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Abstract

Food delivery search aims to quickly re-
trieve deliverable items that meet users’ needs,
typically requiring faster and more accu-
rate query understanding compared to tradi-
tional e-commerce search. Generative re-
trieval (GR), an emerging search paradigm,
harnesses the advanced query understanding
capabilities of large language models (LLMs)
to enhance the retrieval of results for com-
plex and long-tail queries in food delivery
search scenarios. However, there are still chal-
lenges in deploying GR to online scenarios:
1) the large scale of items; 2) latency con-
straints unmet by LLM inference in online re-
trieval; and 3) strong location-based service
restrictions on generated items. To explore
the application of GR in food delivery search,
we optimize both offline training and online
deployment, proposing Hierarchical seman-
tic representation enhancement for Generative
Retrieval (HierGR). Specifically, for the gen-
eration of semantic IDs, we propose an opti-
mization method that refines the residual quan-
tization process to generate hierarchically se-
mantic IDs for items. Additionally, to suc-
cessfully deploy on Meituan food delivery
platform, we utilize the query cache mecha-
nism and integrate the GR model with the on-
line dense retrieval model to fulfill real-world
search requirements. Online A/B testing re-
sults show that our proposed method increases
the number of online orders by 0.68% for com-
plex search intents. The source code is avail-
able at https://github.com/zhangfw123/
HierGR.

1 Introduction

In food delivery, users expect to quickly find and
order meals that can be delivered to their loca-
tions (Wang et al., 2022a; Ding et al., 2020). Food
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Figure 1: Differences between hierarchical RQ-VAE
and origin RQ-VAE.

delivery search focuses on quickly retrieving de-
liverable items that match user needs. Compared
to traditional e-commerce search (), it requires
faster and more accurate query understanding, as
food orders are highly time-sensitive and demand
real-time availability checks.

In recent years, knowledge has played an im-
portant role as a bridge across various fields (Tang
et al., 2024a; Zhang et al., 2022a,b, 2024a,b,d; Pan
et al., 2024; Wang et al., 2024; Li et al., 2025; Kuo
et al., 2024; Cheng et al., 2025), including large
language models (LLMs). Generative Retrieval
(GR) leverages LLMs to generate relevant docu-
ment identifiers (DocIDs) directly, offering a novel
retrieval paradigm. Unlike traditional dense re-
trieval (DR), GR capitalizes on LLMs’ strong se-
mantic understanding, making it more effective for
complex, long-tail, and ambiguous queries. This
approach shows great potential in applications like
e-commerce search (Wu et al., 2024b), document
retrieval (Tay et al., 2022; Zhang et al., 2024c), as
well as food delivery search.

However, deploying GR on our food deliv-
ery search platform still presents significant chal-
lenges: (1) How to design IDs for a large-scale
collection of food items? With hundreds of mil-
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lions of items, the deployment faces significant
challenges in assigning similar IDs to semantically
similar items and distinct IDs to different ones. (2)
How to deploy GR to ensure low latency in on-
line search? LLMs have high inference latency,
making real-time online inference challenging to
meet user search latency requirements. (3) How
to ensure that the generated items comply with
location-based service (LBS) constraints? Food
delivery search must provide users with items that
can be delivered to their locations.

To address these challenges, we explore a series
of strategies in both GR model training and online
deployment. Specifically, based on the commonly
used ID generation method Residual Quantization
Variational Autoencoder (RQ-VAE) (Rajput et al.,
2023), we propose HierGR, a novel GR method
designed to enhance hierarchical semantic repre-
sentations using a hierarchical RQ-VAE, aiming to
reduce semantic loss caused by residual computa-
tions. Figure 1 illustrates this clearly: the upper-
right subfigure shows that, in the original RQ-
VAE, residual representations cluster excessively
near the origin after computing next-layer residu-
als. This clustering causes items from different se-
mantic groups (e.g., three shown types) to overlap,
resulting in semantic confusion and identical ID
sequences. In contrast, our hierarchical RQ-VAE
(lower-right subfigure) preserves more semantic
information, ensuring smoother residual compu-
tations and clearer hierarchical separation among
clusters. This approach maintains distinct clusters
(blue and orange points form separate groups, and
green points remain clearly isolated) at this resid-
ual level. Our method can enhance residual learn-
ing on large-scale items.

