
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 355–410
July 28-30, 2025 ©2025 Association for Computational Linguistics

TablePilot: Recommending Human-Preferred Tabular Data Analysis
with Large Language Models

Deyin Yi1*, Yihao Liu2*, Lang Cao3*,
Mengyu Zhou4†, Haoyu Dong4, Shi Han4, Dongmei Zhang4

1Shanghai University of Finance and Economics 2Peking University
3University of Illinois Urbana-Champaign 4Microsoft

Abstract

Tabular data analysis is crucial in many scenar-
ios, yet efficiently identifying relevant queries
and results for new tables remains challeng-
ing due to data complexity, diverse analytical
operations, and high-quality analysis require-
ments. To address these challenges, we aim
to recommend query–code–result triplets tai-
lored for new tables in tabular data analysis
workflows. In this paper, we present TablePi-
lot, a pioneering tabular data analysis frame-
work leveraging large language models to au-
tonomously generate comprehensive and supe-
rior analytical results without relying on user
profiles or prior interactions. Additionally, we
propose Rec-Align, a novel method to further
improve recommendation quality and better
align with human preferences. Experiments
on DART, a dataset specifically designed for
comprehensive tabular data analysis recom-
mendation, demonstrate the effectiveness of
our framework. Based on GPT-4o, the tuned
TablePilot achieves 77.0% top-5 recommenda-
tion recall. Human evaluations further high-
light its effectiveness in optimizing tabular data
analysis workflows.

1 Introduction

Tabular data is widely used in various data analy-
sis scenarios (Ghasemi and Amyot, 2016; Li et al.,
2021). However, its complexity and density (Cao,
2025; Tian et al., 2024) can make it challenging,
even for professional analysts, to determine the
most appropriate analysis operations for a new ta-
ble. Conducting tabular data analysis is often te-
dious, and the analysis operations may include er-
rors that lead to suboptimal outcomes. Therefore,
automatically recommending high-quality analysis
queries and results becomes essential in the data
analysis workflow, particularly in zero-turn scenar-

* Work during internship at Microsoft.
† Corresponding author (mezho@microsoft.com).

Table Theme: Annual and Monthly
Passenger Traffic Statistics for
Major U.S. Airports
Generating various analysis and code ...
Correcting the analysis results...
Evaluating, returning a ranked list...

Total
Passengers

International
Passengers

Domestic
PassengersMonthYearAirport

Code

982679098177Jan2015ACY
964966596431Feb2015ACY

……
441708622080312209055Mar2015JFK

……
1906396937148969248Jun1977JFK
237333412016761171658Jul1977JFK

……

Domestic
Passengers

Airport
Code

1388556JFK
102394.4ACY

…

Group by 'Airport Code',
calculate the average
domestic passengers,
and sort in descending
order

Create a line chart to
analyze the trend of
total passengers over
the years for each
airport

Build a statistical
model to forecast the
total passengers at JFK
airport for the next 12
months

Forecasted
PassengersDate

42765082016 - 01
38534162016 - 02

…

Analysis Type:
Basic Analysis

Deep
Analysis
based
on LLM

Show Code

Analysis Type:
Statistics Modeling

Analysis Type:
Data Visualization Show Code

Show Code

Figure 1: Overview of TablePilot. Through deep analy-
sis based on LLM, TablePilot generates three types of
analysis: basic analysis, data visualization, and statisti-
cal modeling, each presented as a <query, code, result>
triplet.

ios where no user profile or historical records are
available.

In the task of tabular data analysis recommenda-
tion, given only a table as input, we aim to recom-
mend query–code–result triplets to users. A query
specifies the type and objective of the analysis task,
while the code executes the corresponding opera-
tion on the table, serving as an intermediate step
in the analysis. The result presents the execution
output, which also constitutes the analysis findings.

Previous works on tabular data analysis recom-
mendation (Zhou et al., 2020, 2021) primarily rely
on traditional machine learning methods but often
exhibit suboptimal performance and strong depen-

355

dence on specific datasets. Recently, large lan-
guage models (LLMs) (OpenAI, 2024; Touvron
et al., 2023) have made significant strides in natu-
ral language processing. With their advanced data
processing, language comprehension, and genera-
tion capabilities, LLMs present new opportunities
for delivering more effective tabular data analysis
recommendations.

In practical data analysis scenarios, these triplets
are expected to be (a) accurate, (b) diverse, and
(c) human-preferred. Human-preferred refers to
the data analysis operations that humans genuinely
intend to perform, meaning the results should be
meaningful, insightful and so on. Employing
LLMs to recommend tabular data analyses while
meeting these requirements presents several key
challenges.

Challenges: (a) Tabular data is often large and
data-intensive, making it difficult for LLMs to pro-
cess effectively. Long-context windows can trigger
hallucinations (Huang et al., 2024), leading to in-
accurate results. (b) Existing approaches primar-
ily construct workflows around single-operation
scenarios, executing predefined analytical queries
to obtain results (Fang et al., 2024; Zhang et al.,
2025), but they lack diversity and fail to deliver
comprehensive analyses. (c) Selecting and present-
ing analysis results in a way that aligns with human
cognitive patterns is crucial (Song et al., 2024; Dai
et al., 2023; Yu et al., 2024). A well-designed sys-
tem should balance diversity and quality in recom-
mending data analysis operations that match users’
analytical preferences, ensuring the insights gener-
ated are interpretable, actionable, and meaningful.

Solution: To address these challenges, we pro-
pose TablePilot, a framework designed to tackle
the zero-turn recommendation task for tabular data
analysis, as illustrated in Figure 1.

To enhance the accuracy of analysis results, we
adopt sampling techniques (Sui et al., 2024; Ye
et al., 2023b; Ji et al., 2024), employing a table
sampler to refine model inputs and introducing a ta-
ble explanation component that incorporates world
knowledge learned during the pretraining phase of
LLMs. This stage of analysis preparation facili-
tates the generation of more contextually appropri-
ate queries and results. At the optimization level,
we utilize post-refinement techniques (Chen, 2022;
He et al., 2024) to adjust outputs. However, instead
of focusing solely on code refinement, we identify
multiple aspects of query and result optimization.

To improve the diversity of our analysis, we im-

plement a modularized approach to support various
workflow operations. This modular design provides
two key benefits. First, it ensures comprehensive
coverage by enabling the workflow to handle a di-
verse range of data analysis tasks, making it more
adaptable to various requirements. Second, it en-
hances performance by allowing each module to be
trained independently for better efficiency, with im-
provements across modules contributing to overall
effectiveness.

To ensure our analysis aligns with human pref-
erences, we introduce Rec-Align, a method specif-
ically designed to further enhance the quality of
analysis by directly incorporating human prefer-
ences. We train a ranking model to optimize the
final set of recommended operations, ensuring they
align with human analytical tendencies and pro-
duce superior results.

We contribute a dataset DART to support and
validate our framework. Experimental results
demonstrate that the tuned TablePilot achieves
nearly 100% execution rates, while the analysis
modules show an overall recall improvement of
11.25% with GPT-4o in the dataset. Rec-Align fur-
ther enhances alignment with human preferences,
leading to gains of 6.8% in Recall@3 and 6.0% in
Recall@5. Additionally, human evaluations con-
firm that the TablePilot framework provides more
practical and insightful data analysis recommen-
dations compared to baseline models. Extensive
experiments validate the effectiveness of TablePilot
and our training approach.

In summary, our main technical contributions
are as follows:
• We propose TablePilot, a framework for zero-

turn recommendation in tabular data analysis,
encompassing a comprehensive set of analytical
operations. We also contribute DART, a dataset
to support and validate our framework.

• We introduce two additional steps to enhance the
accuracy of analysis results, applied before and
after core analysis. These steps incorporate sam-
pling, explanation, and multi-faceted refinement.

• We develop Rec-Align, a method designed to
align recommendations with human analytical
preferences, further enhancing the quality and
practical utility of the recommended results.

2 Related Work

Current tabular data analysis recommendation
tasks can be categarized into three main types:

356

Basic Data Analysis in Tables. Basic analysis
refers to simple, initial processing of a table. It
involves generating tabular outputs or single-cell
text entries to highlight key information or insights
based on a user query. This is usually done by
manipulating and aggregating tabular data. Table
understanding tasks (Pasupat and Liang, 2015;
Chen et al., 2020) are the most basic form of this
analysis. Given a query, these tasks either provide
an answer or extract a sub-table (Wang et al.,
2024; Ye et al., 2023a) that contains important
information. TableMaster (Cao, 2025) offers
a general recipe for table understanding and
basic analysis based on user queries. Text2SQL
(Pourreza and Rafiei, 2024; Gao et al., 2023; Lee
et al., 2024; Zhao et al., 2024) is another approach
that extracts relevant parts of a table by converting
user queries into SQL-based outputs. However,
these methods only return results based on a
given query and do not generate natural language
queries automatically. Auto-Formula (Chen et al.,
2024) predicts and suggests formula syntax for
spreadsheet-based analysis. Table2Analysis (Zhou
et al., 2020) and MetaInsight (Ma et al., 2021)
automatically recommends common analysis
without requiring user input.

Tabular Data Visualization. Visualizing data
helps users quickly understand complex patterns
and relationships. Table2Charts (Zhou et al.,
2021) applies sequence token sampling and
reinforcement learning to recommend different
chart types. Furmanova et al. (Furmanova
et al., 2019) developed a tool for automatically
combining overview and details in tabular data
visualizations. AdaVis (Zhang et al., 2023) uses
knowledge graphs to adaptively recommend one
or multiple suitable visualizations for a dataset.
LLMs have further improved data visualization.
Chart2VIS (Maddigan and Susnjak, 2023) lever-
ages LLMs for natural language-to-visualization
tasks by generating Python code for chart creation.
ChartLlama (Han et al., 2023), a multi-modal
LLM, shows strong chart generation capabilities
but does not recommend charts based on existing
data.

Statistical Modeling of Tabular Data Statistical
modeling in tabular data focuses on building mod-
els to recognize patterns and relationships. RIM
(Qin et al., 2021) enhances tabular data prediction

with a retrieval module. GReaT (Borisov et al.,
2022) uses a decoder-only transformer to model
data distributions and generate realistic synthetic
data. GTL (Wen et al., 2024) integrates LLMs
with deep learning techniques for regression and
classification tasks. TabDDPM (Kotelnikov et al.,
2024) is a diffusion model that can handle any
tabular dataset and support various feature types.

Despite these advancements, most existing meth-
ods are task-specific and do not support multiple
types of analysis within a single framework. This
limitation prevents users from obtaining a compre-
hensive view of their data. Currently, no unified
system seamlessly integrates table analysis, visu-
alization, and statistical modeling. A complete
all-in-one framework would allow users to explore
data more effectively from different perspectives.
Moreover, existing methods primarily emphasize
the accuracy of analysis results while neglecting
the importance of aligning with human analytical
preferences.

3 Methodology

3.1 Task Formulation

Tabular Data Analysis Recommendation. In the
task of tabular data analysis recommendation, the
objective is to generate a series of recommended
data analysis queries q, corresponding code c, and
execution results r for a given table T under a zero-
turn setting (i.e., with no user profile or historical
context). The table Ta×b contains a rows and b
columns, where Ci,j denotes the cell in the i-th
row and j-th column. For each table T, n analysis
results A is recommended in triplets:

A =
{ (

qi, ci, ri
)}n

i=1
, (1)

where each triplet a = (q, c, r) represents a single
recommended analysis result.

3.2 Framework

To generate recommendation results from a given
table, we propose TablePilot, a four-step analysis
framework, as illustrated in Figure 2. The frame-
work consists of Analysis Preparation, Module-
based Analysis, Analysis Optimization, and Analy-
sis Ranking. A new table T is provided as input to
generate the recommended results A.

TablePilot(T) = A. (2)

357

Step 1: Analysis Preparation

Table

Recommended
Analysis
Results

Table Sampling

Table Explanation

Sampled Table

Table Information

TablePilot

Processed
Table

Step 2: Module-based Analysis

Statistics Modeling Agent

Calculate the mean …
Reset the index …

Create a pivot table
summarizing …

Construct a combo
chart with a …

Create figure and axis
Plot bar chart for the …

Prepare independent …
Build the OLS model …

Perform a linear
regression with …

Table Theme
Column
Definition &
Relationship

Table Visualization Module

Statistics Modeling Module

Multimodal
Revision

Combined results
Executor

Step 3: Analysis Optimization

Interpretable: 2 Be confusing to …
Diversity: 2, a common visualization
Relative: 3, Directly plotted against
Reasonable: 4, Directly aligns with
Meaningful: 4, Helps identify potent
Insightful: 4, Provide clear difference

Interpretable: 4 Still quite clear ...
Diversity: 2, a common visualization …
Relative: 3, Directly plotted against …
Reasonable: 4, Directly aligns with …
Meaningful: 4, Helps identify potentia
Insightful: 4, Provide clear differences

Interpretable: 5 Very straightforward ...
Diversity: 2 A common visualization …
Relative: 3 Directly plotted against …
Reasonable: 4 Directly aligns with …
Meaningful: 4 Helps identify potential …
Insightful: 4 Provide clear differences …

Ranking
Optimized

Query &
Result

Step 4: Analysis Ranking

Basic Analysis Module

Figure 2: The TablePilot framework. Step 1: Sample the input table and generate corresponding explanations for its
structure and content. Step 2: Generate query and code for modules involving basic analysis, table visualization,
and statistics modeling. Step 3: Optimize the quality of <query, code, result> triplets. Step 4: Score and rank the
optimized results based on multiple criteria to recommend the top-K analysis. TablePilot Case Study and Analysis
Report can be seen at Appendix K and Appendix L.

