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Abstract

Large Language Models (LLMs) require con-
tinuous updates to maintain accurate and cur-
rent knowledge as the world evolves. While
existing knowledge editing approaches offer
various solutions for knowledge updating, they
often struggle with sequential editing scenar-
ios and harm the general capabilities of the
model, thereby significantly hampering their
practical applicability. This paper proposes a
two-stage framework combining robust super-
vised fine-tuning (R-SFT) with model merg-
ing for knowledge editing. Our method first
fine-tunes the LLM to internalize new knowl-
edge fully, then merges the fine-tuned model
with the original foundation model to preserve
newly acquired knowledge and general capa-
bilities. Experimental results demonstrate that
our approach significantly outperforms exist-
ing methods in sequential editing while bet-
ter preserving the original performance of the
model, all without requiring any architectural
changes. Code is available at Applied-Machine-
Learning-Lab/MM4KE.

1 Introduction

Large Language Models (LLMs) have revolution-
ized Natural Language Processing (NLP) by captur-
ing vast amounts of world knowledge and exhibit-
ing impressive generalization capabilities (Zhao
et al., 2024; Fu et al., 2024; Xu et al., 2024a). Re-
cent advancements in both architecture design and
training strategies have enabled LLMs such as GPT-
4 (OpenAI et al., 2024) to engage in human-like
dialogue and solve complex real-world problems.

However, when deployed in dynamic real-world
environments, LLMs often face challenges of main-
taining current and accurate knowledge (Wang
et al., 2024a). For example, models can quickly
become outdated regarding political developments,

*Work was conducted during the internship at Tencent
Jarvis Lab.

†Corresponding authors.

technological innovations, or evolving natural dis-
asters; they may also retain inaccurate historical de-
tails or harmful content that needs timely removal
to ensure safe and reliable outputs.

To tackle these challenges, knowledge edit-
ing has emerged as an effective solution for effi-
ciently updating or correcting specific information
in pre-trained language models. These approaches
can be broadly categorized into three main cate-
gories (Zhang et al., 2024c). Memory-based meth-
ods primarily rely on fine-tuning mechanisms to
store and update knowledge in the model’s param-
eters (Hartvigsen et al., 2023). Meta-learning ap-
proaches leverage auxiliary networks to learn how
to generate precise weight updates for knowledge
editing. Locate-then-edit methods directly identify
and modify specific components within the model
architecture to update factual associations. Each
of these approaches offers distinct strategies for
modifying model behavior.

However, these existing approaches still face
several significant limitations. First, most editing
methods exhibit poor performance in sequential
editing and often suffer from weak generalization
capabilities. As a result, they struggle to effec-
tively inject large amounts of knowledge into the
models, limiting their practical applicability (Wang
et al., 2024b; Zhang et al., 2024a). Second, after
knowledge editing, models often experience degra-
dation in their general capabilities, as the editing
process typically focuses only on targeted knowl-
edge without considering its impact on unrelated
knowledge (Meng et al., 2022, 2023).

To address the above limitations, we propose
a simple yet effective knowledge editing frame-
work integrating Robust Supervised Fine-Tuning
(R-SFT) with Model Merging techniques. Specifi-
cally, we employ R-SFT, a fine-tuning strategy that
selectively optimizes only the Feed-Forward Net-
works (FFNs) in a single transformer layer. We
use iterative sample-wise optimization paired with
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Figure 1: The illustration of three radar charts demonstrates the performance distribution across multiple tasks. The
left chart shows the pre-trained model excelling in general tasks but limited in specific tasks (SFT). The middle
chart represents the fine-tuned model with enhanced specific task performance at the cost of general capabilities.
The right chart illustrates the merged model that successfully maintains both general and specific task performance.

an early-stopping mechanism to avoid overfitting.
Subsequently, we merge the fine-tuned model with
the original foundation model through scaling and
sparsity-driven pruning, recovering general capa-
bilities compromised during fine-tuning while ef-
fectively retaining acquired factual edits. Extensive
experimental evaluations demonstrate significant
performance improvements over existing methods
across sequential editing tasks, superior preserva-
tion of general capabilities, and no architectural
modifications are required.