In the online deployment stage, we conduct a
series of optimizations to effectively apply GR in
the recall phase of the food delivery search system.
First, to ensure that items retrieved by GR sat-
isfy LBS constraints, we reorganize the semantic
IDs for GR training. Then, to maintain acceptable
online retrieval latency, we introduce a caching
mechanism that stores highly exposed queries for
online service, achieving a cache hit rate exceed-
ing 95%. Finally, to better integrate with the on-
line system, we combine the prediction scores and
results of GR with dense retrieval for ranking, ob-
taining the final recall results. Here, we summa-
rize our contributions:

* We propose HierGR, a novel GR method de-

signed to enhance hierarchical semantic rep-
resentations through a hierarchical RQ-VAE,
capable of effectively generating semantic
IDs for hundreds of millions of online items.

* To successfully deploy the GR model in
our system, we implement a series of opti-
mizations that provide valuable insights for
industry-wide GR deployment.

* We conduct extensive experiments on the
publicly available dataset and online A/B
tests, showcasing the effectiveness and po-
tential of applying GR in the food delivery
scenario.

2 Related Work

2.1 Sparse & Dense Retrieval

The search process for food delivery is similar to
traditional search scenarios, currently relying pri-
marily on sparse and dense retrieval methods for
recall, such as BM25 (Robertson et al., 2009),
DPR (Karpukhin et al., 2020), ANCE (Xiong
et al.), ColBERT (Khattab and Zaharia, 2020), etc.
Recent advancements in GR have introduced a va-
riety of new methods.

2.2 Generative Retrieval

DSI (Tay et al., 2022) is the first model to trans-
form documents into unique document ID for
GR. SE-DSI (Tang et al., 2023) extends DSI (Tay
et al., 2022), which incorporates semantic learn-
ing techniques. SEAL (Bevilacqua et al., 2022)
proposes autoregressive search engines that gen-
erate substrings as DocIDs, while NOVO (Wang
et al., 2023) focuses on creating learnable docu-
ment identifiers. RIPOR (Zeng et al., 2024), on
the other hand, emphasizes scalability in GR. Gen-
RRL (Zhou et al., 2023) integrates reinforcement
learning to enhance relevance feedback, whereas
LTRGR (Li et al., 2024) optimizes GR models by
leveraging the ranking task. GDR (Yuan et al.,
2024) addresses challenges related to memory ef-
ficiency in generative dense retrieval. Further-
more, Wu et al. introduced multi-vector dense re-
trieval. SEATER (Si et al., 2023) constructs a bal-
anced K-ary tree using Constrained K-means and
introduces an alignment loss to better capture to-
ken relationships. Hi-gen (Wu et al., 2024b) em-
ploys category information for clustering through
K-means. GenRet (Sun et al., 2024) adopts an
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Encoder-Decoder framework to sequentially gen-
erate ID tokens, demonstrating a step-by-step re-
trieval process. Additionally, GR? (Tang et al.,
2024b) incorporates multi-graded relevance into
the training of GR. These approaches collectively
showcase the diverse strategies being developed to
advance GR systems.

However, most of the aforementioned methods
are not directly applicable for online deployment
due to their high complexity. This paper primar-
ily explores and validates the feasibility of imple-
menting GR in the food delivery search scenario,
successfully deploying the system and yielding
significant benefits.

3 Method & Deployment Pipeline

Figure 2 illustrates the framework for offline
training and online deployment.

3.1 Offline Training

During the offline training phase, we address the
critical challenge of generating IDs for hundreds
of millions of standardized product units (SPUs).
While RQ-VAE (Rajput et al., 2023) provides
learnable semantic encoding, its residual quantiza-
tion inherently causes representation collapse, par-
ticularly diluting hierarchical semantics at scale.
To resolve this, we propose HierGR with multi-
level quantization layers that explicitly preserve
semantic granularity. For training GR, we leverage
LLMs like Qwen2.5 (Yang et al., 2024) through
full fine-tuning.

3.1.1 Hierarchical RQ-VAE

Generally, the hierarchical RQ-VAE process con-
sists of the following three phases:

SPU Encoding. Given an SPU i, we extract its
semantic embedding e; from the online semantic
embeddings.