Step 1: Analysis Preparation. The objective of
this step is to transform raw tabular data into a more
focused form that facilitates efficient analysis. This
step involves two key tasks: sampling a subset of
the table and generating a table explanation.

Raw tables often contain large amounts of data,
much of which may not be relevant for a specific
analysis task. Sampling extracts a representative
subset of the table, capturing essential patterns
while reducing computational load and focusing
the analysis on key data points. This process in-
volves selecting a subset of rows from the original
table:

Sampling(Ta×b) = T′
a′×b′ , (3)

where T′ represents the sampled table, a′ denotes
the number of selected rows, and b′ denotes the
number of selected columns.

Additionally, generating a table explanation is
crucial for structuring the data, making column re-
lationships and the table’s overall theme clearer and
more interpretable. This explanation includes meta-
data such as the table’s theme, column descriptions,
and relationships between different columns, all of
which guide subsequent analysis. The explanation
is denoted as E:

Explanation(T) = E. (4)

Step 2: Module-based Analysis. In this step, we

perform a module-based analysis on the sampled
table T′ and its corresponding table explanation E.
The goal is to generate analysis results by applying
specialized modules to different aspects of the data.
These modules focus on basic analysis (ba), data
visualization (dv), and statistical modeling (sm).
Each module takes T′ and E as inputs to generate
meaningful query-code pairs (q, c):

Mk(T′, E) = (qk, ck), (5)

where k ∈ {ba, dv, sm} represents the three differ-
ent analysis task.

The Basic Analysis module (Mba) applies fun-
damental yet powerful techniques to explore the
data, performing operations such as filtering, group-
ing, sorting, and aggregation. The Data Visual-
ization module (Mdv) generates visual represen-
tations of the data to reveal patterns, trends, and
relationships. The Statistical Modeling module
(Msm) applies advanced statistical techniques to
analyze the data and uncover deeper insights. It
may involve regression analysis, hypothesis testing,
or predictive modeling, depending on the analysis
objectives.

Step 3: Analysis Optimization In this step, we
first execute the code to obtain results r for each

358

code ck:

Execution(T, ck) = r =





T, if k = ba

V, if k = dv

M, if k = sm

(6)

where T represents the sub-table after data manipu-
lation in basic analysis, V denotes the result of data
visualization, and M corresponds to the output of
statistical modeling. The result of data visualiza-
tion, r = V , is also an image r = I , which will
be used as input for the vision module of LLMs at
a later stage. We then combine the query q, code
c, and result r into an analysis triplet a = (q, c, r).
The results r = Error indicate an error in the code
execution.

Next, we refine the analysis triplet a based on the
results from table sampling T and explanation E.
The optimization process utilizes LLMs to improve
the alignment of queries and code with the data and
analysis intent, ensuring more accurate and mean-
ingful results. There are two different strategies for
LLMs to optimize triplets, depending on whether
the result contains an error. After refinement, the
optimized code is executed to generate the final
enhanced execution results, yielding an optimized
triplet a′ = (q′, c′, r′):

a′ =

{
OptimizeA(q, c, r | T, E), if r ̸= Error
OptimizeB(q, c, r | T, E), if r = Error

(7)
Step 4: Analysis Ranking In the final step, the
objective is to evaluate and rank all the (q, c, r)
triplets A = ai

n
i=1 that were generated and opti-

mized in the previous step. To achieve this, we
design a ranking module that scores each triplet
based on multiple dimensions, such as relevance,
diversity, and other key factors (criteria detailed in
Appendix H). These scores are then aggregated to
compute an overall score s. Using these scores, the
triplets are ranked in descending order, allowing us
to select the top k results:

A′
k = Topk

(
Rank

({
(q′, c′, r′)i

}n

i=1

))
(8)

After scoring, ranking, and selecting the top-k
results A′

k, the final triplets are recommended to
users.

3.3 Training
The training process in TablePilot is designed to en-
hance the model’s ability to generate high-quality

analysis results, with a focus on accurate query-
code generation and human-preferred ranking of
analysis triplets a = (q, c, r). We primarily em-
ploy Supervised Fine-Tuning (SFT) and Direct
Preference Optimization (DPO) (introduced in Ap-
pendix J), both widely used techniques for tuning
LLMs. SFT is used to ensure that each module
follows our instructions for performing tasks. Ad-
ditionally, we introduce Rec-Align, implemented
via DPO, to enhance our ranking module, further
refining recommendation quality and ensuring that
the selected results align more closely with human
preferences.

Our training strategy consists of the following
key components:
• Analysis SFT trains the LLMs in three analy-

sis module (Mba, Mdv, Msm) to improve their
ability to follow instructions, generating relevant
queries and accurate code. This enhances the
accuracy of the analysis.

• Rank SFT trains the LLMs in the ranking mod-
ule Rank to better follow instructions in evaluat-
ing each analysis triplet based on comprehensive
criteria and assigning appropriate scores. This
ensures that the ranking model adheres to our
guidelines when ranking triplets..

• Rank DPO implements Rec-Align through DPO
to refine the evaluation of analysis triplets in
Rank, ensuring that evaluation and scoring are
more closely aligned with human analytical pref-
erences. This further enhances the quality of the
recommended analysis.

4 Experiments

4.1 Experiment Settings

To support, validate the framework, and evaluate its
performance, we carefully curate a dataset, DART.
Details on the dataset can be found in Appendix C.

In our experiments, we evaluate the performance
of TablePilot on three typical analysis tasks: Basic
Analysis, Data Visualization, and Statistics Mod-
eling. Additionally, we consider them collectively
without distinction for the overall evaluation. We
aim to evaluate the result of query–code–result
triplets for a given table. To assess the quality
of code generation, we use the execution rate as a
metric. For the quality of the final results in recom-
mendation, we evaluate using Recall@K. Detailed
evaluation metrics can be found in Appendix B.

We selected three state-of-the-art vision-

359

Method
Basic Analysis Data Visualization Statistics Modeling Overall

R@3 R@5 R@N R@3 R@5 R@N R@3 R@5 R@N R@3 R@5 R@N

GPT-4o
Baseline 13.00 20.11 42.00 17.57 26.30 53.40 15.08 27.08 56.67 38.11 52.11 80.00
Vanilla 14.05 21.07 50.67 35.84 48.81 69.37 15.48 38.91 59.58 53.51 70.90 87.67
Analysis SFT + Rank Vanilla 15.67 22.33 55.33 43.88 53.06 70.41 20.00 30.42 61.25 59.00 72.67 89.00
Analysis SFT + Rank SFT 15.67 28.00 55.33 41.84 53.06 70.41 21.25 38.33 61.25 58.00 74.33 89.00
Analysis SFT + Rank SFT-V 15.33 25.67 55.33 44.22 54.42 70.41 16.25 45.83 61.25 61.00 75.00 89.00
Analysis SFT + Rank SFT & DPO 19.33 30.00 55.33 42.86 52.72 70.41 20.42 42.08 61.25 61.33 76.00 89.00
Analysis SFT + Rank SFT-V & DPO 17.67 26.00 55.33 43.88 54.78 70.41 22.92 47.08 61.25 63.00 77.00 89.00

GPT-4o-mini
Baseline 15.99 24.94 35.33 27.33 39.33 44.22 3.61 6.67 35.33 29.33 42.44 62.67
Vanilla 8.67 10.67 38.33 40.48 50.34 56.12 5.54 10.83 38.33 45.33 56.67 78.33
Analysis SFT + Rank Vanilla 13.00 57.14 46.67 44.22 25.33 64.29 1.67 10.42 59.58 52.00 68.67 85.00
Analysis SFT + Rank SFT 24.91 34.33 46.67 34.15 45.24 64.29 12.02 32.08 59.58 56.66 71.67 85.00
Analysis SFT + Rank SFT-V 16.00 24.33 46.67 46.60 54.08 64.29 22.50 43.33 59.58 61.00 75.00 85.00
Analysis SFT + Rank SFT & DPO 21.33 32.67 46.67 42.86 50.34 64.29 16.25 27.05 59.58 60.33 73.67 85.00
Analysis SFT + Rank SFT-V & DPO 21.00 29.00 46.67 40.14 51.02 64.29 22.92 49.17 58.58 62.33 76.67 85.00

Phi-3.5-vision
Baseline 3.00 4.00 5.00 1.36 3.40 4.08 0.00 0.00 0.42 4.33 7.00 8.67
Vanilla 1.43 1.79 13.33 1.83 1.83 3.74 3.12 3.12 7.92 5.73 6.09 21.67
Analysis SFT + Rank Vanilla 3.77 3.77 24.00 3.83 4.53 9.52 18.45 19.31 32.50 20.89 21.58 47.67
Analysis SFT + Rank SFT 6.85 14.04 24.00 2.79 4.18 9.52 15.88 22.75 32.50 20.89 32.19 47.67
Analysis SFT + Rank SFT-V 5.14 13.01 24.00 1.74 3.14 9.52 19.31 21.89 32.50 21.23 30.14 47.67
Analysis SFT + Rank SFT & DPO 8.90 15.07 24.00 1.74 3.83 9.52 18.88 23.61 32.50 23.97 32.88 47.67
Analysis SFT + Rank SFT-V & DPO 7.53 14.38 24.00 1.74 2.09 9.52 19.31 25.32 32.50 23.63 32.19 47.67

Table 1: Recall across multiple models and experimental settings (all values in %). Experimental results demonstrate
the effectiveness of TablePilot, with Analysis SFT + Rank SFT-V & DPO generally achieving the best performance.

language models of varying sizes and availability,
including both private and open-source options,
as the foundation models: GPT-4o, GPT-4o-mini,
and Phi-3.5-Vision. These models were chosen for
their strong vision-language interaction capabil-
ities, making them well-suited for multi-modal
refinement.

We conduct multiple comparative experiments to
comprehensively evaluate performance. The base-
line experiments exclude all components of our
proposed framework, relying on a single prompt to
generate queries and code across all three task cat-
egories, with recall computed via random ranking.
In contrast, vanilla experiments employ TablePilot
without additional model tuning. Subsequent exper-
iments examine different components of TablePi-
lot, incorporating tuning methods such as SFT
and DPO. The definitions of Analysis SFT, Rank
SFT, and Rank DPO are detailed in Section 3.
Rank Vanilla represents random ranking over three
rounds, while the -V notation denotes the inclusion
of vision input during training.

We then compare these experimental results to
assess the impact of each tuning strategy on overall

Method
ExecRate

Basic Analysis Data Visualization Statistics Modeling

GPT-4o
Baseline 96.07 95.00 95.00
Vanilla 99.67 99.67 99.44
Analysis SFT 100.00 99.93 99.33

GPT-4o-mini
Baseline 91.37 88.75 56.11
Vanilla 96.32 97.80 92.76
Analysis SFT 99.40 99.66 98.73

Phi-3.5-vision
Baseline 44.17 26.65 10.83
Vanilla 77.03 57.55 65.78
Analysis SFT 87.80 99.28 85.11

Table 2: Execution rate across multiple models and
experimental settings (all values in %)

performance improvements. Detailed experimen-
tal settings are provided in Appendix D, and the
corresponding prompts are listed in Appendix M.

4.2 Main Results

TablePilot Performance. As illustrated in Table 5
and Table 6, TablePilot delivers substantial perfor-

360

mance improvements across various models with-
out the need for fine-tuning LLMs. In particular,
GPT-4o benefits from TablePilot, exhibiting im-
provements across all key metrics, with a 4.24%
increase in execution rate and recall at different
thresholds, especially make 18.79% gain in Re-
call@5 which is considered as the most balanced
metric. These consistent gains across all tasks
demonstrate the method’s effectiveness in enhanc-
ing LLM performance without manual adjustments
or additional tuning.

Notably, we observe some performance drops in
certain analysis among three analysis tasks. This is
due to a diverse analysis trade-off effect, where
an excessively high recall in one task may lead to a
decline in recall for others. Therefore, overall recall
serves as a more reliable measure of the method’s
overall performance.

