here, the
context length is 2048, and thus stride = 2048
means that there is no overlap between any two
contexts. Although there is no overlap, the number
of unique examples is slightly smaller (99.79%)
than the total number of examples because short
examples tend to have duplicates throughout the
dataset.

Even when two adjacent contexts overlap, the
proportion of unique examples remains high
(99.57%) until stride = 256. That is, we can have
almost 8 times more unique examples than non-
overlapping contexts.

4.2 Evaluation on U100
To see the effect of overlapping contexts in terms
of prediction accuracy on the in-house dataset, we
compare the two approaches: (1) training 2 epochs
utilizing the overlapping contexts with fixed-length
stride of 256, and (2) training 8 epochs utilizing the
non-overlapping contexts. We report the pass@1
rate, where the beam search with 2 beams is used
for the decoding strategy.

Figure 3 shows the pass@1 rate of the two
approaches. Utilizing the overlapping contexts,
EXACODE-8.8B-OC outperforms EXACODE-8.8B-
NOC in terms of pass@1. Specifically, the best
pass@1 rate of EXACODE-8.8B-OC is 29% and the

460

Context Length Stride Stride Type Learning Rate Batch Size Epoch Training Step Pass@1
1024 128 Variable-Length 2e-4 512 2 3302 7.9
1024 128 Fixed-Length 2e-4 512 2 5506 6.5
1024 1024 Fixed-Length 2e-4 512 10 3440 6.2
1024 1024 Fixed-Length 2e-4 512 20 6880 6.2
1024 1024 Fixed-Length 1e-3 512 2 688 5.0

Table 2: The pass@1 rate of MultiPL-E Swift for the CodeGen-350M models trained on the public dataset.

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
as

s@
1

Training Step

EXACODE-8.8B-OC
EXACODE-8.8B-NOC

Figure 3: Training billion-scale LLMs on the in-house
dataset. EXACODE-8.8B-OC (overlapping contexts) out-
performs EXACODE-8.8B-NOC (non-overlapping con-
texts) in terms of the pass@1 rate.

best one of EXACODE-8.8B-NOC is 21%. The im-
proved performance supports that overlapping con-
texts can increase diversity when training code
LLMs (Conjecture 3.1). The declining perfor-
mance of EXACODE-8.8B-NOC after the 3rd epoch
represents a sign of overfitting. In contrast, the
performance of EXACODE-8.8B-OC increases until
4736 steps (corresponding to 8 epochs of EXACODE-
8.8B-NOC) without signs of overfitting. This is be-
cause the overlapping contexts provide an enlarged
training datasets, in which duplicate examples are
less than 1%.

4.3 Evaluation on MultiPL-E Swift
For the reproducible work, we evaluate our tech-
niques on the public dataset (described in Training
Data). This experiment also shows the generaliz-
ability of our approach because we use different
models, datasets, benchmarks, and train settings.

Table 2 shows various versions of CodeGen-
350M trained on the Swift codes of TheStack. For
each version, we saved checkpoint for every 10%
training step, and report the average pass@1 rate
of top-3 checkpoints.

The version that utilizes overlapping contexts
with variable-length stride outperforms all non-
overlapping versions in terms of the pass@1 rate.
The performance of the version that utilizes only
the overlapping contexts is marginally better than

the non-overlapping versions, which implies that
there are less effective contexts in the overlapping
contexts if we do not utilize the variable-length
stride.

To see if a higher learning rate or a large num-
ber of epochs can mitigate the data-scarcity issue,
we compare the non-overlapping version with 20
epochs and the version with learning rate of 1e-3.
Nevertheless, the performances of these versions
are similar or worse than that with less number of
epochs and smaller learning rate.

5 Discussion

In this paper we defined the variable-length stride
by the end token of a file. However, there can be
different definitions of the variable-length stride.
For instance, one can apply dependency parsing
(Guo et al., 2024) to group and to order files in a
repository, and define the variable-length stride by
the end token of a code repository. One can also
define the variable-length stride by the end token
of a paragraph in natural language dataset.

Regarding natural language dataset, although
overlapping contexts are shown to be effective for
code datasets, it is not guaranteed that overlapping
contexts will be equally effective for natural lan-
guage datasets because their characteristics are dif-
ferent. For example, code corpora are more repeti-
tive and predictable (Casalnuovo et al., 2019), and
they have longer context than natural language cor-
pora, which can make overlapping contexts more
beneficial for code than for natural language.