• We propose R-SFT, an efficient fine-tuning ap-
proach leveraging sample-wise iterative optimiza-
tion with early stopping to ensure precise and
efficient knowledge acquisition.

• We apply model merging to mitigate the negative
impact of fine-tuning on the general capabilities
of LLMs, providing a simple but effective solu-
tion without any architectural modifications.

• Experimental results show that our method out-
performs existing approaches in sequential edit-
ing while maintaining the general capabilities.

2 Methodology

This section introduces the proposed two-stage
framework for knowledge editing, which includes
R-SFT and model merging.

2.1 Robust Supervised Fine-tuning
Existing knowledge editing methods face signifi-
cant challenges in sequential edits, often requiring
complex architectural modifications that limit their
practical applicability. Therefore, in the first stage
of our framework, we propose Robust Supervised

Algorithm 1 Procedure of Robust Supervised Fine-
Tuning (R-SFT)

Require: Foundation model θbase, dataset D =
{sn}Nn=1, learning rate η, early stop threshold
τ , max epochs E, max steps per sample K

1: Initialize model parameters: θ(0) ← θbase
2: Set global iteration counter: t← 0
3: for e = 1 to E do ▷ Iterate epochs
4: for n = 1 to N do ▷ Iterate samples
5: for k = 1 to K do ▷ Iterative steps
6: Ln = − logP (an|qn; θ

(t))
7: if Ln < τ then ▷ Early stopping
8: break
9: else

10: θ(t+1) ← θ(t) − η∇θLn
11: t← t+ 1
12: end if
13: end for
14: end for
15: end for
16: return fine-tuned parameters θsft ← θ(t)

Fine-tuning (R-SFT), a robust knowledge learning
fine-tuning paradigm designed to overcome these
limitations while maintaining simplicity and effec-
tiveness, as detailed in Algorithm 1.

Specifically, given a pre-trained foundation
model θbase and an editing dataset D =
{(qn,an)}Nn=1, where each sample includes a ques-
tion qn and its corresponding targeted answer
an, R-SFT aims to update the model parameters
to encode the provided factual information accu-
rately. The objective follows the standard super-
vised fine-tuning (SFT), minimizing the negative

434



log-likelihood of the correct output given the input:

Ln(θ) = − logP (an|qn; θ) (1)

For each sample, we iteratively update the parame-
ters via gradient descent with learning rate η:

θ(t+1) = θ(t) − η∇θLn(θ(t)) (2)

where t is the global iteration counter.
The key difference between R-SFT and conven-

tional SFT is the sample-level consecutive training
with an early-stop mechanism. In each epoch, each
sample is optimized consecutively for at most K
steps, stopping early if the loss decreases below the
threshold τ :

k∗n = min{k | Ln(θ(t+k)) < τ and 1 ≤ k ≤ K}
(3)

where k∗n denotes the real number of gradient up-
date steps performed on the n-th sample within
the epoch. A sample that satisfies the early stop
criterion remains available in subsequent epochs,
allowing periodic validation to avoid forgetting.

Furthermore, based on insights from existing
research (Meng et al., 2022), we restrict R-SFT
solely to the Feed-Forward Networks (FFN) of the
fifth transformer layer, which has been proven to
be optimal for editing performance and efficiency.

After completing the R-SFT process over E
epochs, we obtain a fine-tuned model θsft that thor-
oughly and reliably captures the desired knowledge
edits. This fine-tuned model, along with the origi-
nal pre-trained foundation model θbase, forms the
foundation for our subsequent merging stage.

2.2 Model Merging
In the second stage, the fine-tuned model is merged
with the foundation model. While R-SFT effec-
tively teaches the model new knowledge, it typi-
cally comes at the cost of degrading the model’s
general capabilities. Therefore, we employ model
merging, including scaling and pruning, to restore
these fundamental capabilities while preserving the
newly acquired knowledge.