TablePilot Performance after Tuning. Super-
vised Fine-Tuning significantly improves both anal-
ysis and ranking tasks. Vision-enabled SFT further
enhances ranking performance, especially when
combined with DPO applied to vision components.
While GPT-4o sees modest gains over the vanilla
workflow, GPT-4o-mini improves by 10–20% on
average, with some cases reaching 20 points. Phi-
3.5-vision shows the most notable improvement,
exceeding 20% on average, with rank@N increas-
ing by 26%. These results highlight the impor-
tance of tuning in optimizing TablePilot, ensuring
alignment with human values for more robust and
valuable outputs.

Supervised Fine-Tuning significantly improves
both analysis and ranking tasks. Vision-enabled
SFT further enhances ranking performance, espe-
cially when combined with DPO applied to vi-
sion components, resulting in a 9.49% boost in
Recall@3 and 6.10% in Recall@5 for GPT-4o.
The most pronounced improvements are observed
in smaller language models, as detailed in Ap-
pendix E. These results underscore the importance
of fine-tuning in optimizing TablePilot, ensuring
alignment with human preferences for more robust
and valuable outputs.

Ablation Study. Each components of the TablePi-
lot workflow (Sampling, Explanation, Revision,
and Ranking) contributes to a consistent improve-
ment in the overall system performance. The com-
plete results of the ablation experiments are pre-
sented in Appendix F.

4.3 Analysis of Rec-Align
Our proposed Rec-Align, implemented via DPO,
consistently improves model performance across
various configurations and tasks by enhancing
alignment with user expectations in ethical and
qualitative aspects. GPT-4o benefits from a 2%
increase in Recall@3 and Recall@5, while smaller
models exhibit even greater performance gains after
applying Rec-Align, as shown in Table 5. We also
observed that in the vanilla ranking mode, some
models initially exhibit scoring biases toward spe-
cific tasks like data visualization. Rec-Align mit-
igates this imbalance, resulting in a more diverse
ranked list and guiding models to generate outputs
that better reflect human preferences.

4.4 Human Evaluation

Rating 5 4 3 2 1 Avg ≥ 4 ≥ 3 ≤ 2

Baseline 47 71 92 46 44 3.10 118 210 90
TablePilot (Vanilla) 114 61 79 25 21 3.74 175 254 46
TablePilot (Tuned) 146 75 48 28 3 4.11 221 269 31

Table 3: Results of human evaluation ratings

Table 3 presents human evaluation results on 300
test tables from DART. TablePilot (Tuned) achieves
the highest mean score, the largest proportion of
high-rated outputs (ratings ≥ 3), and the lowest
proportion of low-rated outputs (rating ≤ 2). The
Wilcoxon signed-rank test(Wilcoxon et al., 1963)
confirms significant improvements at a 95% confi-
dence level, supporting the effectiveness of TablePi-
lot and Rec-Align in enhancing recommendation
quality. Further details on evaluation methodology
and criteria are provided in Appendix I.

5 Conclusion

In this paper, we introduce TablePilot, a compre-
hensive data analysis recommendation framework
powered by large language models. Extensive ex-
periments demonstrate TablePilot ’s superior per-
formance, marking a new milestone in tabular data
analysis recommendation.

Limitations

Our work presents an exploratory study on com-
prehensive tabular data analysis, with several limi-
tations including workflow fragmentation, limited
interactivity, and constraints of DPO. For further
discussion on the extendability of TablePilot and
future directions, please refer to Appendix A.

361

References

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin
Pawelczyk, and Gjergji Kasneci. 2022. Language
models are realistic tabular data generators. arXiv
preprint arXiv:2210.06280.

Lang Cao. 2025. Tablemaster: A recipe to advance
table understanding with language models. Preprint,
arXiv:2501.19378.

Sibei Chen, Yeye He, Weiwei Cui, Ju Fan, Song Ge,
Haidong Zhang, Dongmei Zhang, and Surajit Chaud-
huri. 2024. Auto-formula: Recommend formulas
in spreadsheets using contrastive learning for table
representations. Proceedings of the ACM on Man-
agement of Data, 2(3):1–27.

Wenhu Chen. 2022. Large language models are
few (1)-shot table reasoners. arXiv preprint
arXiv:2210.06710.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact : A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2023. Safe rlhf: Safe reinforcement learning from
human feedback. arXiv preprint arXiv:2310.12773.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Jane Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, Christos Falout-
sos, et al. 2024. Large language models (llms) on tab-
ular data: Prediction, generation, and understanding-
a survey.

Katarina Furmanova, Samuel Gratzl, Holger Stitz,
Thomas Zichner, Miroslava Jaresova, Alexander Lex,
and Marc Streit. 2019. Taggle: Combining overview
and details in tabular data visualizations. Information
Visualization, 19(2):114–136.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Mahdi Ghasemi and Daniel Amyot. 2016. Process
mining in healthcare: a systematised literature re-
view. International Journal of Electronic Healthcare,
9(1):60–88.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal llm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Xinyi He, Jiaru Zou, Yun Lin, Mengyu Zhou, Shi
Han, Zejian Yuan, and Dongmei Zhang. 2024. Co-
cost: Automatic complex code generation with on-
line searching and correctness testing. arXiv preprint
arXiv:2403.13583.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2024. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Transactions on Information
Systems.

Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao
Lu, Jieping Ye, and Feng Zhao. 2024. Tree-of-
table: Unleashing the power of llms for enhanced
large-scale table understanding. arXiv preprint
arXiv:2411.08516.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev,
and Artem Babenko. 2024. Tabddpm: Mod-
elling tabular data with diffusion models. Preprint,
arXiv:2209.15421.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
2024. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye,
and Xianhui Liu. 2021. Gfte: graph-based financial
table extraction. In Pattern Recognition. ICPR Inter-
national Workshops and Challenges: Virtual Event,
January 10–15, 2021, Proceedings, Part II, pages
644–658. Springer.

Pingchuan Ma, Rui Ding, Shi Han, and Dongmei Zhang.
2021. Metainsight: Automatic discovery of struc-
tured knowledge for exploratory data analysis. In
Proceedings of the 2021 international conference on
management of data, pages 1262–1274.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: gen-
erating data visualizations via natural language using
chatgpt, codex and gpt-3 large language models. Ieee
Access, 11:45181–45193.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
Preprint, arXiv:1508.00305.

362

https://arxiv.org/abs/2501.19378
https://arxiv.org/abs/2501.19378
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.5555/3618408.3619133
https://doi.org/10.5555/3618408.3619133
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/1508.00305

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Wei-
wen Liu, Ruiming Tang, Xiuqiang He, and Yong Yu.
2021. Retrieval & interaction machine for tabular
data prediction. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1379–1389.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18990–18998.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645–654.

Yuzhang Tian, Jianbo Zhao, Haoyu Dong, Junyu Xiong,
Shiyu Xia, Mengyu Zhou, Yun Lin, José Cambronero,
Yeye He, Shi Han, et al. 2024. Spreadsheetllm:
encoding spreadsheets for large language models.
arXiv preprint arXiv:2407.09025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
Preprint, arXiv:2401.04398.

Xumeng Wen, Han Zhang, Shun Zheng, Wei Xu, and
Jiang Bian. 2024. From supervised to generative: A
novel paradigm for tabular deep learning with large
language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 3323–3333.

F. Wilcoxon, S.K. Katti, and R.A. Wilcox. 1963. Crit-
ical Values and Probability Levels for the Wilcoxon
Rank Sum Test and the Wilcoxon Signed Rank Test.
American Cyanamid.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
and Vadim Sheinin. 2018. Sql-to-text generation
with graph-to-sequence model. arXiv preprint
arXiv:1809.05255.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023a. Large language mod-
els are versatile decomposers: Decompose evidence
and questions for table-based reasoning. Preprint,
arXiv:2301.13808.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023b. Large language
models are versatile decomposers: Decomposing ev-
idence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174–184.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao
Zheng, Maosong Sun, et al. 2024. Rlhf-v: Towards
trustworthy mllms via behavior alignment from fine-
grained correctional human feedback. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13807–13816.

Songheng Zhang, Haotian Li, Huamin Qu, and Yong
Wang. 2023. Adavis: Adaptive and explainable visu-
alization recommendation for tabular data. Preprint,
arXiv:2310.11742.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. A survey
of table reasoning with large language models. Fron-
tiers of Computer Science, 19(9):199348.

Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu
Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and
Haidong Zhang. 2024. Nl2formula: Generating
spreadsheet formulas from natural language queries.
arXiv preprint arXiv:2402.14853.

Mengyu Zhou, Qingtao Li, Xinyi He, Yuejiang Li, Yibo
Liu, Wei Ji, Shi Han, Yining Chen, Daxin Jiang, and
Dongmei Zhang. 2021. Table2charts: recommend-
ing charts by learning shared table representations.
In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, pages
2389–2399.

Mengyu Zhou, Wang Tao, Ji Pengxin, Han Shi, and
Zhang Dongmei. 2020. Table2analysis: Modeling
and recommendation of common analysis patterns for
multi-dimensional data. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 320–328.

363

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://books.google.com/books?id=GS3aGAAACAAJ
https://books.google.com/books?id=GS3aGAAACAAJ
https://books.google.com/books?id=GS3aGAAACAAJ
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2310.11742
https://arxiv.org/abs/2310.11742

Contents of Appendix

A Extendability Analysis and Future Works 11

B Evaluation Metrics 11

C DART Dataset details 12

D Detailed Experiment Settings 13

E Complete Experiment Results 13

F Ablation Study 14

G Analysis of Incorporating Vision in Training 14

H Ranking Criteria 15

I Human Evaluation 16

J Direct Preference Optimization 17

K Case Study 18

L TablePilot Report Generation 27

M Prompt Design 31

364

A Extendability Analysis and Future
Works

In this paper, we present an exploratory study
on comprehensive tabular data analysis. Several
important extensions of our proposed framework,
TablePilot, remain open for future work.

Data Curation. We provide the dataset DART
to support model training and to validate the
performance of TablePilot. However, the current
dataset has several limitations: it is relatively small
in scale, lacks image-contrastive data necessary for
effective multi-modal SFT and DPO, and contains
limited high-quality samples. We believe that with
more carefully curated data and improved data
construction pipelines, TablePilot could achieve
significantly better performance and enable more
powerful analytical capabilities.

Multi-Modal Training. One significant direction
for extending TablePilot lies in the integration
of multi-modal GPT-based models, such as
multi-modal SFT and DPO. As previously
mentioned, higher-quality multi-modal training
data is crucial for achieving better performance.
In addition, current GPT-series models on the
Azure platform do not yet support multi-modal
DPO, limiting our ability to fully leverage visual
information during optimization. Multi-modal
DPO could substantially improve TablePilot ’s
ability to evaluate and analyze results based on
figures and visualizations. Furthermore, how
to design multi-stage training pipelines that
balance SFT and DPO to achieve optimal model
performance remains an open challenge. We
believe that, with the integration of more advanced
multi-modal capabilities, TablePilot can generate
richer analytical insights, enhance contextual
understanding, and better align with how human
analysts interpret complex, heterogeneous data
sources.

Analysis Modularization. The current version
of TablePilot supports three types of analysis:
Basic Analysis, Table Visualization, and Statistical
Modeling. These analyses are implemented in a
modularized manner, allowing flexible composi-
tion and extension. As these three represent some
of the most classical forms of tabular data analysis,
they provide a strong foundation for various use
cases. In the future, more diverse or specialized

analysis modules can be easily integrated into
TablePilot, showcasing the flexibility of our
framework. Furthermore, in different downstream
application scenarios, TablePilot can adaptively
select and combine specialized analysis modules
to better address domain-specific needs.

System Internal Interaction. The current
framework of TablePilot is unidirectional, with
different analysis modules operating in parallel
without internal interaction. In the future, we aim
to extend TablePilot into a multi-agent system,
enabling richer interactions between modules.
For example, different analysis modules could
complement and enrich each other’s data, and
the ranking module could provide feedback to
guide the analysis modules. We believe that such
a design would make the system more intelligent
and capable of generating higher-quality analytical
recommendations.

Efficiency Optimization. Our current TablePilot
framework involves multiple large language model
(LLM) calls, which can lead to efficiency issues.
In the future, we plan to improve efficiency by
replacing certain modules with smaller language
models or well-trained traditional machine learning
models. Additionally, optimizing and compressing
prompts will help streamline the pipeline and fur-
ther enhance overall efficiency.

B Evaluation Metrics

In our experiments, we adopt two primary metrics
to evaluate system performance comprehensively:
Execution Rate (abbreviated as ExecRate) and Re-
call.

ExecRate quantifies the accuracy and stability of
generated code by measuring whether it executes
without error and returns the expected output. This
metric is consistently applied across all modules
(Basic Analysis, Table Visualization, and Statistical
Modeling) by calculating the ratio of successful
executions to the total number of generated outputs.