6 Conclusion

In this paper we have introduced a new pack-
ing method utilizing overlapping contexts with
variable-length stride. Our method is useful for
continual pretraining code LLMs when the amount
of training dataset is insufficient. Extensive ex-
periments on the in-house dataset and the public
dataset have demonstrated the effectiveness of our
method in terms of the pass@k rate. Applying
overlapping contexts to natural language dataset is
an interesting future work.

461

Limitations

As more contexts are extracted in overlapping con-
texts compared to non-overlapping contexts, the
overlapping context method increases training time
proportionally to the amount of additional contexts.

Ethics Statement

In the experiments, we use CodeGen (Nijkamp
et al., 2023) in Section 4 and CodeLlama (Rozière
et al., 2023) in Appendix E, which are open-source
models. Our use of CodeGen and CodeLlama is
consistent with their licenses and acceptable use
policies. We do not see any potential risks derived
from our work.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert, and
22 others. 2023. SantaCoder: Don’t reach for the
stars! arXiv preprint arXiv:2301.03988.

Nitay Calderon, Eyal Ben-David, Amir Feder, and Roi
Reichart. 2022. DoCoGen: Domain counterfactual
generation for low resource domain adaptation. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Casey Casalnuovo, Kenji Sagae, and Prem Devanbu.
2019. Studying the difference between natural and
programming language corpora. Empirical Software
Engineering, 24:1823–1868.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2023. MultiPL-E: A scalable
and polyglot approach to benchmarking neural code
generation. IEEE Transactions on Software Engi-
neering.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
In International Conference on Learning Representa-
tions.

Yanbing Chen, Ruilin Wang, Zihao Yang, Lavender Yao
Jiang, and Eric Karl Oermann. 2024. Refining
packing and shuffling strategies for enhanced perfor-
mance in generative language models. arXiv preprint
arXiv:2408.09621.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:
A generative model for code infilling and synthesis.
In International Conference on Learning Representa-
tions.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800GB dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Sreyan Ghosh, Chandra Kiran Evuru, Sonal Kumar,
S Ramaneswaran, S Sakshi, Utkarsh Tyagi, and Di-
nesh Manocha. 2023. DALE: Generative data aug-
mentation for low-resource legal nlp. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere,
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-
ter & faster large language models via multi-token
prediction. In Forty-first International Conference
on Machine Learning.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. DeepSeek-Coder: When the large
language model meets programming - The rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing
Liu, James Glass, and Fuchun Peng. 2021. Analyzing
the forgetting problem in pretrain-finetuning of open-
domain dialogue response models. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

462

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2023. The Stack: 3 TB of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy Liang. 2019.
SPoC: Search-based pseudocode to code. In Ad-
vances in Neural Information Processing Systems,
volume 32.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. CodeRL:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, and Jenny Chim,
et al. 2023. StarCoder: may the source be with you!
Transactions on Machine Learning Research.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, and 47 others.
2024. StarCoder 2 and The Stack v2: The next gen-
eration. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. WizardCoder:
Empowering code large language models with evol-
instruct. In International Conference on Learning
Representations.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of Learn-
ing and Motivation, volume 24, pages 109–165.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2024. OctoPack: Instruction tun-
ing code large language models. In International
Conference on Learning Representations.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models. In
Advances in Neural Information Processing Systems.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. CodeGen: An open large language
model for code with multi-turn program synthesis.
In International Conference on Learning Representa-
tions.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico
Shippole. 2023a. YaRN: Efficient context window
extension of large language models. In International
Conference on Learning Representations.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert
Demirer. 2023b. The impact of AI on developer
productivity: Evidence from GitHub Copilot. arXiv
preprint arXiv:2302.06590.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

LG AI Research. 2024. EXAONE 3.5: Series of large
language models for real-world use cases. arXiv
preprint arXiv:2412.04862.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2023. Code Llama: Open foundation mod-
els for code. arXiv preprint arXiv:2308.12950.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Advances in Neural Information
Processing Systems.