Hierarchical Residual Quantization (RQ). The
core concept of hierarchical RQ is to retain part
of the residual information from the previous level
when computing the residual for the next level, ef-
fectively mitigating representation collapse. Ap-
pendix B includes a simple analysis demonstrat-
ing how our method reduces the semantic loss of
residuals. Specifically, hierarchical RQ encodes
the SPU embedding e; into a low-dimensional
representation using a deep neural network (DNN)
encoder E:

z = E(e;). (1)

Next, 7o = z is used as the residual embedding
at the first level of RQ. At each level [, a code-
book C! = {cL} | is provided for quantization,
where ¢}, represents the k-th codebook embedding
at level [, and K denotes the codebook size. The [-
th level of residual r;(l = 0,1, 2,...) is then used
to find the index of the nearest embedding in C!,
given by ¢; = argminy, ||r; — ck||2. After that, the
residual is iteratively updated as:

T =ap T —Cl, (2)
where a; > 1 determines the proportion of resid-
ual preserved for the next level [ + 1.

This procedure yields a semantic ID tuple
(co, ..., Cm—1) corresponding to the indices of the
nearest codebook embeddings at each level, where
m denotes the maximum level depth.
Reconstruction & Training. In the final stage of
hierarchical RQ, we need to reconstruct the SPU
embedding after quantization. Since we preserve
portions of the residual at each level, the recon-
structed representation can be written as follows:

[y

m—

2:Z[cél+(1—a)-rl]. 3)

=0

Here m is the layer number of RQ. Then, the
quantized embedding 2 is fed into a DNN decoder
D to reconstruct the input e; via a reconstruction
1088 Lyecon = ||€;— D(2)||3. Finally, the optimiza-
tion objective combines reconstruction 10ss Lyecon
with the residual quantization loss Lq:

»Ctraining = ['recon + »erv

m—1

L= 3" (Iselri] — b 13 + Bllre — seledJI3)

1=0

“
where sg[-] denotes the stop-gradient operation,
which prevents gradient updates for the quantized
embeddings during backpropagation. The first
term in L4 ensures that the codebook vectors cf:l
are close to the corresponding residuals ;. The
second term, weighted by the hyperparameter [,
constrains the residuals to remain close to the se-
lected codebook entries.

Using the trained hierarchical RQ-VAE, we
generate semantic IDs by identifying the near-
est codebook index at each level for every SPU.
For instance, if SPU i is assigned the index tu-
ple (1, 3, 2), its semantic ID is represented as
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Figure 2: Overall framework of our proposed method, including offline training and online deployment.

“<a_l><b_3><c_2>". Each level-specific compo-
nent (e.g., “<a_1>" or “<b_3>") serves as a new
token for LLM to learn.

3.1.2 Training GR Model

Training Data Collection. We employ the fol-
lowing steps to collect training data.

(1) Query-based conversion attribution: We
first track user behavior sequences that occur af-
ter users perform search queries. Specifically,
we monitor the actions users take after entering
queries, such as clicks, views, and final purchases.
When a user successfully converts (e.g., completes
a purchase or another desired action), we attribute
this successful conversion back to the original
query that initiated the interaction. This approach
helps us clearly link queries with their relevant
converted Standard Product Units (SPUs).

(2) Relevance-Based Filtering: Next, we per-
form an offline analysis to evaluate the relevance
of the converted SPUs associated with each query.
We carefully examine each SPU to ensure it ap-
propriately matches the user’s original search in-
tent. Any SPUs determined to be irrelevant or
poorly aligned with user intent are excluded from
the dataset to maintain data quality and accuracy.

(3) Prioritized data collection: Finally, we
collect data based on prioritized conversion perfor-
mance. For each individual query, we rank all rel-
evant SPUs according to their total number of suc-
cessful conversions. We then select only the top 50
SPUs with the highest conversion counts for each
query. These top-performing query-SPU pairs
form our refined, high-quality training dataset, ef-

fectively focusing the dataset on the most success-
ful and relevant items.

To address locality-based service (LBS) con-

straints, we truncate semantic IDs to transform
SPU generation into SPU cluster generation. From
sequences like “<a_1><b_3><c_2>", we remove
the trailing portion (e.g. “<c_2>") to obtain
“<a_l><b_3>" as a cluster ID for SPUs sharing
this prefix. This approach enables GR to generate
SPU collections that the online system can filter
based on delivery area availability.
Training Process. We construct query-clusterID
pairs (e.g., “cake—<a_2><b_3>") for training. To
balance query understanding capability and train-
ing efficiency, we employ Qwen 2.5-1.5B (Yang
et al., 2024) with full-parameter fine-tuning using
a sequence-to-sequence (seq2seq) paradigm.