Recall serves as our key indicator for retrieval ac-
curacy, assessing whether the correct result appears
among the top-ranked candidates. We distinguish
among three variants: Recall@All, Recall@5, and
Recall@3. Recall@All checks if the correct result
is present anywhere in the candidate set, while Re-
call@5 and Recall@3 evaluate if it ranks within
the top five and top three candidates, respectively.

365

35
.9
6%

40.
65%

22.39%

Filter

Sort

Group
By

Ins
ert

Pivot
Table

Regression

Correlation

Forecast

Line
Chart Bar

Chart

Combo
Chart

Scatter
Chart

Stack
Chart

Box
Chart

Others

Figure 3: Statistics of the test split of the DART dataset.
We can categorize data analysis tasks into three major
groups: Basic Analysis (35.96%), Table Visualization
(40.65%), and Statistics Modeling (22.39%). This dis-
tribution highlights the diversity of analytical tasks cov-
ered in the dataset.

For Basic Analysis, success is defined by an ex-
act match of the output table to the expected re-
sult. In Table Visualization, the evaluation hinges
on the precise match of generated chart informa-
tion—including x_fields, y_fields, and chart_type.
For Statistical Modeling, evaluation is further sub-
divided into Regression, Correlation, and Forecast
tasks. Specifically, Regression is deemed success-
ful if the Mean Absolute Percentage Error (MAPE)
is ≤ 1.0, Correlation if the p-value is < 0.05, and
Forecast if the R-squared value is > 0.9, with the
additional requirement that the table column rela-
tionships align with the expected structure. These
metrics ensures a robust assessment of both execu-
tion reliability and the system’s ability to prioritize
accurate results.

C DART Dataset details

To support and validate the performance of TablePi-
lot, we conducted an investigation on the ta-
ble dataset DART (representing Data Analysis
Recommendation for Tables). Existing datasets,
such as those in the Text2SQL domain (Xu et al.,
2018; Lei et al., 2024), which focus on SQL-like
analytical QA tasks, and the Table2Charts domain
(Han et al., 2023; Zhou et al., 2021), which special-
izes in table-to-chart QA and conversion, are de-
signed for specific domains rather than comprehen-
sive analysis. Additionally, even common analysis
datasets like Text2Analysis (Zhou et al., 2020) are
primarily designed for TableQA scenarios, making

them misaligned with our proposed task of zero-
turn data analysis recommendation. As a result, we
constructed a custom dataset to better support our
tasks. To the best of our knowledge, DART is the
first dataset dedicated to recommending compre-
hensive tabular data analysis operations.

Our dataset construction process was inspired by
Table2Charts (Zhou et al., 2021), which contains a
collection of real-world tables. We leveraged these
tables as a foundation for synthetic data generation,
ensuring that the dataset retained realistic tabular
structures while expanding its applicability to our
target tasks. The data generation process was
conducted using o1 and consisted of three main
step:

1. Table Selection. We filtered the tables from
Table2Charts, selecting those that were most
suitable for data analysis tasks with strong tab-
ular structures. This selection process ensured
that the tables contained sufficient variability
in structure, numerical and categorical distribu-
tions, and contextual relevance for analytical
queries.

2. Label Generation. For each of the three tasks,
o1 was employed to generate a diverse set
of queries and their corresponding code im-
plementations. The queries were designed to
cover a range of complexity levels, from simple
transformations to advanced statistical model-
ing tasks. The code snippets were generated in
Python, incorporating libraries such as Pandas,
Matplotlib, and StatsModels, ensuring their
practical applicability. However, from all the
generated queries and code, we carefully se-
lected only those that were able to successfully
produce the expected results.

3. Human Evaluation. We manually curated a
subset of 300 tables to ensure diversity in struc-
ture and analytical needs. From the generated
triplets, we selected those that met specific cri-
teria for clarity, correctness, and so on based
on human preferences. This process resulted
in a test set that reflects real-world analytical
tasks. The test set was then used to evaluate
the model’s performance, particularly through
metric recall, providing a robust benchmark for
TablePilot ’s capabilities. Finally, DART con-
sists of 300 data from different tables. The
dataset distribution is shown in Figure 3.

366

Model Parameter Supervised Fine-Tuning (SFT) Direct Preference Optimization (DPO)

GPT-4o / GPT-4o-mini
Learning Rate 1× 10−6 5× 10−7

Number of Epochs 6 2
Batch Size 64 32

Phi-3.5-Vision

Learning Rate 1× 10−5 5× 10−7

Number of Epochs 3 2
Batch Size 8 8
Full-Parameter Training Yes No

Table 4: Training Parameters for GPT-4o, GPT-4o-mini, and Phi-3.5-Vision Models

D Detailed Experiment Settings

We use the trl package to fine-tune open-source
models on a workstation equipped with 4 × A100
Nvidia GPUs. LoRA fine-tuning (Hu et al.,
2021) is applied to train GPT-series models on
the Azure platform 1, leveraging its scalable in-
frastructure. The models used in our experi-
ments include GPT-4o (gpt-4o-08-06), GPT-4o-
mini (gpt-4o-mini-2024-07-18), and Phi-3.5-Vision
(microsoft/Phi-3.5-vision-instruct). OpenAI o1
used in our study are o1-2024-12-17. The detailed
training parameters can be found in Table 4.

For inference, the parameters are set as follows
for all models, including both open-source and
private models: temperature is 0, max tokens is
6000, top-p is 0.95, frequency penalty is 0, pres-
ence penalty is 0, and stop is set to None. All other
settings are configured to their default values. In-
ference stage is also conducted in 4 × A100 Nvidia
GPUs.

In the SFT phase, we used o1 to generate a batch
of data tailored to the task requirements. To en-
sure the quality of the data, we employed LLM-
based evaluation along with manual sampling. For
fine-tuning the module-based analysis, we used
800 training samples and 100 validation samples
for both the basic analysis and table visualization
modules. Due to the complexity of its tasks, the
statistics modeling module was trained using 1,100
samples, with 100 samples reserved for validation.

In the DPO phase, we first performed an SFT run
on the ranking module using 342 ranked samples
generated by o1. Afterward, DPO training was con-
ducted with 1,000 positive and negative samples.
The positive samples consisted of ranking results
generated by o1, which were manually adjusted
based on preference calibration. The negative sam-
ples were disordered ranking results produced by

1https://azure.microsoft.com/en-us/

GPT-4o-mini.

E Complete Experiment Results

This section presents the complete experimental
results of TablePilot, covering Recall at different
thresholds (Recall@3, Recall@5, and Recall@N)
as well as the Execution Rate across the three anal-
ysis modules.
Recall. Following the application of the TablePi-
lot framework, GPT-4o-mini exhibited significant
improvements, achieving enhanced results across
all three analysis tasks and demonstrating strong
potential in overall Recall@N with a notable in-
crease of 15.66%. Similarly, Phi-3.5-vision also
realized comprehensive gains, securing a 13.00%
improvement in overall Recall@N. After training
with SFT and DPO, TablePilot further improved
upon the vanilla framework. Notably, Phi-3.5-
vision achieved increases of 15.33% in Basic Anal-
ysis, 16.19% in Data Visualization, and 24.58% in
Statistical Modeling. With the integration of Rec-
Align, GPT-4o-mini achieved peak improvements
of 10.33% and 8.00% for Recall@3 and Recall@5,
respectively, while Phi-3.5-vision showed maxi-
mum gains of 3.08% and 11.30%.

Extensive experimental results confirm that in-
corporating vision-based training enhances the
model’s performance in recall by integrating ad-
ditional dimensions of information. However, after
introducing vision-based training to Phi-3.5-vision,
its ranking performance declined. Our analysis in-
dicates that this drop is due to a gap introduced
by model pretrained ability, which was validated
through comparative experiments. Detailed instruc-
tions are provided in Appendix G.
Execution Rate. The execution rate of the gener-
ated query code demonstrated a steady improve-
ment following optimization with the TablePilot
framework. GPT-4o-mini achieved an execution

367

Method
Basic Analysis Data Visualization Statistics Modeling Overall

R@3 R@5 R@N R@3 R@5 R@N R@3 R@5 R@N R@3 R@5 R@N

GPT-4o
Baseline 13.00 20.11 42.00 17.57 26.30 53.40 15.08 27.08 56.67 38.11 52.11 80.00
Vanilla 14.05 21.07 50.67 35.84 48.81 69.37 15.48 38.91 59.58 53.51 70.90 87.67
Analysis SFT + Rank Vanilla 15.67 22.33 55.33 43.88 53.06 70.41 20.00 30.42 61.25 59.00 72.67 89.00
Analysis SFT + Rank SFT 15.67 28.00 55.33 41.84 53.06 70.41 21.25 38.33 61.25 58.00 74.33 89.00
Analysis SFT + Rank SFT-V 15.33 25.67 55.33 44.22 54.42 70.41 16.25 45.83 61.25 61.00 75.00 89.00
Analysis SFT + Rank SFT & DPO 19.33 30.00 55.33 42.86 52.72 70.41 20.42 42.08 61.25 61.33 76.00 89.00
Analysis SFT + Rank SFT-V & DPO 17.67 26.00 55.33 43.88 54.78 70.41 22.92 47.08 61.25 63.00 77.00 89.00

GPT-4o-mini
Baseline 15.99 24.94 35.33 27.33 39.33 44.22 3.61 6.67 35.33 29.33 42.44 62.67
Vanilla 8.67 10.67 38.33 40.48 50.34 56.12 5.54 10.83 38.33 45.33 56.67 78.33
Analysis SFT + Rank Vanilla 13.00 57.14 46.67 44.22 25.33 64.29 1.67 10.42 59.58 52.00 68.67 85.00
Analysis SFT + Rank SFT 24.91 34.33 46.67 34.15 45.24 64.29 12.02 32.08 59.58 56.66 71.67 85.00
Analysis SFT + Rank SFT-V 16.00 24.33 46.67 46.60 54.08 64.29 22.50 43.33 59.58 61.00 75.00 85.00
Analysis SFT + Rank SFT & DPO 21.33 32.67 46.67 42.86 50.34 64.29 16.25 27.05 59.58 60.33 73.67 85.00
Analysis SFT + Rank SFT-V & DPO 21.00 29.00 46.67 40.14 51.02 64.29 22.92 49.17 58.58 62.33 76.67 85.00

Phi-3.5-vision
Baseline 3.00 4.00 5.00 1.36 3.40 4.08 0.00 0.00 0.42 4.33 7.00 8.67
Vanilla 1.43 1.79 13.33 1.83 1.83 3.74 3.12 3.12 7.92 5.73 6.09 21.67
Analysis SFT + Rank Vanilla 3.77 3.77 24.00 3.83 4.53 9.52 18.45 19.31 32.50 20.89 21.58 47.67
Analysis SFT + Rank SFT 6.85 14.04 24.00 2.79 4.18 9.52 15.88 22.75 32.50 20.89 32.19 47.67
Analysis SFT + Rank SFT-V 5.14 13.01 24.00 1.74 3.14 9.52 19.31 21.89 32.50 21.23 30.14 47.67
Analysis SFT + Rank SFT & DPO 8.90 15.07 24.00 1.74 3.83 9.52 18.88 23.61 32.50 23.97 32.88 47.67
Analysis SFT + Rank SFT-V & DPO 7.53 14.38 24.00 1.74 2.09 9.52 19.31 25.32 32.50 23.63 32.19 47.67

Table 5: Recall across multiple models and experimental settings (all values in %). Experimental results demonstrate
the effectiveness of TablePilot, with Analysis SFT + Rank SFT-V & DPO generally achieving the best performance.

Method
ExecRate

Basic Analysis Data Visualization Statistics Modeling

GPT-4o
Baseline 96.07 95.00 95.00
Vanilla 99.67 99.67 99.44
Analysis SFT 100.00 99.93 99.33

GPT-4o-mini
Baseline 91.37 88.75 56.11
Vanilla 96.32 97.80 92.76
Analysis SFT 99.40 99.66 98.73

Phi-3.5-vision
Baseline 44.17 26.65 10.83
Vanilla 77.03 57.55 65.78
Analysis SFT 87.80 99.28 85.11

Table 6: Execution rate across multiple models and
experimental settings (all values in %)

rate close to 100% across all three analysis tasks,
while Phi-3.5-vision exhibited the most significant
gains among all models. Notably, its execution
rate increased by 41.73% in Data Visualization and
19.33% in Statistical Modeling.

F Ablation Study

The ablation study results are presented in Table 7
and Table 8. In this experiments, we examine
the contributions of key components within the
TablePilot workflow, specifically assessing the im-
pact of the Table Explanation, Revision, and Rank-
ing modules on the quality of generated data anal-
ysis recommendations. The baseline results repre-
sent a system without any of these modules.

Experimental results indicate that nearly all de-
signed components contribute to performance im-
provements in TablePilot. However, some perfor-
mance drops can also be attributed to the diverse
analysis trade-off effect.