Our merging approach employs a weighted av-
erage of the original and fine-tuned models, essen-
tially applying scaling to the fine-tuned model:

θedited = αθbase + (1− α)θsft, α ∈ (0, 1) (4)

where a scaling parameter controls the preservation-
editing trade-off. This equation can be further re-
formulated to highlight the parameter difference:

θedited = θbase + (1− α)(θsft − θbase) (5)

where ∆θ = θsft − θbase represents the knowledge
delta, the parameter changes that encode the new
knowledge acquired during R-SFT.

To further reduce the interference of knowledge
delta on general capabilities, we apply pruning to
the knowledge delta:

θedited = θbase + (1−α) ·Topp(θsft− θbase) (6)

The pruning operation keeps the top p% of param-
eters with the highest magnitude changes in each
parameter matrix, while setting the rest to zero.

This process induces a high degree of sparsity in
the knowledge delta, ensuring that only the most
impactful modifications are retained. Such sparsity
not only reduces the risk of interference with the
pretrained model’s general capabilities, but also
suppresses noisy updates introduced by training
samples or the fine-tuning process.

Finally, the merged model can preserve gen-
eral capabilities, while effectively incorporating
the newly acquired knowledge from R-SFT.

2.3 Industrial Application Prospect

Real-world industry applications require special-
ized LLMs capable of performing domain-specific
tasks without losing foundational general-purpose
capabilities such as comprehension and logic rea-
soning. Foundation models typically lack domain-
specific accuracy, while traditional fine-tuning
methods introduce significant limitations: fine-
tuning solely on vertical data often causes catas-
trophic forgetting (Luo et al., 2023), whereas hy-
brid training with extensive general and domain
data incurs prohibitive computational costs.

The proposed R-SFT enables efficient domain-
specific data optimization. Meanwhile, the model
merging strategy combines the fine-tuned domain-
specific models and the foundation model, thereby
integrating specialized domain knowledge without
sacrificing general linguistic reasoning capabilities.
We have successfully delivered multiple special-
ized models tailored to distinct professional do-
mains, demonstrating improved performance on
their targeted tasks and maintaining the general
language processing competencies necessary for
practical industrial applications.
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Table 1: Performance comparison of merging methods for sequential knowledge editing. The best values are
highlighted in bold, while the second-best values are underlined. Column “Base” represents the foundation model.

DataSet Metric Base KN ROME MEMIT LoRA SFT R-SFT Merged

Edited Knowledge

ZsRE Edit Succ. ↑ - 6.66 14.53 3.11 98.06 99.39 99.82 96.95
Generalization ↑ - 6.79 12.53 3.09 73.52 85.13 93.29 91.58

Portability ↑ - 10.43 2.32 1.06 20.90 24.40 47.48 39.63
Locality ↑ - 7.54 1.13 1.20 5.28 12.65 36.69 26.42
Fluency ↑ - 421.73 535.50 477.30 411.80 414.58 441.53 420.49

General Capabilities

C-Eval Accuracy ↑ 79.57 25.78 24.59 25.11 70.43 31.43 78.97 79.35
CoQA EM ↑ 56.82 24.42 0.00 0.00 53.98 0.63 51.80 62.10

F1 ↑ 72.60 34.13 0.07 0.00 69.10 1.39 63.57 75.18
DROP EM ↑ 0.23 0.03 0.00 0.00 1.96 0.09 0.67 1.9

F1 ↑ 7.10 2.07 0.32 0.00 13.90 0.21 8.23 10.8
SQuAD 2.0 EM ↑ 10.02 0.33 1.02 43.80 11.03 5.15 8.20 17.82

F1 ↑ 21.15 3.15 1.08 43.80 22.45 5.39 12.90 25.02
LogiQA Accuracy ↑ 37.94 21.51 20.28 22.12 31.03 24.12 24.42 33.03

3 Experiments

In this section, our experiments are structured
around the following research questions (RQs):

• RQ1: How does our model merging approach
perform on the ZsRE dataset compared to base-
line methods, and how does it impact the model’s
general capabilities?