3.2 Deployment on Food Delivery Search
Platform

The online deployment consists of two key com-
ponents: Query Caching and Hybrid GR-DR for
SPU Recall.

3.2.1 Query Caching

For online deployment, we implement a query
caching mechanism to meet real-time latency re-
quirements. In the food delivery search context,
due to high query repetition rates, caching re-
trieved results achieves over 95% hit rate. We se-
lected the top 1 million queries for caching based
on 30-day exposure frequency. During GR model
inference, we use a beam size of 100 to return 100
semantic IDs simultaneously, preserving scores
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for each ID to facilitate integration with the online
dense retrieval (DR) model.

3.2.2 Hybrid GR-DR for SPU Recall

Due to the limited ranking capability of GR,
we propose a hybrid recall method named Hy-
brid GR-DR, integrating GR with our online DR
model. Specifically, when a user’s query hits the
cache, we first retrieve the corresponding clus-
ter IDs from the cache and map them back to
their associated SPUs. The SPU set correspond-
ing to the k-th cluster ID is denoted as S;p, =
{spu1, spus, ... }. Next, we gather all SPUs rel-
evant to the user’s geographic location, forming
a local SPU set Sj,cq;, Which is then intersected
with the SPU set obtained from GR. This intersec-
tion yields the final candidate set that satisfies the
location-based service (LBS) constraints:

S = Siocat N (Stp, USIp, U---USipy). (5)

Here, N represents the number of cluster IDs
related to the user’s query. Then, we obtain
the query embedding ¢ and SPU embeddings
81,--., 8|5 using the encoding module of DR,
where |S| is the number of SPUs in S. Finally,
we derive the final ranking scores for each SPU by
combining the cosine similarity scores from DR
with the beam scores from GR, as shown below:

score(spu;) = beam_score(spu;) - cos(q, s;),
(6)

where score(spuy;) denotes the ranking score of
the i-th SPU in S, and beam_score(spu;) repre-
sents the beam score of the cluster ID to which
spu; belongs. By incorporating the beam scores,
we ensure that highly relevant SPUs generated
from GR are ranked higher.

Finally, we integrate the sorted SPUs into the
online recall pipeline, delivering the final recall re-
sults to users.

4 Experiment

4.1 Experimental Setup

Datasets. For offline evaluation, we conduct
experiments on the widely used MSMARCO
dataset (Nguyen et al., 2016), derived from web
search queries and corresponding passages, fol-
lowing the same settings as LTRGR (Li et al.,
2024). For online deployment, we train HierGR
on 55 million query-clusterID pairs and compare
it to the fully deployed model in the recall stage.

Table 1: Experimental Results on MSMARCO dataset.

Model ‘R@lO R@20 R@100 MRR@10
BM25 (2009) 28.6 475 662 18.4
SEAL (2022) 19.8 353 572 12.7
NCI (2022b) - - - 9.1
DSI (2022) - - - 19.8
MINDER (2023) | 29.5 53,5 78.7 18.6
LTRGR (2024) 40.2 645 85.2 25.5
HierGR 479 639 746 37.9
HierGR w/o optim| 39.6 563 67.8 30.1

Evaluation Metric. For MSMARCO dataset,
we employ the RECALL and MRR metrics, in-
cluding RECALL@5,20,100 (R@5,20,100), and
MRR@10. For online evaluation, we track effi-
ciency metrics: 1) UV_CXR: order rate among
search users, 2) PV_CXR: order-to-exposure ra-
tio, 3) OPTU: orders per 1,000 users, and 4) AOP:
average order position. Appendix A.1 presents de-
tails of these metrics.

Baselines. We compare our method against base-
lines including BM25 (Robertson et al., 2009),
SEAL (Bevilacqua et al., 2022), DSI (Tay et al.,
2022), NCI (Wang et al., 2022b), MINDER (Li
et al., 2023), and LTRGR (Li et al., 2024). For
online evaluation, we compare directly with the
fully deployed online recall model, reporting in-
cremental improvements across various metrics.