G Analysis of Incorporating Vision in
Training

Incorporating vision into the training process
proves both valuable and effective. For GPT-4o
and GPT-4o-mini, the addition of vision capabil-
ities significantly enhances the ranking module.
Compared to pure text-based ranking, these mod-
els show improved recall@3 and recall@5 metrics.

368

Method
Basic Analysis Data Visualization Statistics Modeling

Overall Recall@N
ExecRate Recall@N ExecRate Recall@N ExecRate Recall@N

Vanilla 99.67 50.67 99.67 69.37 99.44 59.58 87.67

w/o sampling 98.04 (-1.63) 48.67 (-2.00) 98.20 (-1.47) 65.31 (-4.06) 98.53 (-0.91) 58.75 (-0.83) 86.00 (-1.67)
w/o sampling & revision 93.27 (-6.40) 39.00 (-11.67) 93.20 (-6.47) 63.61 (-5.76) 86.62 (-12.82) 53.75 (-5.83) 82.00 (-5.67)
w/o explanation 99.93 (+0.26) 46.00 (-4.67) 99.27 (-0.40) 63.61 (-5.76) 99.56 (+0.12) 62.08 (+2.50) 83.67 (-4.00)
w/o explanation & revision 99.33 (-0.34) 38.33 (-12.34) 97.47 (-2.20) 62.24 (-7.13) 96.89 (-2.55) 49.58 (-10.00) 79.67 (-8.00)
w/o sampling & explanation 99.60 (-0.07) 38.67 (-12.00) 97.33 (-2.34) 62.59 (-6.78) 98.44 (-1.00) 49.17 (-10.41) 83.00 (-4.67)
w/o all 94.73 (-4.94) 39.67 (-11.00) 93.87 (-5.80) 37.76 (-31.61) 89.19 (-10.25) 45.83 (-13.75) 71.67 (-16.00)

Table 7: Impact of removing several components on ExecRate and Recall@N across different tasks (all values in %)

Method Basic Analysis Data Visualization Statistics Modeling Overall

Recall@5 Recall@3 Recall@5 Recall@3 Recall@5 Recall@3 Recall@5 Recall@3

ranking 21.07 14.05 48.81 35.84 28.91 15.48 70.90 53.51
w/o ranking 16.67 (-4.40) 11.56 (-2.49) 39.80 (-9.01) 23.36 (-12.48) 22.92 (-5.99) 15.00 (-0.48) 57.33 (-13.57) 40.22 (-13.29)

Table 8: Impact of removing ranking on Recall@K across different tasks (all values in %)

Specifically, in the Table Visualization Task, GPT-
4o-mini demonstrates a 9% increase in recall@5
and a 12% increase in recall@3, which contributes
substantially to the overall improvements of 5% in
recall@3 and 4% in recall@5. Due to its smaller
scale and comparatively weaker multimodal capa-
bilities relative to GPT-4o, GPT-4o-mini benefits
even more from multimodal training in enhancing
its ranking ability.

Conversely, Phi-3.5-vision does not benefit from
multimodal training; in fact, its performance de-
clines. This decline is primarily attributed to the
poor quality of table visualizations generated by
Phi-3.5. While we trained the ranking model on
high-quality ranking data generated by GPT-4o and
GPT-4o-mini, which in turn produced abundant
high-quality analysis data, Phi-3.5 generated rel-
atively few examples of data with lower quality.
This data disparity, coupled with the inherent lim-
itations of Phi-3.5, makes it challenging for the
model to effectively learn to rank lower-quality
data, ultimately resulting in reduced performance.

To verify that Phi-3.5-vision indeed learns to
rank multimodal triplets after multimodal SFT, we
conducted an experiment using GPT-4o–generated
triplets as the basis for ranking, as detailed in
Table 9. Our evaluation indicates that employ-
ing the multimodal SFT–enhanced Phi-3.5-vision
as the ranking module yields an overall recall
boost of 3% to 5%. Furthermore, in multimodal
scenarios—particularly in the Table Visualization
task—Phi-3.5-vision achieves an average increase
of 6.8% in recall@3 and recall@5. These findings

suggest that while Phi-3.5-vision demonstrates ro-
bust multimodal ranking capabilities, its overall
performance is nevertheless limited by the subopti-
mal quality of the triplets it generates.

H Ranking Criteria

TablePilot employs a structured prompt with ex-
plicit criteria to filter and rank data analysis rec-
ommendations using an LLM. The core ranking
criteria include:
1. Meaningfulness: Recommendations must offer

impactful, insightful queries rather than trivial
data representations. Queries should directly
facilitate actionable insights.

2. Relevance: Recommendations must align
closely with the Table Theme, ensuring analyti-
cal coherence with the dataset’s core objective.

3. Logical Coherence: Recommendations must
follow fundamental data analysis principles,
accurately reflecting logical relationships and
dataset characteristics.

4. Diversity: Ensures a broad coverage of analyti-
cal tasks across basic operations, data visualiza-
tion, and advanced analyses to maximize insight
comprehensiveness.

5. Interpretability: Recommendations should be
clear, concise, and easily implementable by ana-
lysts without ambiguity.

6. Insightfulness: Prioritizes queries revealing
non-obvious patterns, trends, and relationships
that significantly enhance understanding of the
data.

369

Analysis Phi-3.5-vision Rank Basic Analysis Table Visualization Statistics Modeling Overall

Recall@3 Recall@5 Recall@3 Recall@5 Recall@3 Recall@5 Recall@3 Recall@5

Phi-3.5-vision

Rank SFT 6.85 14.04 2.79 4.18 15.88 22.75 20.89 32.19
Rank SFT-V 5.14 (-1.71) 13.01 (-1.03) 1.74 (-1.05) 3.14 (-1.04) 19.31 (+3.43) 21.89 (-0.86) 21.23 (+0.34) 30.14 (-2.05)
Rank SFT & DPO 8.90 15.07 1.74 3.83 18.88 23.61 23.97 32.88
Rank SFT-V & DPO 7.53 (-1.37) 14.38 (-0.69) 1.74 (0.00) 2.09 (-1.74) 19.31 (+0.43) 25.32 (+1.71) 23.63 (-0.34) 32.19 (-0.69)

GPT-4o

Rank SFT 14.67 24.00 20.07 28.57 13.75 20.00 39.57 52.00
Rank SFT-V 10.76 (-3.91) 20.33 (-3.67) 26.87 (+6.80) 35.71 (+7.14) 13.75 (0.00) 23.75 (+3.75) 42.00 (+2.43) 55.33 (+3.33)
Rank SFT & DPO 12.67 23.00 21.77 30.27 12.08 20.42 38.33 53.33
Rank SFT-V & DPO 17.00 (+4.33) 25.33 (+2.33) 27.21 (+5.44) 38.10 (+7.83) 13.33 (+1.25) 18.75 (-1.67) 46.00 (+7.67) 60.00 (+6.67)

Table 9: Performance on Recall@3 and Recall@5 with different Phi-3.5-vision Rank

Additional task-specific constraints are applied
to further refine the recommendations, eliminating
redundancy, trivial analyses, and logically unsound
operations. This structured ranking criteria, embed-
ded within a unified prompt and processed through
an LLM, ensures the efficient selection and prioriti-
zation of high-quality analytical queries that align
with professional analytical standards.

I Human Evaluation

Automatic quantitative evaluation of tabular data
analysis recommendations has inherent limitations,
as it typically relies on predefined metrics that may
not fully capture nuances such as practical rele-
vance, clarity, or interpretability. Therefore, we
complemented the automatic evaluation with a hu-
man evaluation study, ensuring a comprehensive
assessment of recommendation quality. Specif-
ically, we recruited domain experts and experi-
enced data analysts to manually evaluate the recom-
mendations produced by different variants of our
method, namely, the baseline, TablePilot (Vanilla),
and TablePilot (Tuned).

The evaluation was structured around three criti-
cal qualitative dimensions:
1. Practicality – Assesses whether recommended

operations are genuinely valuable and feasible
in realistic data analysis contexts, capturing the
degree to which recommendations meet actual
analyst needs beyond general relevance and
meaningfulness. High practicality implies di-
rect applicability to specific user workflows and
domain-specific analysis scenarios, aspects not
fully addressed by broader criteria like relevance
or meaningfulness.

2. Clarity – Measures the explicitness and trans-
parency of the recommended queries and re-
sults, ensuring analysts can effortlessly grasp
their intent and execution details. This dimen-
sion emphasizes immediate understandability

and user-friendly phrasing, aspects that extend
beyond the logical coherence and interpretabil-
ity criteria defined in automated ranking, by
explicitly capturing the communicative quality
and unambiguity.

3. Interpretability – Evaluates the ease with
which analysts can explain, justify, and utilize
the recommended analysis results in practice.
This dimension specifically highlights the ana-
lysts’ ability to contextualize insights in stake-
holder communication and practical decision-
making, aspects distinct from automatic criteria
like insightfulness or logical coherence, which
do not inherently ensure communicative ease or
effective translation of insights into actionable
outcomes.
Evaluators consisted of five professional data

analysts, each having extensive experience in in-
terpreting tabular data. To ensure consistency and
objectivity, the evaluators were provided detailed
instructions and standardized scoring criteria, as-
sessing each recommendation independently under
these three dimensions using a 5-point Likert scale
(1 = Poor, 5 = Excellent).

To ensure robust comparison of results across
methods, we employed the Wilcoxon signed-
rank test (Wilcoxon et al., 1963), a robust non-
parametric test designed to assess differences be-
tween paired observations without assuming nor-
mal data distribution. The test ranks the absolute
differences between paired scores, evaluating if
observed differences between methods are statisti-
cally significant or due merely to chance variations.
In our evaluation, we applied the Wilcoxon test at
a significance level of α = 0.05.

The results from the Wilcoxon signed-rank test
demonstrated statistically significant improvements
for TablePilot (Tuned) over both the baseline
and TablePilot (Vanilla), as well as for TablePi-
lot (Vanilla) over the baseline. Specifically,

370

TablePilot (Tuned) showed significantly enhanced
performance across all evaluation metrics, confirm-
ing the effectiveness of our tuning process based
on human preferences.

J Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) is a reinforcement learning-free
approach for fine-tuning large language mod-
els (LLMs) using human preferences. Given
preference-labeled data pairs {(x, y+, y−)}, where
y+ is the preferred response and y− is the less pre-
ferred response for input x, DPO optimizes the
policy πθ(y|x) by maximizing the implicit reward
function derived from the Bradley-Terry model:

rθ(x, y
+)− rθ(x, y

−) = log
πθ(y

+|x)
πθ(y−|x)

The loss function for DPO is formulated as:

L(θ) = −E(x,y+,y−)

[
log σ

(
β log

πθ(y
+|x)

πθ(y−|x)

)]

where σ is the sigmoid function and β is a scal-
ing factor that controls the sharpness of prefer-
ence separation. This formulation ensures that the
model directly optimizes preference probabilities
while maintaining policy stability and avoiding the
high variance introduced by reinforcement learning
methods.

In Rec-Align, we specifically integrate Direct
Preference Optimization (DPO) within the rank-
ing module to align data analysis recommendations
with human analytical preferences. By assigning
higher scores to operations that effectively cap-
ture user intent and generate actionable insights,
and lower scores to less useful analyses, DPO ef-
fectively reinforces outputs aligned with analyst
expectations.

This targeted integration of DPO significantly
enhances the quality and practical applicability of
generated analyses by ensuring accurate alignment
with human analytical preferences.

371

K Case Study

Figure 4 to Figure 11 illustrate a case study demon-
strating our TablePilot framework. This case pro-
vides a detailed analysis of a real-world example,
showcasing the practical applications and effec-
tiveness of TablePilot in generating comprehensive
data analysis recommendations.

372

Airport Code Year Month Domestic Passengers International Passengers Total Passengers

ACY 2015 Jan 98177 90 98267
ACY 2015 Feb 96431 65 96496
ACY 2015 Mar 116493 197 116690
ACY 2015 Apr 105539 161 105700

……
ACY 2014 Jan 92421 0 92421
ACY 2014 Feb 90255 148 90403

…
ACY 2013 Jan 87375 190 87565
ACY 2013 Feb 81750 380 82130

…
EWR 2015 Jan 1752923 859391 2612314
EWR 2015 Feb 1672285 756925 2429210

…
EWR 2014 Jan 1703949 842188 2546137
EWR 2014 Feb 1516373 705458 2221831

…
JFK 2015 Jan 1891156 2060967 3952123
JFK 2015 Feb 1806434 1718574 3525008

…
SWF 2015 Jan 20952 0 20952
SWF 2015 Feb 19816 0 19816

…
LGA 2015 Jan 1721701 110101 1831802
LGA 2015 Feb 1719642 111968 1831610

…
LGA 1977 Nov 1323301 0 1323301
LGA 1977 Dec 1293393 0 1293393

Step1: Analysis Preparation

Table:
- 'Airport Code' (Column A): ['EWR', 'JFK', 'LGA', 'LGA', 'SWF', ...]
- 'Year' (Column B, Numeric): [2011, 1995, 1981, 1999, 1978, ...]
- 'Month' (Column C): ['Dec', 'Sep', 'Nov', 'Dec', 'Mar', ...]
- 'Domestic Passengers' (Column D, Numeric): [1901523, 1904407, 1085316, 1096845, 1594280, ...]
- 'International Passengers' (Column E, Numeric): [2252910, 1102018, 104142, 136952, 14095, ...]
- 'Total Passengers' (Column F, Numeric): [775695, 2499703, 1858392, 2318716, 1756044, ...]