• RQ2: How effective is our model merging ap-
proach across other knowledge editing datasets
in KnowEdit?

• RQ3: How hyperparameter settings for robust
model fine-tuning affect the accuracy and gener-
alization ability of knowledge editing.

• RQ4: How do different components of our
framework individually contribute to the over-
all performance of the edited model?

3.1 Experimental Settings
3.1.1 Datasets
We select KnowEdit (Zhang et al., 2024c)
for knowledge editing tasks, mainly on ZsRE
dataset (Levy et al., 2017). For general ability
evaluation, we use C-Eval (Huang et al., 2023b),
CoQA (Reddy et al., 2019), DROP (Dua et al.,
2019), SQuAD 2.0 (Rajpurkar et al., 2018) and
LogiQA (Liu et al., 2020).

3.1.2 Baselines
In our experiments, we compare our approach
against two main categories of locate-then-edit

methods: 1) classic knowledge editing methods
(ROME (Meng et al., 2022), MEMIT (Meng et al.,
2023)) that directly modify model parameters asso-
ciated with specific facts, and 2) fine-tuning ap-
proaches (LoRA (Hu et al., 2021)) that update
knowledge through training.

3.1.3 Implementation Details

We conduct experiments using EasyEdit (Zhang
et al., 2024b) for evaluating various knowledge
editing methods, and employ the lm-evaluation-
harness1 for assessing general model capabili-
ties. R-SFT is implemented through LLaMA Fac-
tory (Zheng et al., 2024) and mergeKit (Goddard
et al., 2024) for training and merging respectively.
We use Qwen2.5-7B-Instruct (Yang et al., 2024) as
our foundation model.

3.1.4 Evaluation Metrics

We evaluate the models using two sets of metrics.
To evaluate editing performance, we use five met-
rics: Edit Success (Edit Succ. or Succ.), General-
ization (Gen.), Portability (Port.), Locality (Loc.)
and Fluency (Flu.). The detailed definitions are pro-
vided in Appendix A.3. To assess the preservation
of general capabilities, we use Accuracy for clas-
sification tasks (C-Eval, LogiQA), and both Exact
Match (EM) and F1 scores for question-answering
benchmarks (CoQA, DROP, SQuAD 2.0).

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 2: Editing performance on additional KnowEdit
datasets using our framework.

DataSet Metric ↑ SFT R-SFT Merged

WikiDatarecent

Edit Succ. 79.46 99.97 96.62
Portability 46.59 58.26 62.95
Locality 28.50 31.87 41.62
Fluency 428.95 461.51 592.02

WikiBio
Edit Succ. 66.06 99.48 96.54
Locality 40.16 64.30 75.18
Fluency 626.60 628.77 626.71

WikiDatacounter

Edit Succ. 50.67 99.06 84.02
Portability 34.56 60.61 51.98
Locality 15.75 26.36 41.98
Fluency 479.81 601.02 614.64

Table 3: Effect of different hyperparameter settings on
the editing performance.

(a) Early stopping loss threshold.

Threshold Succ. Gen. Port. Loc. Flu.

None 68.90 65.76 24.40 12.65 514.58
0.01 75.74 73.28 39.86 27.84 435.20
0.02 78.06 74.87 41.77 26.14 437.26
0.05 79.61 76.22 42.53 33.00 420.41
0.1 80.07 76.76 44.33 32.18 400.84
0.2 78.87 75.04 46.14 34.76 411.97

(b) Number of epochs and steps.

Epochs Steps Succ. Gen. Port. Loc. Flu.