Implementation Details. For the MSMARCO
dataset, we use BERT (Devlin et al., 2019) for rep-
resentation generation and T5-base (Raffel et al.,
2020) as the backbone. RQ-VAE is configured
with 4 layers, each containing 256 codebooks with
an embedding dimension of 32. It is trained us-
ing the AdamW optimizer with a learning rate of
0.001 for 300 epochs. The model is further trained
for 100 epochs with a learning rate of 0.0005,
and the « values for residual optimization are set
to [1.1, 1.05, 1.0, 1.0]. For online deployment,
the semantic vectors of SPU employed by the on-
line DR model are used as input to the Hierarchi-
cal RQ-VAE. Qwen2.5-1.5B is used as the base
model. To address LBS constraints, we use the
same training parameters as those used for MS-
MARCO but utilize only the first two layers of
semantic IDs generated by the RQ-VAE for GR
training. The « values for optimizing residual cal-
culations across the layers are set to [1.05, 1.01,
1.0, 1.0]. The GR model is fine-tuned on 55 mil-
lion data samples over 5 epochs. All experiments
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Table 2: Parameter analysis of & on MSMARCO.

Values of « | Type R@10 R@20 R@100 MRR@10
[1.2, 1.1, 1.05, 1.0] Decreasing | 38.7  54.5 64.9 29.5
[1.1,1.05, 1.0, 1.0] Decreasing | 47.9 63.9 74.6 379
[1.05, 1.0, 1.0, 1.0] Decreasing | 453  61.3 70.3 34.1
[1.2,1.2,1.2,1.2] Fixed 374 523 65.8 28.7
(1.1, 1.1, 1.1, 1.1] Fixed 463 622 70.9 34.9
[1.05, 1.05, 1.05, 1.05] Fixed 442 595 68.9 33.5

are conducted on a computing platform equipped
with eight A100 80G GPUs.

4.2 Experimental Results on MSMARCO

Table 1 presents the results in percentage (%) on
MSMARCO dataset. Bold and underlined font
represent the best and second-best results.

Overall Performance. HierGR significantly out-
performs the state-of-the-art model LTRGR (Li
et al., 2024) on MSMARCO in terms of R@10
and MRR@10, indicating that HierGR produces
more accurate results at higher ranks. HierGR per-
forms slightly worse than LTRGR on R@100. We
hypothesize that this discrepancy arises because
LTRGR utilizes a multi-view text-based identifier
for GR, incorporating diverse textual information
such as titles, pseudo-queries, and substrings. By
directly generating text, LTRGR can leverage ex-
tensive beam search, resulting in improved recall
at lower ranks (e.g., R@100), albeit at the expense
of precision among top-ranked results.

Table 3: Online A/B testing results (relative improve-
ment) on well-known food delivery platform. Over-
all is the total performance on all search intents. The
second group represents the performance on different
search intents.

Search Intent [ UV_CXRt PV_CXRt OPTUt AOP|
Overall | +0.10%  +0.29% +0.11% -0.43%
FOOD +0.07%  +0.13% +0.04% -0.22%
POI +0.16%  +0.26% +0.15% -1.48%
COMPLEX | +0.59% +1.12% +0.68% -0.28%

Ablation Study. HierGR w/o optim presents the
results without applying hierarchical RQ-VAE. As
shown, the performance drops across all metrics,
indicating that our simple optimization effectively
enhances the quality of semantic IDs, thereby im-
proving the effectiveness of GR.

4.3 Parameter Analysis

We conducted hyperparameter experiments on the
weight of the proportion of residual preserved a
in the hierarchical RQ-VAE. Since our RQ has 4
layers, there are 4 « values for all layers, which we
present as a list from o to a3. Table 2 presents the
results. From Table 2, we can draw the following
conclusions: 1) Having « decrease as the RQ level
increases yields better performance, as semantic
loss occurs with greater magnitude in the first two
layers; 2) Excessively large or small values of «
negatively impact the quality of the IDs, leading
to a poor performance of GR.

4.4 Online A/B Testing Results

Table 3 reports the results of our online A/B
tests (two weeks). The FOOD intent represents
user queries seeking physical food items, while
the POI intent corresponds to queries targeting
store searches. The COMPLEX intent encom-
passes more sophisticated queries, such as broad-
category food searches, long-tail queries, and nat-
ural language questions (e.g., “What should I eat
for fitness?”’). Caching 1 million high-frequency
queries can handle 95% of online search requests.
Table 3 clearly shows that the GR model achieves
notable improvements across various efficiency
metrics, indicating its superior performance. In
particular, for the COMPLEX intent, UV_CXR
increases by 0.59%, PV_CXR increases by 1.12%,
and OPTU improves by 0.68%. These results
highlight the ability of GR to effectively address
diverse user queries, demonstrating stronger gen-
eralization capabilities. Furthermore, across all in-
tents, the AOP metric—a key indicator of user ex-
perience—decreases, leading to improved ranking
quality by positioning relevant items higher in the
results. This enables users to locate and order de-
sired food more efficiently.