Illia Solohubov, Artur Moroz, Mariia Yu Tiahunova, Ha-
lyna H Kyrychek, and Stepan Skrupsky. 2024. Accel-
erating software development with AI: exploring the
impact of ChatGPT and GitHub Copilot. In CEUR
Workshop Proceedings (2024, in press), pages 76–86.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

463

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D.Q. Bui,
Junnan Li, and Steven C.H. Hoi. 2023. CodeT5+:
Open code large language models for code under-
standing and generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Chenxi Whitehouse, Monojit Choudhury, and Al-
ham Fikri Aji. 2023. LLM-powered data augmen-
tation for enhanced crosslingual performance. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-
son, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and
Shen Li. 2023. PyTorch FSDP: Experiences on scal-
ing fully sharded data parallel. Proceedings of the
VLDB Endowment, 16(12):3848–3860.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon
Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and
Pasquale Minervini. 2024. Analysing the impact
of sequence composition on language model pre-
training. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023a.
CodeGeeX: A pre-trained model for code genera-
tion with multilingual evaluations on HumanEval-X.
pages 5673–5684.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen.
2023b. A survey of large language models for code:
Evolution, benchmarking, and future trends. arXiv
preprint arXiv:2311.10372.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2023. PoSE: Ef-
ficient context window extension of LLMs via po-
sitional skip-wise training. In International Confer-
ence on Learning Representations.

A Extended Related Work

Code LLMs. Large language models for code
(Chen et al., 2021; Nijkamp et al., 2023; Zheng

et al., 2023a; Li et al., 2023; Wang et al., 2023;
Allal et al., 2023; Guo et al., 2024) are based
on transformer-decoder architecture that generates
next tokens autoregressively from given prompt to-
kens. Code LLMs are pretrained on large unlabeled
code corpus for the next token prediction objective.
Notably, Codex (Chen et al., 2021) is a decoder-
only model for Python code generation, which is
released with an evaluation set called HumanEval.
StarCoder (Li et al., 2023) and CodeLlama (Roz-
ière et al., 2023) are decoder-only models that are
trained on permissively licensed code datasets, al-
lowing companies to use them without concerns
about licensing issues.

Some models are based on encoder-decoder
transformer and are trained with different pretrain-
ing objectives. CodeT5+ (Wang et al., 2023) is an
encoder-decoder model that is trained with mixture
of pretraining objectives, including span denois-
ing, contrastive learning, text-code matching, and
next token prediction. CodeRL (Le et al., 2022) is
a framework of training code LLMs by reinforce-
ment learning that utilizes compilation results and
unit test results. Recently, a multi-token predic-
tion model architecture (Gloeckle et al., 2024) is
introduced, which offers faster inference than next-
token prediction architecture and also offers higher
accuracy on coding evaluation benchmarks as the
model size increases.

We refer the reader to (Zheng et al., 2023b; Jiang
et al., 2024) for comprehensive surveys of code
LLMs.

Continual Pretraining Code LLMs. Code LLMs
are pretrained through multiple stages (Nijkamp
et al., 2023; Rozière et al., 2023; Gururangan et al.,
2020). Initially, they are pretrained on a large-
scale general corpus. Then, they are continually
pretrained on a subset of the corpus seen in the pre-
vious stage or a specific target corpus (such as a pri-
vate in-house dataset) that has not been previously
seen. For instance, CodeLlama-Python (Rozière
et al., 2023) is first trained on 2 trillion tokens from
natural language, code, and math datasets (Touvron
et al., 2023). It is then trained on 500 billion to-
kens from code-heavy dataset that covers multiple
programming languages, and lastly, it is pretrained
on 100 billion tokens of a Python-heavy dataset,
followed by long context fine-tuning on 20 billion
tokens.

In the domain of code, the prompt can include
related code files and detailed instructions, and

464

the model can output an entire function or a class
definition (Guo et al., 2024; Lozhkov et al., 2024).
Therefore, code LLMs must handle a relatively
long context length. In general, code LLMs are first
pretrained on a large-scale corpus with contexts of
moderate length, and then they are fine-tuned for
long contexts (Zhu et al., 2023; Peng et al., 2023a;
Su et al., 2024; Chen et al., 2023).

Data Augmentation for NLP. Data scarcity is com-
mon in natural language processing (NLP) both for
pretraining and for fine-tuning. Muennighoff et
al. (Muennighoff et al., 2023) conducted a study on
scaling LLMs for NLP in data-constrained regimes.
They quantify the impact of multiple epochs in
LLM training and empirically validate that training
for more than 4 epochs with repeated data gives
diminishing returns (i.e., the loss does not decrease
as much as having unique data). To mitigate data
scarcity, they propose code augmentation for nat-
ural language tasks. They observed that filling up
to 50% of data with code shows no deterioration,
but beyond that, performance decreases quickly on
natural language tasks.