1.Table Sampling

2.Table Explanation

TablePilot Input: A Table

{ "Table Theme": "Annual and Monthly Passenger Traffic Statistics for Major U.S. Airports",
 "Columns": {
 "Airport Code": "This column contains the unique three-letter codes representing different airports. It is essential
for identifying the specific airport associated with the passenger data.",
 "Year": "This column indicates the year in which the passenger data was recorded. It helps in analyzing trends and
changes in passenger traffic over different years.",
 "Month": "This column specifies the month of the year when the passenger data was collected. It allows for the
examination of seasonal patterns and monthly variations in passenger numbers.",
 "Domestic Passengers": "This column records the number of passengers traveling domestically through the
airport. It is crucial for understanding the volume of domestic air travel and its contribution to total passenger traffic.",

Figure 4: Overview of TablePilot framework case study. Analysis Preparation-1.

373

Step2: Module-based Analysis
1. Basic Analysis Module: <query, code> pairs

"International Passengers": "This column shows the number of passengers traveling internationally through the
airport. It provides insights into the international travel segment and its impact on overall airport traffic.",
 "Total Passengers": "This column represents the sum of domestic and international passengers for each airport,
year, and month. It is a key metric for assessing the total passenger throughput and overall airport activity." },
"Column Relationships": {
 "Airport Code": "The 'Airport Code' column is linked with all other columns to provide context for the passenger
data, allowing for airport-specific analysis of trends and patterns.",
 "Year": "The 'Year' column works with 'Month' to create a time frame for the data, enabling the analysis of
passenger trends over specific periods. It also interacts with passenger columns to observe yearly changes.",
 "Month": "The 'Month' column complements 'Year' to define the exact time of data collection, facilitating the study
of monthly fluctuations in passenger numbers.",
 "Domestic Passengers": "The 'Domestic Passengers' column, along with 'International Passengers', contributes to
the 'Total Passengers' column, providing a breakdown of passenger types.",
 "International Passengers": "The 'International Passengers' column, in conjunction with 'Domestic Passengers',
forms the 'Total Passengers' column, offering insights into the composition of passenger traffic.",
 "Total Passengers": "The 'Total Passengers' column is derived from the sum of 'Domestic Passengers' and
'International Passengers', serving as a comprehensive measure of airport traffic for analysis." } }

[{ "query": "Filter the data to show only the records for the airport code 'JFK’.”,
 "code": "import pandas as pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\njfk_data = df[df['Airport Code'] ==
'JFK']\ncsv_file_path = 'output.csv'\njfk_data.to_csv(csv_file_path, index=False)" },
 { "query": "Sort the data by 'Total Passengers' in descending order.",
 "code": "import pandas as pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\nsorted_data =
df.sort_values(by='Total Passengers', ascending=False)\ncsv_file_path = 'output.csv'\nsorted_data.to_csv(csv_file_path,
index=False)" },
 { "query": "Group the data by 'Year' and calculate the total number of 'Domestic Passengers' for each year.",

 "code": "import pandas as pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\ngrouped_data =
df.groupby('Year')['Domestic Passengers'].sum().reset_index()\ncsv_file_path =
'output.csv'\ngrouped_data.to_csv(csv_file_path, index=False)" },
 { "query": "Create a pivot table to show the total number of 'International Passengers' for each 'Airport Code' and
'Year'.",
 "code": "import pandas as pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\npivot_table =
df.pivot_table(values='International Passengers', index='Airport Code', columns='Year',
aggfunc='sum').reset_index()\ncsv_file_path = 'output.csv'\npivot_table.to_csv(csv_file_path, index=False)" },
 { "query": "Filter the data to show only the records where 'Total Passengers' is greater than 2,000,000.",
 "code": "import pandas as pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\nfiltered_data = df[df['Total
Passengers'] > 2000000]\ncsv_file_path = 'output.csv'\nfiltered_data.to_csv(csv_file_path, index=False)" }]

2. Table Visualization Module: <query, code> pairs

[{ "query": "Generate a line chart to show the trend of total passengers over the years for each airport.",
 "code": "import matplotlib.pyplot as plt\nimport pandas as pd\nfile = 'table_name.txt'\ndf = pd.read_csv(file,
sep='\\t')\nfor airport in df['Airport Code'].unique():\n airport_data = df[df['Airport Code'] == airport]\n
plt.plot(airport_data['Year'], airport_data['Total Passengers'], label=airport)\nplt.xlabel('Year')\nplt.ylabel('Total
Passengers')\nplt.title('Trend of Total Passengers Over the Years for Each
Airport')\nplt.legend()\nplt.xticks(rotation=45)\nplt.tight_layout()\n#Chart INFO: {'x_fields': 'Year', 'y_fields': ['Total
Passengers'], 'chart_type': 'lineChart'}\nplt.show()" },
 { "query": "Create a bar chart to compare the number of domestic and international passengers for each airport.",

 "code": "import matplotlib.pyplot as plt\nimport pandas as pd\nfile = 'table_name.txt'\ndf = pd.read_csv(file,
sep='\\t')\nlabels = df['Airport Code'].unique()\ndomestic = df.groupby('Airport Code')['Domestic
Passengers'].sum()\ninternational = df.groupby('Airport Code')['International Passengers'].sum()\nx =
range(len(labels))\nplt.bar(x, domestic, width=0.4, label='Domestic Passengers', align='center')\nplt.bar(x, international,
width=0.4, label='International Passengers', align='edge')\nplt.xlabel('Airport Code')\nplt.ylabel('Number of
Passengers')\nplt.title('Comparison of Domestic and International Passengers for Each Airport')\nplt.xticks(x,
labels)\nplt.legend()\nplt.tight_layout()\n#Chart INFO: {'x_fields': 'Airport Code', 'y_fields': ['Domestic Passengers',
'International Passengers'], 'chart_type': 'barChart'}\nplt.show()" },

Figure 5: Overview of TablePilot framework case study. Module-based Analysis-1.

374

{ "query": "Generate a scatter chart to analyze the relationship between domestic and international passengers for
each airport.",
 "code": "import matplotlib.pyplot as plt\nimport pandas as pd\nfile = 'table_name.txt'\ndf = pd.read_csv(file,
sep='\\t')\nplt.scatter(df['Domestic Passengers'], df['International Passengers'], c='blue', alpha=0.5)\nplt.xlabel('Domestic
Passengers')\nplt.ylabel('International Passengers')\nplt.title('Relationship Between Domestic and International
Passengers for Each Airport')\nplt.tight_layout()\n#Chart INFO: {'x_fields': 'Domestic Passengers', 'y_fields': ['International
Passengers'], 'chart_type': 'scatterChart'}\nplt.show()" },
 { "query": "Create a pie chart to show the proportion of total passengers for each airport.",
 "code": "import matplotlib.pyplot as plt\nimport pandas as pd\nfile = 'table_name.txt'\ndf = pd.read_csv(file,
sep='\\t')\nlabels = df['Airport Code'].unique()\ntotal_passengers = df.groupby('Airport Code')['Total
Passengers'].sum()\nplt.pie(total_passengers, labels=labels, autopct='%1.1f%%', startangle=140)\nplt.title('Proportion of
Total Passengers for Each Airport')\nplt.tight_layout()\n#Chart INFO: {'x_fields': 'Airport Code', 'y_fields': ['Total
Passengers'], 'chart_type': 'pieChart'}\nplt.show()" },
 { "query": "Generate a combo chart to show both the total passengers and the number of international passengers
over the years for each airport.",
 "code": "import matplotlib.pyplot as plt\nimport pandas as pd\n\nfile = 'table_name.txt'\ndf = pd.read_csv(file,
sep='\\t')\n# Summing Domestic and International Passengers across all airports by year\ngrouped =
df.groupby('Year')[['Domestic Passengers', 'International Passengers']].sum()\n\n# Plotting a stacked bar chart\nax =
grouped.plot(kind='bar', stacked=True, figsize=(10, 6))\nax.set_xlabel('Year')\nax.set_ylabel('Number of
Passengers')\nplt.title('Relative Trend of Domestic and International Passengers for All
Airports')\nplt.xticks(rotation=45)\nplt.tight_layout()\n\n# Chart INFO: {'x_fields': 'Year', 'y_fields': ['Domestic Passengers',
'International Passengers'], 'chart_type': 'stackedBarChart'}\nplt.show()" }]

3. Stastics Modeling Module : <query, code> pairs

[{ "query": "Perform a trend prediction analysis to forecast the total number of passengers for the next 12 months
at JFK airport using historical data.",
 "code": "import pandas as pd\nfrom statsmodels.tsa.statespace.sarimax import SARIMAX\n\nfile =
'table_name.csv'\ndf = pd.read_csv(file)\n\ndf['Date'] = pd.to_datetime(df['Year'].astype(str) + '-' + df['Month'] + '-
01')\njfk_data = df[df['Airport Code'] == 'JFK'].sort_values('Date')\njfk_data.set_index('Date', inplace=True)\n\nmodel =
SARIMAX(jfk_data['Total Passengers'], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))\nmodel_fit =
model.fit(disp=False)\n\nforecast = model_fit.forecast(steps=12)\nforecast_df = pd.DataFrame({'Date':
pd.date_range(start=jfk_data.index[-1] + pd.DateOffset(months=1), periods=12, freq='M'), 'Forecasted Total Passengers':
forecast})\n\nprint(forecast_df)" },
 { "query": "Conduct a correlation test to determine the relationship between domestic and international
passengers across all airports.",
 "code": "import pandas as pd\nfrom scipy.stats import pearsonr\n\nfile = 'table_name.csv'\ndf =
pd.read_csv(file)\n\ncorr, p_value = pearsonr(df['Domestic Passengers'], df['International
Passengers'])\n\nprint(\"Correlation Method: Pearson\")\nprint(f\"Correlation Coefficient: {corr}\")\nprint(f\"P-value:
{p_value}\")" },
 { "query": "Build a regression model to predict the total number of passengers based on the number of domestic
and international passengers.",
 "code": "import pandas as pd\nimport statsmodels.api as sm\n\nfile = 'table_name.csv'\ndf =
pd.read_csv(file)\n\nX = df[['Domestic Passengers', 'International Passengers']]\nX = sm.add_constant(X)\nY = df['Total
Passengers']\n\nmodel = sm.OLS(Y, X).fit()\n\nprint(model.summary())" }]

Step3: Analysis Optimization
1. First Round Execution Results (Part of)

Figure 6: Overview of TablePilot framework case study. Module-based Analysis-2.

375

Unclear image
 1.vertical axis data overlap 2.data labels overlap

2. Revision: Optimized Successful Results and Revision Error cases
(Show only the queries and codes that have undergone significant optimization.)

[{ "improvement_reason": "The original code is already well-structured and
performs the task as intended. However, to enhance the functionality, I will modify
the code to sort the results in descending order based on the average number of
domestic passengers. This addition makes the output more informative and easier
to analyze, as the busiest airports (with the highest number of passengers) will
appear first.",
 "original_query": "Group the data by 'Airport Code' and calculate the
average number of domestic passengers for each airport.",
 “optimized_query”: “Group by ‘Airport Code’, calculate the average
domestic passengers, and sort in descending order.",
 "optimized_code": "import pandas as pd\nfile = 'table_name.csv'\ndf =
pd.read_csv(file)\n\n# Group the data by 'Airport Code' and calculate the average
number of domestic passengers for each airport\n# The result is a DataFrame with
'Airport Code' as one column and the average 'Domestic Passengers' as
another\ngrouped_df = df.groupby('Airport Code')['Domestic
Passengers'].mean().reset_index()\n\n# Sort the result in descending order based
on the average number of domestic passengers\nsorted_df =
grouped_df.sort_values(by='Domestic Passengers', ascending=False)\n\n#
Output the sorted result to a CSV file without the index\ncsv_file_path =
'output.csv'\nsorted_df.to_csv(csv_file_path, index=False)" }]

After the model has
reviewed all the execution
results, it combines the
group by and sort
operations, leading to
further analysis with
greater practicality.