We also present additional online metrics, as
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Table 4: Statistics of other online metrics.

Metric

‘ Value

Average number of SPUs retrieved that meet the LBS constraint
Average number of additional SPUs retrieved compared to online semantic recall

174.9 (MAX:200)
22.8 (MAX:168)

shown in Table 4. The “Average number of SPUs
retrieved that meet the LBS constraint” indicates
the number of SPUs that satisfy the LBS con-
straints retrieved by the GR model, with an aver-
age of 174.9 and a maximum of 200 (we allocated
a retrieval quota of 200 for the GR Model). This
demonstrates that the GR model can provide suffi-
cient results to meet online requirements. Further-
more, the “Average number of additional SPUs re-
trieved compared to online semantic recall” shows
the additional items beyond those found by the
online semantic recall method, indicating that our
model can provide extra SPUs that semantic mod-
els cannot retrieve.

Table 5: Collision rate| on different datasets.

Model | MSMARCO online SPUs
HierGR 3.10% 41.57%
HierGR w/o optim 3.62% 47.64%

4.5 Collision Rate Analysis

Table 5 reports the collision rates of semantic
IDs on both the MSMARCO dataset and the on-
line SPUs. The results demonstrate that HierGR,
through the optimization of RQ-VAE, effectively
mitigates the collision rate of IDs. The high col-
lision rate observed in the online setting can be
attributed to the presence of hundreds of millions
of SPUs, underscoring the challenges associated
with large-scale online deployment. During de-
ployment, all conflicting SPUs sharing the same
semantic ID are grouped into a single cluster.

4.6 Case Studies

Table 6 presents the results inferred by the GR
model we deployed. As can be observed, for
queries like “bread” which cover a wide variety
of types, GR can deeply understand and gener-
ate different kinds of bread, enhancing diversity.
For knowledge-based queries like “What should I
eat for fitness and weight loss?”, GR is capable
of understanding people’s intentions and provid-
ing foods related to weight loss.

Table 6: Case studies of online GR results are pre-
sented, with the names of the retrieved foods simplified
for clarity in display.

Query ‘ GR results

T nhE]. =HRE. ATA T
. AR

bread Toast, Sandwich, Croissant,

Donut, Baguette

YORGA . FREM . R
hr. KENGE. BEAEMN=
SCHL IRRER PR A
Chicken breast, Soba noodles,
Steak salad bowl, Hard-boiled
eggs, Pan-seared salmon,
Shrimp & broccoli stir-fry

Tl BBz AT 4

What should I eat for fitness
and weight loss?

5 Conclusion

In this paper, we identify challenges that GR faces
in practical industrial deployments. To address
these challenges, we conduct a series of explo-
rations on both offline training and online de-
ployment for food delivery search. We propose
HierGR, which utilizes hierarchical RQ-VAE to
reduce ID collision rates during the ID learn-
ing process. For online deployment, we ana-
lyze the unique characteristics of food delivery
search and develop a comprehensive deployment
strategy. Additionally, we construct a large-scale
domain-specific dataset to effectively train our on-
line GR model for food delivery search. Exper-
imental results on the public benchmark demon-
strate the effectiveness of HierGR. Most signifi-
cantly, online A/B testing shows our deployed GR
model achieves a 0.68% increase in the number of
orders per thousand users (OPTU) for complex in-
tent search, indicating that the deployed GR model
has significant potential for food delivery search.
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A More Details of our Experiments

In this section, we provide more experimental de-
tails.

A.1 Evaluation Metrics

Here, we describe the calculation method of the
metrics. Note that PV represents a merchant.

* RECALL: The proportion of relevant items
successfully retrieved over the total number
of relevant items, calculated as:

> Retrieved Relevant Items

> Total Relevant Items
(7

* MRR: The Mean Reciprocal Rank, which is
the average of the reciprocal ranks of the first
relevant item in all queries, calculated as:

RECALL =

1o 1
MRR = —
N ; Rank; ®

* PV_CXR: The ratio of food delivery order
page views to exposure page views, calcu-
lated as:

>~ Order PV

PV.CXR=F———
- > Exposure PV

(©))

* UV_CXR: The ratio of unique ordering users
to users exposed, calculated as:

> Distinct(Order Users)

> Distinct(Exposure Users)
(10)

UV_CXR =

* AOP: The average exposure position of suc-
cessful orders, calculated as:

AOP — > Exposure Positions
N > Order PV

(1D

* OPTU: The number of successful orders per
thousand search users, calculated as:

> Order

OPTU = ( =F—F——
<Z Search Users

> x 1000 (12)

A.2 Baselines

Here, we will provide detailed descriptions of our
baselines.