For downstream NLP tasks (e.g., summarization,
translation), models are typically trained on labeled
dataset. Collecting labeled datasets can be costly,
especially when human annotators are involved.
Extensive research has been conducted to collect
or augment labeled dataset using techniques such
as word insertion, deletion, substitution, and lever-
aging pretrained language models to generate new
examples or paraphrasing existing ones (Wei and
Zou, 2019; Calderon et al., 2022; Whitehouse et al.,
2023; Ghosh et al., 2023). However, applying these
techniques to pretraining code LLMs can be chal-
lenging because they are specifically designed for
natural languages, have different training objec-
tives than next token prediction, and are tailored to
transformer-encoder models.

Packing. Recently, the impact of packing strat-
egy on pretraining LLMs has been explored (Zhao
et al., 2024; Chen et al., 2024). If the lengths of
files are shorter than the context length, the con-
text may be composed of several irrelevant files,
and the inclusion of distracting information can de-
grade the performance of the models. In this case,
all UniChunk, BM25Chunk, and Intra-Document
Causal Masking methods (Zhao et al., 2024) can
improve in-context learning, knowledge memoriza-
tion, and context utilization abilities of language
models.

On the other hand, if the lengths of files are
longer than the context length, a file may be divided
into several contexts. These correlated contexts are
separated while shuffling and are put into different
batches if the unit of data shuffled is one. The
impact of various unit sizes is also explored (Chen
et al., 2024).

B Proof of Lemma 3.1

Proof. Let C be the set of contexts T [i : i + l −
1] for 1 ≤ i ≤ n − l + 1 such that i − 1 is a
multiple of s. Any two contexts in C overlap at
most l−s positions in T because i−1 is a multiple
of s. The number of contexts in C is ⌈n−l+1

s ⌉,
which is the number of positions i in T such that
i − 1 is divisible by s. Therefore, C contains the
overlapping contexts of the lemma.

C Proof of Lemma 3.2

Proof. We prove by contradiction. Assume that
there is an identical example of next token predic-
tion between two adjacent overlapping contexts
Ci = T [i : i + l − 1] and Ci+s = T [i + s :
i+ s+ l − 1].

By the assumption of the lemma, T [i] and T [i+
s] are different, and thus Ci and Ci+s do not have
a common prefix. However, in order for Ci and
Ci+s to have an identical example, there must be
a common prefix between Ci and Ci+s, which is a
contradiction.

D Hyperparameter Settings

For training the in-house dataset, we use the
AdamW (Loshchilov and Hutter, 2019) optimizer
with β1 = 0.9, β2 = 0.95, and ϵ = 1e-8. We
use the cosine decay learning rate scheduler that
gradually decreases the learning rate to 10% of its
maximum value after 175 wamup steps. The max-
imum learning rate is 1e-4 for the CodeLlama-7B
models and 1.6e-5 for the EXACODE-8.8B models.
The default context length is 2048. We use dif-
ferent combinations of stride and batch size for
diverse comparison. For training the public dataset,
we use the constant learning rate scheduler with
learning rate of 2e-4 and set context length to 1024
by default.

For all models, we applied mixed precision
training using bfloat16 to speed up the training.
For EXACODE-8.8B and CodeLlama-7B models, we
conducted full-parameter training on 64 A100-
40GB GPUs using FSDP (Zhao et al., 2023) with

465

Model Stride
Batch #Train Training Step
Size Tokens 0 592 1184 1776 2368 2960 3552 4144 4736

Pass@1
EXACODE-8.8B-NOC 2048 1024 2.98B 7.00 14.00 16.00 - - - - - -
EXACODE-8.8B-OC 1024 1024 5.96B 7.00 16.00 14.00 14.00 15.00 - - - -
EXACODE-8.8B-OC 512 2048 11.92B 7.00 15.00 14.00 19.00 19.00 - - - -
EXACODE-8.8B-OC 256 2048 23.84B 7.00 14.00 23.00 16.00 27.00 27.00 27.00 28.00 29.00

ROUGE
EXACODE-8.8B-NOC 2048 1024 2.98B 35.47 37.67 39.98 - - - - - -
EXACODE-8.8B-OC 1024 1024 5.96B 35.47 38.45 38.02 38.92 38.88 - - - -
EXACODE-8.8B-OC 512 2048 11.92B 35.47 38.13 38.51 40.30 41.82 - - - -
EXACODE-8.8B-OC 256 2048 23.84B 35.47 37.65 43.07 40.47 44.45 45.65 47.04 46.46 46.67

Table 3: The U100 pass@1 rate and ROUGE score of the EXACODE-8.8B models for varying numbers of training
steps. The context length is fixed to 2048. All models are trained for 2 epochs. The bold fonts indicate the highest
score among checkpoints for each model.