1 30 75.74 73.28 39.86 27.84 435.20
2 15 93.89 89.94 40.96 26.33 422.18
3 10 96.95 91.58 39.63 26.42 420.49
5 6 99.42 93.56 41.81 25.84 439.81
10 3 99.82 93.56 43.50 30.48 417.75
30 1 99.84 93.30 46.87 33.81 509.18

3.2 Overall Performance (RQ1)

As shown in Table 1, our empirical evaluation re-
veals several important findings regarding knowl-
edge editing performance and preservation of gen-
eral capabilities across different methods.

For knowledge editing, R-SFT exhibits superior
editing performance across primary metrics, with
the merged model maintaining the second-highest
performance in most editing dimensions. Regard-
ing general capabilities, the merged model effec-
tively retains the foundation model’s general capa-
bilities, demonstrating comparable performance on
C-Eval and enhanced results on CoQA. This sug-
gests our merging strategy successfully addresses
the common trade-off between knowledge editing
and general capability preservation.

Notably, MEMIT performs surprisingly well on
SQuAD 2.0, and LoRA achieves strong results
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Figure 2: Metrics across different scaling ratios, illustrat-
ing the trade-off between edited and general knowledge.
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Figure 3: Metrics across different pruning sparseness,
balancing edited and general knowledge.

on DROP. This is largely because the foundation
model originally performed poorly on these tasks,
making it more sensitive to minor perturbations
introduced during editing. These edits may alter
the model’s answering behavior in a way that coin-
cidentally improves the evaluation metrics, rather
than reflecting true methodological superiority.

3.3 Knowledge Editing Performance (RQ2)

Table 2 summarizes the performance of our pro-
posed R-SFT approach and the subsequent merging
step across various knowledge editing datasets in
Knowedit. We observe that R-SFT consistently
achieves near 100% accuracy on the training sam-
ples and maintains approximately 60% portability
to reason with new knowledge, significantly out-
performing conventional fine-tuning methods.

After model merging, the edited model consis-
tently experiences a modest reduction (around 5%)
in editing accuracy, but this is acceptable given the
restoration of the model’s general capabilities. The
complete result is provided in the Appendix B.
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Table 4: Ablation study of the framework on editing performance (including success rate, generalization, portability,
locality, and fluency) and general capabilities based on C-Eval (Acc.), CoQA (F1), and LogiQA (Acc.).

Stage Methods Succ. Gen. Port. Loc. Flu. C-Eval CoQA LogiQA

Base - - - - - 79.57 72.60 37.94

R-SFT
w/o Sample Steps 99.82 93.85 47.32 35.03 466.00 44.28 63.57 24.73
w/o Early Stop 99.82 93.95 41.10 31.51 534.19 40.04 53.11 23.81
Complete 99.43 93.70 45.93 33.96 401.44 41.60 58.84 26.57

Merging
w/o Scaling 98.25 92.36 45.14 33.96 411.70 58.47 62.00 32.41
w/o Pruning 96.97 92.07 42.76 29.69 418.32 52.75 74.65 29.80
Complete 96.95 91.58 39.63 26.42 420.49 68.42 78.07 34.25

3.4 Parameter Analysis (RQ3)

R-SFT. As shown in Tables 3a, stopping training
early (lower thresholds) improves generalization
by preventing overfitting. A moderate threshold
of 0.1 strikes the optimal balance between gaining
knowledge and preventing overfitting. The results
in Tables 3b confirm that fewer steps per sample
yield better performance. However, this approach
requires absolute E ×N ×K update steps, result-
ing in lower computational efficiency. Finally, five
epochs with six steps per sample provide an op-
timal compromise. Appendix C shows complete
results for all hyperparameters.

Model Merging. Figure 2 and Figure 3 demon-
strate that scaling has a more immediate and pro-
nounced impact on model performance, with an op-
timal setting typically around 0.8 to balance knowl-
edge updates and generalization. In contrast, prun-
ing exhibits a more subtle influence, and a sparsity
ratio of 0.2 is generally preferred to minimize in-
terference while preserving core capabilities.