* BM25 (Robertson et al., 2009): BM25 is a
classic sparse retrieval model that enhances
term-document matching by leveraging term
frequency and inverse document frequency,
effectively improving information retrieval.

* DSI (Tay et al., 2022): DSI employs a hier-
archical k-means clustering approach to or-
ganize document representations, construct-
ing the DoclID by combining category indices
from multiple layers.

* NCI (Wang et al., 2022b): NCI utilizes neu-
ral network architectures to enhance docu-
ment retrieval performance.

* MINDER (Li et al., 2023): MINDER gener-
ates text-based IDs from multi-view informa-
tion to improve retrieval effectiveness.

* LTRGR (Li et al., 2024): LTRGR optimizes
pre-trained GR models by incorporating an
auxiliary ranking task.

For the online baseline, we compare our model
against the fully deployed and stable product re-
trieval model that is already running in production,
which includes but is not limited to query rewrit-
ing, semantic retrieval, personalized retrieval, and
other components. Our GR model is integrated
into the existing retrieval pipeline to evaluate its
effectiveness.

B Simple Analysis of the Effectiveness of
HierGR

We demonstrate that for two distinct embeddings
that are very closed to their codebook embeddings
at level k, our proposed hierarchical RQ-VAE pre-
serves more of their semantic differences in subse-
quent quantization levels compared to the vanilla
RQ-VAE.

Suppose there are two different items A and B.
Let rl; and rl; be two distinct embeddings with
semantic differences at level . If 7{4 and r% are
very close to their respective codebooks q'(A) and
q'(B), then the next level residuals in vanilla RQ-
VAE are computed as follows:

+1 l

it =rl, —d(4) ~o0, (13)
rit =rl, —¢'(B)~0. (14)

At this point, the computation method of vanilla
RQ-VAE will cause the residuals of item A and
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Table 7: Expanded analysis: case studies of online GR results.

Query

GR results

breakfast (English Query)

breakfast

BEFEMBAN VIR (TChTowl) . FAARDUR . X Faal k. JLiHEL . SAAmaTmi=
SCR FERAITIE . EURSER . BORIUKE ., TR S, S e, Fa Ui
B, PR FER . EEhE .

Whole Wheat Tomato & Spicy Pork Floss Bagel (Oil-free & Sugar-free), Tomato & Pork Floss
Bagel, French Garlic Scone, Hokkaido Milk Toast, Tuna Croissant Sandwich, Strawberry Donut,
Traditional French Baguette, Original Pretzel Stick, Crispy Pineapple Bun, Hong Kong Style Butter
Pineapple Bun, French Garlic Bread, Honey Butter Toast Slices, ......

R

breakfast

BEETH. PR T ARUER. K. PREE. TFEXE. KHE. FRRmS LR,
METTIRW . KR BIB0 . SEER . ...

Freshly Ground Soy Milk, Beef Baozi, Northeastern Chinese Sweet Corn, House Specialty Steamed
Dumplings, Custard Buns, Five-Spice Braised Egg, Tea-Marinated Egg, Crispy Fried Breadstick (1
piece), Egg and Vegetable Congee, Millet and Pumpkin Porridge, Spicy Hot Soup, Egg Cheung Fun
(Rice Noodle Roll), ......

R AR R

High-protein and low-fat diet

IMEBSR ARV, B RO M PIREK I, BRI B EEA RN =INA. FRIGHERSE
REAERE . DOTTMONAHE S . B RURMOO AR PR . FrRUENIE . 7 O M Y 5221
Shrimp & Vegetable Fat-loss Salad, Herbed Chicken Breast with Brown Rice, Fitness Shrimp Meal
Set, Beef & Thick Omelette Sandwich, Pan-fried Steak Veggie Power Bowl, Premium Pan-fried
Steak Spinach Wrap, Black Pepper Chicken Breast Multigrain Rice, Pan-fried Crab Stick with
Scrambled Egg, Pan-fried Chicken Breast Buckwheat Noodles, ......