Model Stride
Batch #Train Epoch
Size Tokens 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Pass@1
CodeLlama-7B-NOC 2048 8192 2.86B 2.00 2.00 2.00 3.00 6.00 7.00 5.00 6.00 6.00 5.00 5.00
CodeLlama-7B-OC 1024 8192 5.72B 2.00 2.00 7.00 6.00 10.00 5.00 5.00 13.00 9.00 8.00 8.00
CodeLlama-7B-OC 512 8192 11.44B 2.00 4.00 7.00 14.00 22.00 21.00 31.00 20.00 18.00 19.00 18.00

ROUGE
CodeLlama-7B-NOC 2048 8192 2.86B 20.24 20.80 27.89 29.68 32.85 32.02 34.37 33.80 34.14 33.54 33.71
CodeLlama-7B-OC 1024 8192 5.72B 20.24 24.07 29.64 33.41 35.21 39.54 36.60 40.80 40.70 40.21 40.23
CodeLlama-7B-OC 512 8192 11.44B 20.24 29.75 36.38 39.92 42.76 46.01 43.36 46.15 44.61 46.47 47.09

Table 4: The U100 pass@1 rate and ROUGE score of the CodeLlama-7B models for varying numbers of epochs.
The context length is fixed to 2048. The bold fonts indicate the highest score among checkpoints for each model.

the full sharding strategy. The CodeGen-350M mod-
els are trained on one A100-80GB GPU using
LoRA (Hu et al., 2022). We set r = 256, α = 512,
and adapted the query, key, value, and out projec-
tion matrices.

E Applying Overlapping Context to
CodeLlama

In addition to the EXACODE-8.8B models described
in Section 4, we compare the following models
based on CodeLlama-7B-BASE1 (Rozière et al.,
2023):

• CodeLlama-7B-OC: it is initialized with the
weights of CodeLlama-7B-BASE, and trained
on the mixed dataset of the in-house dataset
and TheStack. It uses overlapping contexts
with a fixed-length stride.

• CodeLlama-7B-NOC: it has the same training
setting as that of CodeLlama-7B-OC except
that it uses non-overlapping contexts.

1https://huggingface.co/codellama/CodeLlama-7b-hf

In order to alleviate the forgetting problem that
can occur in sequential pretraining, we apply data
mixing similar to the mix-review strategy (He et al.,
2021). Specifically, we mix the in-house dataset
with a random subset of C/C++ codes of TheStack
so that TheStack constitutes 10% of the resulting
training dataset.

F Varying Stride and Batch Size

We use different combinations of fixed-length
stride and batch size for two model structures,
CodeLlama and EXACODE. Overlapping context of-
fers an enlarged dataset that contains diverse ex-
amples, which allow us to increase the batch size
while maintaining the number of training steps.

In this subsection we use the ROUGE score for
an additional metric. While pass@k is a good met-
ric for evaluating the functionality of the generated
code, it is discontinuous metric and thus it makes
the performance of the model to appear sharp and
unpredictable (Schaeffer et al., 2023). Thus, we
also report the ROUGE-1 F1 score (Lin, 2004) be-
tween ground truth function body and the generated

466

Model Context Length Stride Batch Size Epoch or Step Pass@1 Pass@10
CodeLlama-7B-BASE - - - - 29.23 57.39
CodeLlama-7B-NOC 2048 2048 8192 1.0 29.67 57.45
CodeLlama-7B-OC 2048 1024 8192 1.4 30.25 58.29
CodeLlama-7B-OC 2048 512 8192 1.2 31.46 58.30
EXACODE-8.8B-BASE - - - - 17.98 31.84
EXACODE-8.8B-NOC 2048 2048 1024 1184 18.37 33.65
EXACODE-8.8B-OC 2048 1024 1024 592 18.88 34.00
EXACODE-8.8B-OC 2048 512 2048 2368 18.39 33.20
EXACODE-8.8B-OC 2048 256 2048 4736 17.85 32.37