3.5 Ablation Study (RQ4)

We conduct an ablation study to evaluate the in-
dividual contributions of each proposed compo-
nent, as presented in Table 4. Results show that re-
moving the sample-wise consecutive update (“w/o
Sample Steps”) does not significantly harm editing
performance, suggesting that our iterative update
strategy does not negatively impact model quality
while considerably enhancing efficiency. In con-
trast, removing early stopping (“w/o Early Stop”)
significantly degrades the model’s general capa-
bilities, confirming its essential role in preventing
overfitting. In the model merging stage, omitting
either scaling (“w/o Scaling”) or pruning (“w/o
Pruning”) leads to decreased restoration of general
capabilities, highlighting the importance of these

techniques in effectively balancing knowledge edit-
ing and general model performance.

4 Related Works

4.1 Knowledge Editing

Knowledge editing aims to efficiently update or
modify the internal knowledge of machine learn-
ing models to adapt to rapidly changing real-world
information (Zhao et al., 2018a,b). This is par-
ticularly important for LLMs, whose training de-
mands substantial computational resources and
time, making frequent pretraining impractical (Xu
et al., 2024b). Early studies focused on knowl-
edge tracing to analyze and locate factual infor-
mation stored within models before attempting ed-
its (Huang et al., 2023a; Liu et al., 2023; Li et al.,
2024). ROME (Meng et al., 2022) fisrt directly
modified neurons associated with specific facts in
feed-forward layers. While ROME models can edit
certain facts accurately, many real-life situations
involve dynamic information that require perpetual
model updates (Liu et al., 2024, 2025). This neces-
sitates the development of editing techniques that
support persistent change Subsequent approaches,
like MEMIT (Mitchell et al., 2022a) and r-ROME
(Gupta et al., 2024), enhanced editing precision
and stability during sequential updates.

Other methods utilized fine-tuning on special-
ized datasets (Xu et al., 2024b), effectively inject-
ing knowledge but risking general capability degra-
dation due to overfitting. Meta-learning approaches
(e.g., MEND (Mitchell et al., 2021), InstructEdit
(Huang et al., 2021)) and memory-based methods
(e.g., SERAC (Mitchell et al., 2022b), MELO (Li
et al., 2023b)) achieved better generalization but
introduced auxiliary networks or structured memo-
ries, significantly increasing model complexity and
limiting practical deployment.
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4.2 Model Merging
Model merging techniques combine parameters
from multiple models or training checkpoints into
a unified model. This technique is more efficient
than using several LLMs simultaneously (Li et al.,
2023a; Lu et al., 2024). Early methods primarily
relied on simple weight averaging (Wortsman et al.,
2022), but subsequent work introduced more so-
phisticated strategies. For instance, SLERP (Kao
et al., 2023) proposed spherical interpolation be-
tween model parameters to mitigate geometric dis-
tortion inherent in linear interpolation methods.
Task Arithmetic (Gur et al., 2023), and its exten-
sions, such as TIES (Jiang et al., 2023) and DARE
(Chen et al., 2023), computed and combined task
vectors, effectively tackling inter-model interfer-
ence via sparsification, sign-consensus algorithms,
adaptive pruning, and parameter rescaling. More
recently, WISE (Wang et al., 2024b) applied spar-
sification methods to fine-tuning for knowledge
editing, effectively balancing edited knowledge
and pre-trained information, but also introduced
increased structural complexity.

5 Conclusion

In this paper, we propose a two-stage framework
for knowledge editing that integrates robust su-
pervised fine-tuning (R-SFT) with model merging.
Specifically, R-SFT first leverages sample-wise it-
erative updates and an early-stopping mechanism
to precisely inject new knowledge with enhanced
generalization. Subsequently, the model merging
technique serves to further mitigate the harm of
fine-tuning by merging the pre-trained model with
the R-SFT model, thus negating the necessity for
architectural changes. Experimental results show
that our method significantly outperforms existing
approaches in sequential editing scenarios while
maintaining general capabilities.