[{ "improvement_reason": "The original code performs a filtering operation,
but this can be improved by replacing the filter with a more insightful operation，
because the filter operation is duplicated. It's important to notice that the total
number of passengers has been increasing over the years. To enhance the
analysis, I will add a new column that represents the year-over-year growth rate of
total passengers, which provides a better insight into the changes in passenger
volume rather than just filtering by the year.",
 "original_query": "Filter the data to find records from the year 2000
onwards and sort them by total passengers in ascending order.",

"optimized_query": "Calculate the year-over-year growth rate of total
passengers and add it as a new column, allowing insights into the changes in
passenger volume over time.",
 "optimized_code": "import pandas as pd\nfile = 'table_name.csv'\ndf =
pd.read_csv(file)\n\n# Calculate the year-over-year growth rate of total
passengers\n# First, sort the data by 'Year' to ensure the correct order\ndf =
df.sort_values(by='Year')\n\n … }]

The model identified the
redundant data analysis
operation and replaced it
with a more insightful
one.

Figure 7: Overview of TablePilot framework case study. Analysis Optimization-1.

376

[{ "improvement_reason": "The original code suffers from overlapping y-
axis labels, which can make the chart difficult to read. In the updated version, I
pivot the data so that years are the index and airport codes are the columns. This
approach avoids label overlap by ensuring that each airport's passenger trend is
plotted separately. Additionally, the chart is improved by automatically handling
missing values with `fillna(0)` and using `tight_layout()` to optimize the figure
layout.",
 "original_query": "Generate a line chart to show the trend of total
passengers over the years for each airport.",
 "optimized_query": "Create a line chart to analyze the trend of total
passengers over the years for each airport.",
 "optimized_code": "import matplotlib.pyplot as plt\nimport pandas as
pd\nfile = 'table_name.csv'\ndf = pd.read_csv(file)\n\n# Pivot the data to have
years as index and airport codes as columns\npivot_df =
df.pivot_table(index='Year', columns='Airport Code', values='Total Passengers',
aggfunc='sum').fillna(0)\n\n# Plotting\npivot_df.plot(kind='line', figsize=(10,
6))\nplt.title('Trend of Total Passengers Over the Years for Each
Airport')\nplt.xlabel('Year')\nplt.ylabel('Total Passengers (in
millions)')\nplt.legend(title='Airport
Code')\nplt.grid(True)\nplt.tight_layout()\n#Chart INFO: {'x_fields': 'Year', 'y_fields':
['Total Passengers'], 'chart_type': 'lineChart'}\nplt.show()" }]

The Multimodal Revision
module provides the
model with the ability to
recognize unclear images
and can combine this with
its coding capabilities to
make corrections.

Multimodal Revision module makes the chart clearer

Step4: Analysis Alignment
(Show only the high score query which is recalled by our Ranking module)

[{ "query": "Group by 'Airport Code', calculate the average domestic passengers, and sort in descending order.",
 "criteria":

 { "Meaningful": { "score": 5, "reason": "Identifies airports with the highest average domestic traffic,
providing clear comparative insights." },
 "Relative": { "score": 5, "reason": "Closely tied to the table theme, focusing on domestic passenger
trends across airports." },
 "Reasonableness": { "score": 5, "reason": "Grouping and averaging are standard practices for
summarizing and comparing data." },
 "Diversity": { "score": 4, "reason": "Introduces a grouping operation, enhancing the variety in
rudimentary tasks." },
 "Interpretable": { "score": 5, "reason": "Mostly straightforward, though understanding averages might
require some users to apply basic statistical knowledge." },
 "Insightful": { "score": 4, "reason": "Offers useful insights, but mostly confirms expected trends in
domestic traffic." } } },
 { "query": "Calculate the year-over-year growth rate of total passengers and add it as a new column, allowing
insights into the changes in passenger volume over time.",
 "criteria":
 { "Meaningful": { "score": 5, "reason": "Offers critical insights into growth trends, essential for forecasting
and strategic decision-making." },
 "Relative": { "score": 5, "reason": "Highly relevant to the table's theme, focusing on growth trends in

Figure 8: Overview of TablePilot framework case study. Analysis Optimization-2.

377

passenger traffic." },
 "Reasonableness": { "score": 5, "reason": "Calculating growth rates is a logical and insightful way to
analyze time-series data." },
 "Diversity": { "score": 5, "reason": "Introduces a calculation for growth rate, a more advanced
rudimentary task." },
 "Interpretable": { "score": 3, "reason": "The concept of growth rates might be less intuitive for some
users, requiring explanation." },
 "Insightful": { "score": 5, "reason": "Reveals valuable trends in passenger growth, aiding in predictive
analysis." } } },
 { "query": "Create a line chart to analyze the trend of total passengers over the years for each airport.",
 "criteria": {
 "Meaningful": { "score": 5, "reason": "Effectively visualizes long-term trends, aiding strategic planning
and capacity forecasting." },
 "Relative": { "score": 5, "reason": "Directly related to the table theme, focusing on longitudinal passenger
trends." },
 "Reasonableness": { "score": 5, "reason": "Line charts are ideal for time-series data, providing clear trend
visualization." },
 "Diversity": { "score": 4, "reason": "Adds variety by introducing a line chart, though line charts are
common." },
 "Interpretable": { "score": 5, "reason": "Clear and easy to interpret, with well-labeled axes and legend." },

 "Insightful": { "score": 5, "reason": "Uncovers trends over time, providing deep insights into passenger
traffic dynamics." } } },
 { "query": "Generate a stacked bar chart to show the relative trend of Domestic Passengers and International
Passengers for all airports.",
 "criteria": {
 "Meaningful": { "score": 5, "reason": "This query effectively visualizes the relative trend of domestic and
international passengers over time, which is highly valuable for understanding the traffic distribution." },
 "Relative": { "score": 5, "reason": "The query is closely tied to the dataset's theme, focusing on passenger
trends across airports and time." },
 "Reasonableness": { "score": 5, "reason": "The stacked bar chart is a reasonable method for visualizing
the relative comparison of domestic and international passengers over time." },
 "Diversity": { "score": 5, "reason": "This query introduces a more complex visualization (stacked bar
chart), adding significant diversity to the analysis." },
 "Interpretable": { "score": 5, "reason": "The chart is clear, with labeled axes and a legend, making it easy
to interpret for users." },
 "Insightful": { "score": 5, "reason": "The chart provides insightful information about the relative changes
in passenger traffic, which is valuable for strategic planning." } } }
 { "query": "Perform a trend prediction analysis to forecast the total number of passengers for the next 12 months
at JFK airport using historical data.",
 "criteria": {
 "Meaningful": { "score": 5, "reason": "Highly valuable for forecasting future passenger volumes, aiding in
strategic planning." },
 "Relative": { "score": 5, "reason": "Directly tied to the dataset's theme, focusing on future trends in
passenger traffic." },
 "Reasonableness": { "score": 5, "reason": "Trend prediction is a logical extension of time-series analysis
in this context." },
 "Diversity": { "score": 5, "reason": "Adds significant diversity by introducing predictive modeling and
forecasting." },
 "Interpretable": { "score": 4, "reason": "Results are clear, though understanding forecasting might
require some statistical knowledge." },
 "Insightful": { "score": 5, "reason": "Provides forward-looking insights, crucial for planning and decision-
making." } } }]

Unrecalled Query Example:
The selection of the regression variables are meaningless.

[{ "query": "Build a regression model to predict the total number of passengers based on the number of domestic
and international passengers.",
 "criteria": {
 "Meaningful": { "score": 2, "reason": "While the regression model shows a perfect fit (R-squared = 1.00),
the analysis is meaningless because the total number of passengers is simply the sum of domestic and international
passengers, making the model redundant.“}
 … } }]

Figure 9: Overview of TablePilot framework case study. Analysis Optimization-3.

378

TablePilot Output: Recommend Analysis Results
(The code is not displayed.)

Query1:
Group by 'Airport Code', calculate the average domestic passengers, and
sort in descending order.

Result:

Query2:
Calculate the year-over-year growth rate of total passengers and
add it as a new column.

Result:

Airport Code Domestic Passengers

LGA 1767834.84

EWR 1759483.09

JFK 1388555.60

ACY 102394.36

SWF 37388.93

Airport Code Year Total Passengers YoY Growth Rate (%)

ACY 2012 1385638
ACY 2013 1132898 -18.24
ACY 2014 1211667 6.95

…
EWR 1977 7301651
EWR 1978 8468482 15.98
EWR 1979 9296742 9.78
EWR 1980 9223130 -0.79
EWR 1981 10181468 10.39
EWR 1982 12087789 18.72
EWR 1983 17402874 43.97
EWR 1984 23647301 35.88

…
JFK 1977 21080688
JFK 1978 23589693 11.9
JFK 1979 26171733 10.95

…
LGA 1977 15033019
LGA 1978 17041335 13.36
LGA 1979 18347855 7.67

…
SWF 2006 309921
SWF 2007 913927 194.89
SWF 2008 789307 -13.64

…

Figure 10: Overview of TablePilot framework case study. TablePilot Output Results-1.

379

Query4:
Generate a stacked bar chart to show the relative trend of Domestic
Passengers and International Passengers for all airports.

Result:

Query5:
Perform a trend prediction analysis to forecast the total number of
passengers for the next 12 months at JFK airport using historical data.

Result:

Query3:
Create a line chart to analyze the trend of total passengers over the
years for each airport.

Result:

Date Forecasted Total Passengers
2016-01-01 4268876
2016-02-01 3892484
2016-03-01 4764605
2016-04-01 4777741
2016-05-01 4882515
2016-06-01 4989724
2016-07-01 5372664
2016-08-01 5442647
2016-09-01 4550673
2016-10-01 4605193
2016-11-01 4284598
2016-12-01 4709262

Figure 11: Overview of TablePilot framework case study. TablePilot Output Results-2.

380

L TablePilot Report Generation

Our framework not only provides independent re-
sults for each analysis task but also generates a com-
prehensive report that consolidates these findings,
offering a holistic overview. Figure 12, Figure 13,
and Figure 14 illustrate an example of the extended
functionality of TablePilot in generating analysis
reports. We have also implemented grounding func-
tionality to display the generated queries and charts,
enhancing the user’s reading experience.

381

Passenger Traffic Insights of Major U.S. Airports

1. Overview of Domestic-Passenger Volumes
From Query1 (Group by 'Airport Code', calculate the average domestic
passengers, and sort in descending order), we see the following rank order
in descending order (see the corresponding table in Query1 Result):
•LGA leads with 1.77 million Domestic Passengers on average.
•EWR follows closely at 1.76 million.
•JFK reports 1.39 million.
•ACY (Atlantic City) averages about 0.10 million (102 thousand).
•SWF (Stewart) has the smallest average, at around 0.04 million (37 thousand).
Although LaGuardia (LGA) tops the list in Domestic volume, the data in Query1 also
indicate that JFK’s higher International passenger counts often make it the busiest
airport overall in many individual months.

2. Year-over-Year Growth Observations
Looking at Query2 (Calculate the year-over-year growth rate of total passengers
and add it as a new column), we see:
•JFK, EWR, and LGA can show significant YoY swings—some well over 50%—
especially if the prior year’s traffic was unusually low (e.g., weather disruptions).
•Small airports such as SWF show extremely large percentage changes when the
base was tiny (some results were +8000% in certain months).
•ACY also exhibits wide fluctuations for similar reasons (relatively small passenger
volumes).
The Query2 Result table highlights examples like ACY moving from 1,385,638
passengers in 2012 to 1,132,898 in 2013, a nearly -18.24% drop, followed by
a +6.95% increase in 2014.

3. Long-Term Passenger Trends
Using Query3 (Create a line chart to analyze the trend of total passengers over
the years for each airport), we observe:

•JFK volumes climb steadily after
the mid-1980s, eventually
surpassing other airports by the
early 2000s and exceeding 50
million annually by around 2015.
•EWR shows robust growth in the
1980s, levels off somewhat in the
1990s, then resumes an upward
trend in the 2000s, surpassing 30

Figure 12: Overview of TablePilot framework report-1.

382

million by 2015.
•LGA, predominantly domestic, displays steady but moderate growth, frequently
ranging 25–30 million annual passengers in the 2010s.
•ACY and SWF remain relatively niche airports with well under 2 million passengers
per year, though ACY experiences more pronounced seasonality.

From Query4 (Generate a stacked bar chart to show the relative trend of
Domestic Passengers and International Passengers for all airports).

4. JFK Passenger Forecast for 2016
Query5(Perform a trend prediction analysis to forecast the total number of
passengers for the next 12 months at JFK airport using historical data) performs
a trend prediction analysis (time-series modeling) to forecast JFK’s total monthly
passengers for the next 12 months (Jan–Dec 2016). These projections align with
historical seasonal patterns at JFK: lower winter volumes, peaks in mid- to
late-summer, followed by a dip in early autumn, and a modest rebound during the
holiday season.