Table 5: Accessing the degree of forgetting with HumanEval-X C++. The pass@k rates of the CodeLlma-7B models
consistently increase as the stride decreases due to the mix-review strategy.

function body.
Table 4 shows the pass@1 rate and the ROUGE

score of the CodeLlama-7B models for U100. The
general trend is that both pass@1 rates and ROUGE
scores increase as we decrease the stride. Specifi-
cally, the highest pass@1 rates of the CodeLlama-
7B models are 7%, 13%, 31% for strides of 2048,
1024, 512, respectively. The highest ROUGE
scores are 34.37, 40.80, 47.09 for strides of 2048,
1024, 512, respectively. CodeLlama-7B-OC with
stride=512 outperforms CodeLlama-7B-NOC by an
absolute 24% pass@1 rate and by an absolute 12.72
ROUGE score.

Tables 3 shows the pass@1 rate and the
ROUGE score of the EXACODE-8B models for
U100. The trend that the model performs
better with a lower stride is similar to that
shown in the CodeLlama-7B models. Compar-
ing the combinations of (stride, batch size) ∈
{(1024, 1024), (512, 2048)}, we can see that the
increased batch size leads to better performances
in terms of the pass@1 rate and the ROUGE score.

G Applying Mix-Review Strategy to
Alleviate Forgetting

Sequential training of language models can cause
the forgetting problem (McCloskey and Cohen,
1989). To assess the degree of forgetting, we eval-
uate the EXACODE-8.8B and CodeLlma-7B models
on HumanEval-X (Zheng et al., 2023a), which is
a multilingual version of HumanEval. Since our
training dataset contains only C/C++ codes, we
measure the performances for the C++ language of
HumanEval-X. We generate 200 samples for each
problem using the top-p sampling (Holtzman et al.,
2020) with p = 0.95, and report the pass@1 and
pass@10 rates. We use two sampling temperatures,
0.2 and 0.6, and report the highest pass@k rate
among the results.

Context Length Stride Unique / Total (%)
1024 1024 99.61
1024 512 99.50
1024 256 99.35
512 512 99.12
512 256 98.88
512 128 98.54

Table 6: The number of unique examples of next token
prediction in the in-house dataset for varying context
length and stride.

Recall that we applied the mix-review strategy
when training the CodeLlama-7B models by mix-
ing the random subset of C/C++ codes of TheStack
(i.e., general source codes), whereas we used only
the in-house dataset when training the EXACODE-
8.8B models. Thus, we can see the effect of the
mix-review strategy on the forgetting problem by
comparing the CodeLlama-7B models against the
EXACODE-8.8B models.

For each model in Tables 3 and 4, we select
the best checkpoint whose U100 pass@1 rate is
the highest (i.e., the most optimized models to the
in-house dataset). Table 5 shows the pass@1 and
pass@10 rates of the best checkpoints. For the
CodeLlama-7B models, the pass@k rates consis-
tently increase as we decrease the stride. However,
for the EXACODE-8.8B models, the pass@k rates
reach the peak at stride of 1024 and then decline
as we decrease the stride. Therefore, mixing in
general source codes is beneficial to alleviate the
forgetting problem when continual pretraining code
LLMs on a domain-specific dataset.

H Unique Examples with Different
Context Length

When reducing the context length from 2048 to
1024 and 512 on the in-house dataset, it results in a
marginally lower unique ratio as shown in Table 6.

467

Context Length Stride Unique / Total (%)
2048 2048 99.81
2048 1024 99.73
2048 512 99.61

Table 7: The number of unique examples of next token
prediction in the in-house dataset with the random sam-
pling method.

Nevertheless, the unique ratio remains above 98%.
However, it is difficult to predict whether a lower

context length will affect the final outcome because
not only the number of unique examples but also
the context length itself can affect the final outcome.
For example, reducing the context length to 512
results in failures of some problems in HumanEval
because the context length must be longer than 600
in order to solve all problems in HumanEval.

I Unique Examples with Random
Sampling Method

Table 7 shows the unique ratio on the in-house
dataset with the random sampling method pre-
sented in Section 3. Although in theory the ran-
domly extracted indices are not guaranteed to be
unique, empirically the unique ratio of the random
sampling method is similar to that of the determin-
istic method (see Table 1).

468