6 Limitations

Although our model merging approach demon-
strates significant effectiveness in knowledge edit-
ing, we acknowledge certain limitations in knowl-
edge generalization capabilities. Our current frame-
work, while successful at direct knowledge up-
dates, shows reduced performance when transfer-
ring edited knowledge to substantially different
phrasings or when applying reasoning based on
newly acquired information. The generalization
metrics indicate room for improvement in how

edited knowledge is applied across varied contexts.
Future research should focus on developing more
sophisticated knowledge insertion methods that en-
hance the transferability of edited information.
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A Detailed Experimental Settings

A.1 Datasets
KnowEdit (Zhang et al., 2024c) contains a total of
six sub-datasets including Wikirecent, ZsRE, Wik-
iBio, WikiDatacounterfact, Convsent and Sanita-
tion.

For general ability evaluation, C-Eval (Huang
et al., 2023b) primarily assesses common knowl-
edge, while other benchmarks are predominantly
question-answering datasets designed to evaluate
models’ capabilities in extended conversations with
longer textual contexts.

A.2 Implementation Details
During the training phase, we utilize a batch size
of 1 to maximize the effective learning from each
individual sample. Our R-SFT is configured with
5 epochs and 6 consecutive steps, employing a
maximum learning rate of 5× 10−4.

A.3 Evaluation Metrics
For evaluating the editing performance of the
merged models, we adopt four widely used metrics:

• Edit Succ. (Succ.): This metric quantifies
whether the intended factual update is correctly
reflected in the model’s output when given the
edited query.

• Generalization (Gen.): This metric evaluates
whether the model can correctly apply the up-
dated factual knowledge when presented with
semantically equivalent queries.

• Portability (Port.): This measures the ability of
the edited model to generalize the new knowl-
edge to alternative phrasings or reworded ver-
sions of the original query.

• Locality (Loc.): Locality evaluates whether the
editing process is confined to the targeted knowl-
edge, ensuring that the model’s outputs for unre-
lated queries remain unchanged.

• Fluency (Flu.): This metric assesses the linguis-
tic quality of the model’s responses, verifying
that the edited outputs are coherent and natural.

To comprehensively assess the general capabil-
ities of the models after knowledge editing, we
employ several established benchmarks with the
following metrics:

• Accuracy: For classification tasks such as C-
Eval and LogiQA, we utilize accuracy as the
primary metric, which measures the percentage
of correctly answered questions.

• Exact Match (EM): For extractive question
answering tasks including CoQA, DROP, and
SQuAD 2.0, we report the Exact Match score,
which requires the model’s prediction to exactly
match the ground truth answer:

EM(a, â) = 1(a = â) (7)

where a is the ground truth answer, â is the
model’s prediction, and 1(·) is the indicator func-
tion that returns 1 if the condition is true and 0
otherwise.

• F1 Score (F1): For the same question answer-
ing tasks, we also report the F1 score, which
measures the overlap between the predicted and
ground truth answers at the token level:

F1 =
2× Precision× Recall

Precision + Recall
(8)

where:

Precision =
|Tokens in â ∩ Tokens in a|

|Tokens in â| (9)

Recall =
|Tokens in â ∩ Tokens in a|

|Tokens in a| (10)

B Knowledge Editing Performance (RQ2)

Table 5 compares our approach against baseline
knowledge editing methods. Our R-SFT consis-
tently achieves the highest editing success rates
while maintaining strong portability. The merged
model, while showing slightly lower editing suc-
cess than R-SFT, demonstrates superior locality
and fluency, effectively balancing edit fidelity with
preservation of general capabilities. Parameter-
efficient methods (ROME, MEMIT, LoRA) that
perform well in single-fact editing struggle signifi-
cantly in sequential editing scenarios, highlighting
our framework’s advantage in practical applica-
tions requiring both accurate knowledge editing
and maintained model quality.