JLEIE AT 4

What foods are suitable for
children?

WM RAIS I LE S . LESR AR (DI LHRE) . FeE (M),
A LI . FEAHE . JLEAHE+ EIW + . BIRE. JLEE-Ir i R
B EEIAWR. oo

Shrimp with Elbow Macaroni Kids Meal, Tuna Rice Bowl for Kids (Salad Dressing Only), Stir-Fried
Tomato and Egg (Small Portion), Beef and Tomato Kids Meal, Baby-Friendly Skewers (Assorted
Mini Sticks), Kids Steak Meal with Pasta and Fried Egg, Nutritious Steamed Egg Custard, Kids
Shrimp Curry Fried Rice Set, Baby-Style Braised Pork Rice, ......

R/ NIZ

Calorie-dense snacks

HE{EH R pizza 409 5 FHUSMREXG BRI MERGHEAS . S O TH |
KBS BHIXGHE . S IRApyE 10 B, BUR REXS IR 7 51, XK AE Popcorn
Chicken,
9-inch Classic Supreme Pizza (Value Deal), Spicy Chicken Thigh Burger & Chicken Wrap Combo,
American Chicago-Style Chicken Cutlet Hot Dog, Korean Fried Chicken with Spicy Buldak
Noodles, Large French Fries, Spicy Jumbo Chicken Cutlet, Charcoal-Grilled Beef Skewers (10
pieces), 7-inch New Orleans-Style Grilled Chicken Pizza, Popcorn Chicken (Crispy Bite-Sized
Chicken), ......

item B at the next level to be close to the zero vec-
tor. This will affect the subsequent residual cal-
culations, making the IDs of the two items iden-
tical in future processes, thus losing hierarchical
semantic information.

However, if we calculate the residual by our
proposed hierarchical RQ-VAE, the next level
residuals are computed as follows:

rift = g () = (@-1) 7y, (5
riit = ol — ¢'(B) = (g — 1) - rly. (16)
Here, we still retain some of the higher-level se-

mantic information to prevent the representation
modeling of two different items from causing
them to retain a certain level of hierarchical infor-
mation.

Similarly, for items A and B, if they are very
close to the same codebook vector ¢'(C'), we can
also demonstrate that the next-level residuals are

nearly identical in vanilla RQ-VAE:

I+1

riit =7l - 4'(0), (17)
ridt =rl —4(0). (18)
If rly ~ rly = ¢/(C), then 7' ~ rii' = 0,

causing the same issue of losing semantic differ-
ences.

In contrast, our hierarchical RQ-VAE com-
putes:

+1 l

ri =Tl — 4'(0), (19)
+1 l l
rit =a; -l - 4(0). (20)

Even when v, =~ 7l ~ ¢'(C), the subtle dif-
ferences between rf4 and rlB are amplified by the
factor oy, allowing these semantic differences to
propagate to subsequent quantization levels.
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This amplification mechanism ensures that our
hierarchical RQ-VAE maintains finer semantic
distinctions throughout the quantization hierarchy,
resulting in more expressive and discriminative
representations compared to original RQ-VAE.

C More Analysis of Online Search
Results

C.1 Case Studies for Search Results

Additionally, we provide more case studies, as
shown in Table 7. Interestingly, the GR model
can return relevant results of different types based
on queries in different languages, such as the En-
glish query “breakfast” and the Chinese query ‘.
4. For the query “breakfast”, it returned many
bread-based food items; for the Chinese query
<B4 it returned numerous breakfast foods that
align with Chinese dietary habits. Furthermore,
the latter cases demonstrate that the GR model ex-
hibits strong capabilities in understanding various
knowledge domains of queries.

D Limitations and Future Works

Our current deployment method is based on
caching, which covers 95% of online requests.
However, 5% of online search queries still remain
uncovered. Additionally, although we have opti-
mized the collision of semantic IDs during the en-
coding process and generated better semantic IDs,
the quality of these IDs cannot be directly evalu-
ated during the RQ-VAE training phase and still
needs to be assessed based on the retrieval effec-
tiveness of the final GR model. In addition, our
GR model is currently unable to generate person-
alized outputs based on users’ specific needs. For
example, if a user wants the fastest possible deliv-
ery, the model cannot identify and generate SPUs
with quicker delivery options. These limitations
require further exploration.

In future work, we will explore how to make
GR cover more online queries, as well as how to
enable GR to directly generate SPUs that satisfy
LBS constraints.
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