C Parameter Analysis of R-SFT (RQ3)

Edited Layer Selection Table 6 presents the per-
formance when editing different layers of the LLM.
Layers 6 and 7 consistently outperform other lay-
ers across most metrics, with Layer 6 achieving the
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Table 5: Performance comparison of merging methods for sequential knowledge editing. The best values are
highlighted in bold, while the second-best values are underlined.

DataSet Metric ↑ ROME MEMIT LoRA SFT R-SFT Merged

WikiDatarecent

Edit Succ. 15.78 0.00 1.11 79.46 99.97 96.62
Portability 4.79 0.00 0.90 46.59 58.26 62.95

Locality 1.76 0.00 0.06 28.50 31.87 41.62
Fluency 529.98 478.64 505.02 428.95 461.51 592.02

WikiBio
Edit Succ. 26.47 0.04 53.26 66.06 99.48 96.54

Locality 3.50 0.03 64.56 40.16 64.30 75.18
Fluency 608.15 502.35 627.18 626.60 628.77 626.71

WikiDatacounter

Edit Succ. 12.69 0.00 11.07 50.67 99.06 84.02
Portability 2.88 0.00 10.28 34.56 60.61 51.98

Locality 0.92 0.00 13.65 15.75 26.36 41.98
Fluency 553.18 314.91 489.65 479.81 601.02 614.64

Table 6: Effect of edited layer selection on knowledge
editing performance.

Layer Succ. Gen. Port. Loc. Flu.

5 75.74 73.28 39.86 27.84 435.20
6 85.49 83.38 41.85 31.97 431.43
7 85.31 81.81 44.08 34.61 434.13
13 74.58 68.61 38.07 33.87 492.87
20 70.03 62.37 26.43 21.55 497.90
27 56.97 52.44 18.39 8.08 385.88

Table 7: Effect of maximum training steps per sample
on editing performance.

Steps Succ. Gen. Port. Loc. Flu.

30 75.74 73.28 39.86 27.84 435.20
60 75.74 73.28 39.86 27.84 435.20
90 75.74 73.28 39.86 27.84 435.20

highest edit success (85.49%) and generalization
(83.38%). This result confirms findings from prior
research that knowledge is more concentrated in
the earlier layers of the LLM (Meng et al., 2022).

Training Steps Table 7 examines how many total
steps are typically required to update each sample
when early stopping is enabled. With early stop-
ping enabled (loss threshold = 0.01), we observe
that performance metrics remain identical across
different maximum step settings. This indicates
that typically within 30 steps the loss of one sam-
ple will converge.

Number of Edited Layers Table 8 investigates
the impact of simultaneously editing multiple lay-
ers versus focusing on a single layer. Contrary to
intuition, editing a single layer (Layer 5) yields sub-

Table 8: Effect of the number of edited layers on editing
performance.

Layers Succ. Gen. Port. Loc. Flu.

Layer 5 75.74 73.28 39.86 27.84 435.20
Layers 4,5,6 66.96 62.95 28.36 16.64 409.75
All Layers 12.93 12.62 4.27 1.85 380.84

Table 9: Effect of learning rate (LR.) on editing perfor-
mance.

LR. Succ. Gen. Port. Loc. Flu.

5e-4 75.74 73.28 39.86 27.84 435.20
1e-4 67.68 61.75 48.33 41.55 516.84
5e-5 63.12 54.90 45.97 44.11 556.84

stantially better results than editing multiple layers.
Editing all layers leads to catastrophic performance
degradation across all metrics. This suggests that
targeted, minimal interventions are more effective
for knowledge editing than widespread parameter
modifications.

Learning Rate Table 9 examines how different
learning rates affect the editing process. Our analy-
sis reveals an interesting trade-off: higher learning
rates (5e-4) improve edit success and generalization
but reduce portability, locality, and fluency. Con-
versely, lower learning rates (5e-5) significantly
enhance fluency and locality at the expense of edit
success and generalization. This suggests that the
optimal learning rate depends on which metrics are
prioritized for a specific application.
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