5. Key Takeaways and Recommendations
•JFK Dominates Overall Passenger Counts
•Thanks to significant domestic and international traffic, JFK remains the
busiest. Query5 forecasts continued monthly volumes exceeding 4 million, peaking
above 5 million in summer 2016. Expansion in gate, ground transport, and customs
capacity may be warranted.
•LGA Tops Domestic Traffic but Has Limited International Reach
•Query1 shows LGA having the highest average monthly domestic traffic (1.77
million). The airport can capitalize on frequent business routes. Evaluating potential
to expand international service (where feasible) could be a strategic consideration.
•EWR Demonstrates Steady, High Total Volumes with Notable International
Shares
•The growth figures from Query2 show Newark’s consistent rise over decades. EWR
remains among the top three in total passengers, underpinned by robust domestic

The number of passengers at all
airports has shown a steady
upward trend year by year, with
an increasing proportion of
international passengers,
reflecting a growing level of
airport internationalization.

Figure 13: Overview of TablePilot framework report-2.

383

•and transatlantic flight offerings.
•Smaller Airports (ACY, SWF) Show Volatility
•The year-over-year variations in Query2 confirm that lower baselines magnify
percentage changes at ACY and SWF. Targeted seasonal or niche routes may help
manage this volatility.
•Forecast Confidence at JFK Remains Robust
•With Query5 predicting monthly totals above 5.3 million at peak, JFK’s role as an
international gateway will only grow. Strategic planning for future demand surges—
especially in the summer season—is essential.

6. Conclusion
Overall, the queries confirm that JFK, EWR, and LGA together handle the bulk of
New York-area passenger traffic. Their respective trends (Query3) reveal:
•JFK’s steadily increasing dominance,
•EWR’s balanced, continued growth,
•LGA’s leading domestic share.
Meanwhile, Query2 shows the large swings that can occur at smaller airports (SWF,
ACY). Lastly, the Query5 forecast underscores JFK’s projected climb toward 5.44
million monthly passengers in August 2016, reinforcing its status as the region’s
busiest hub.
In summary, capacity and strategic planning at JFK, EWR, and LGA will remain
priorities, especially as New York-area passenger counts continue to climb year
over year.

Figure 14: Overview of TablePilot framework report-3.

384

M Prompt Design

Prompt 15 to Prompt 39 illustrate the detailed
prompt designs used in TablePilot.

385

Table Understanding Expert
You are an experienced **Table Understanding Expert** specializing in interpreting and
analyzing complex table data from a global perspective. Your task is to receive a table
and, based on your expertise, provide a detailed analysis of the table’s theme, the
meaning of each column, and the relationships between columns, in order to generate
accurate explanations that can be used for downstream data analysis.

Your Primary Responsibilities:
1. Accurately understand the table's theme:
By analyzing the content and structure of the table, you need to identify its main purpose
and core theme. Ensure the theme is concise and briefly summarizes the main purpose of
the entire table.

2. Understand the role of each column in the table:
Analyze each column one by one, understanding its data type, business context, and
specific function in the table.
- A description of the content of the column.
- How this column’s data contributes to understanding the overall table or supports a
particular business scenario.
- If the column name is too vague or unclear, provide a reasonable inference or additional
explanation to make it easier for data analysts to understand its purpose.

3. Understand the relationships between columns:
Based on the structure of the table, infer any potential relationships between columns.
Particularly focus on the interactions between columns during data analysis, business
logic, or statistical analysis.
- One column’s value may depend on another column’s value in order to have practical
significance.
- Several columns may need to be used together in certain analysis scenarios for
meaningful insights.

Table
{table}

Output Format:
You need to generate a **JSON file** containing the following three main fields:
1. `"Table Theme"`: The overall theme of the table as you have understood it.
2. `"Column Name"`: The specific function and meaning you’ve interpreted for each
column.
3. `"Column Relationships"`: The relationships between each column and others.

Prompt for TablePilot – Table Explanation

Figure 15: Prompt design in TablePilot

386

Basic Analysis Assistant
You are an advanced data analysis assistant tasked with predicting meaningful user
queries based on a given table and its explanations. Your objective is to recommend some
diverse and practical queries, each accompanied by the corresponding **Python
code** using the `pandas` library. The query recommendations should encompass
different data analysis operations: **filtering**, **sorting**, **grouping and
aggregation**, **pivot table operations**, and **insert insight columns**. Your goal is
to ensure that both the queries and the code are useful for real-world analysis scenarios
based on the table's content.

Definitions of Rudimentary Data Analysis Task:
This task involves essential data manipulation operations such as filtering rows based on
specified conditions, sorting data in ascending or descending order, grouping data by one
or more columns to apply aggregate functions like sum or average, and creating pivot
tables to summarize data. These operations are fundamental for organizing raw data,
simplifying complex datasets, and generating quick overviews. The purpose of these tasks
is to help users streamline their datasets, making it easier to spot trends, derive key
metrics, and prepare data for deeper analysis.

Explanations of the rudimentary data analysis operations

1. Filter (Filtering Data)
…
2. Sorting (Sorting Data)
…
3. Group by and Aggregation (Grouping & Aggregating Data)
…
4. Pivot Table (Creating a Pivot Table)
…
5. Insert Insight Columns (Calculating and Adding Insightful Data)
…

Query Generation Requirements:
1. **Diversity**: Ensure that the queries span different types of analysis operations (filter,
sort, group by with aggregation, and pivot table).
2. **Variety**: Each query should involve different columns and operations, utilizing as
much of the table's information as possible.
3. **Practicality**: The queries should align with real-world analysis needs, making them
contextually relevant to the provided table and its explanations.

Prompt for TablePilot – Basic Analysis

Figure 16: Prompt design in TablePilot

387

Code Generation Requirements:
1. **Accuracy**: The code must execute successfully without errors or warnings, taking
into account the specific formatting of table data (e.g., date formats).
2. **Logical Consistency**: The code should precisely reflect the intent of the query and
perform the required operation accurately.

Integration:
When generating both queries and their corresponding code, ensure that they are
mutually aligned. The query should guide the generated code, and the code should
fully satisfy the query’s requirements. This joint generation will improve coherence and
ensure that each query has a perfectly matched, executable solution in `pandas`.

 Please propose some queries along with the corresponding executable code for the
following table:
Table
{table}
This table format retains all column names from the full table, with [] showing randomly
sampled rows to represent part of the data. This sampling is only to help you understand
the table's data structure and types. Please generate queries and code based on the
complete table.

The table's explanation is provided below to guide your query and code :
Explanation
{table explanation}

To ensure the generated queries meet task requirements and are relevant, you may
choose the number of queries to generate (up to a maximum of five).

 DO NOT output anything other than the JSON file containing only the `query` and
`code`.

Prompt for TablePilot – Basic Analysis (Cont.)

Figure 17: Prompt design in TablePilot

388

Table Visualization Assistant
You are an advanced data analysis assistant specializing in chart generation based on a
given table and its explanations. Your task is to predict meaningful **chart-based data
analysis queries** and generate the corresponding **Python code** using the
`matplotlib` library. Your objective is to recommend some **business-relevant chart
queries**, each accompanied by **executable code** that matches the query. The chart
types can range from basic charts like **line, bar, scatter, pie, column, combo and box
charts** to more complex charts such as **clustered bar, stacked bar, 100% stacked bar,
area and bubble charts**.Your goal is to ensure that both the queries and the code are
useful for real-world analysis scenarios based on the table's content and its explanations.

Definitions of Chart-Based Data Analysis Task:
This task focuses on the visualization of data through various chart types, such as line,
bar, scatter, pie, column, combo and box charts. Additionally, more advanced chart types
like clustered bar charts, stacked bar charts, 100% stacked bar charts, area charts, and
bubble charts allow for more complex comparisons and multidimensional analysis. The
goal of these tasks is to enable users to visually explore patterns, relationships, and trends
within their data. By making data easier to interpret, users can gain deeper insights,
facilitate decision-making, and communicate findings more effectively through clear,
compelling visuals.

Explanations of the Chart-Based Data Analysis Operations

1. Line Chart (Trend Analysis)
…
2. Bar Chart (Category Comparison)
…
3. Scatter Chart (Correlation and Distribution Analysis)
…
4. Pie Chart (Proportional Distribution)
…
5. Column Chart (Vertical Bar Chart)
…
6. Combo Chart (Multiple Data Series Visualization)
…
7. Box Chart (Statistical Distribution)
…

Prompt for TablePilot – Table Visualization

Figure 18: Prompt design in TablePilot

389

Advanced Chart Types (For Specific, Complex Use Cases)
Clustered Bar Chart, **Stacked Bar Chart**, **100% Stacked Bar Chart**, **Area
Chart**, and **Bubble Chart** are advanced chart types used for more specialized data
comparisons, such as showing subcategory breakdowns, proportions, and relationships
across multiple dimensions. These charts should be applied when they offer additional
value over simpler chart types, particularly in complex datasets.

Chart Selection Consideration
Choose the most suitable chart type based on the structure of the table data. Ensure that
each chart selected aligns with the structure and purpose of the data being analyzed, and
only use complex charts if they offer distinct analytical value.

Requirements

Query Generation Requirements:
1. **Diversity**: Ensure that the queries cover different types of charts (line, bar, scatter,
combo, stacked bar, etc.).
2. **Contextual Relevance**: The queries should reflect meaningful data combinations
based on the table's context, ensuring alignment with real-world needs and DO NOT
generate irrelevant analyses that lack actionable insights.
3. **Advanced Analysis**: Include at least one query that uses a complex chart type
(combo chart, stacked bar, bubble chart) if applicable to the table's data.
4. **Chart Type Specification**: The generated natural language query must explicitly
specify which type of chart is to be drawn.
5. **Clear Data Scope**: Clearly define the specific data categories and scope in each
query to ensure precise charts that accurately reflect the table's data, avoiding overly
generic descriptions.

Code Generation Requirements:
1. **Accuracy**: The Python code must be fully executable and correctly reflect the chart
type specified in the query.
2. **Clarity**: Ensure that the generated code includes appropriate labeling, axis
formatting, and legends to enhance the readability of the chart.
3. **Aesthetic Quality**: Ensure the generated chart is visually appealing, clear, and easy
to interpret. Achieve this by adjusting axis scales, removing redundant labels, and
optimizing the overall layout through code.

Prompt for TablePilot – Table Visualization(Cont.)

Figure 19: Prompt design in TablePilot

390

Please propose some queries along with the corresponding executable code for the
following table:
Table
{table}
This table format retains all column names from the full table, with [] showing randomly
sampled rows to represent part of the data. This sampling is only to help you understand
the table's data structure and types. Please generate queries and code based on the
complete table.

The table's explanation is provided below to guide your query and code :
Explanation
{table explanation}

Output Format:
The output must be in JSON format, containing five distinct **chart-based queries** with
corresponding **Python code** using the `matplotlib` library.

 Finally, generate a comment in the following format in the code:
 #Chart INFO: {{'x_fields': '', 'y_fields': [], 'chart_type': ''}}.
 The information inside the '' records the details of the chart being plotted. 'x_fields'
stores the x-axis of the chart, 'y_fields' stores the y-axis values (which can include multiple
fields), and 'chart_type' stores the type of the chart (available options include lineChart,
barChart, scatterChart, pieChart, and others).

To ensure the generated queries meet task requirements and are relevant, you may
choose the number of queries to generate (up to a maximum of five).

DO NOT output anything other than the JSON file containing only the `query` and `code`.

Prompt for TablePilot – Table Visualization(Cont.)

Figure 20: Prompt design in TablePilot

391

Statistics Modeling Analysis Assistant
You are an advanced data analysis assistant specializing in **statistical modeling and
time series forecasting** based on a given table and its explanations. Your task is to
predict meaningful **data analysis queries** and generate the corresponding **Python
code** using appropriate libraries like `statsmodels`, `scikit-learn`, and `numpy`. The
analysis tasks focus on **trend prediction**, **correlation testing**, and **regression
modeling**.Your objective is to recommend **some distinct data analysis queries**, each
accompanied by **executable code** that matches the query. Your goal is to ensure that
both the queries and the code are useful for real-world analysis scenarios based on the
table's content and its explanations.

Definitions of Advanced Data Analysis Task:
This task includes predictive and statistical analyses such as trend forecasting using
historical data, correlation testing to quantify relationships between variables, and
regression modeling to predict outcomes based on one or more independent variables.
These tasks are essential for performing in-depth analysis that moves beyond descriptive
statistics, offering predictive power and helping users understand the underlying factors
that influence key outcomes. The purpose of these tasks is to support users in making
data-driven predictions, identifying correlations, and building models that provide
actionable insights for future planning and decision-making.

Explanations of the Data Analysis Operations

1. Trend Prediction (Time Series Analysis)
…
2. Correlation Testing (Dependency Analysis)
…
3. Regression Modeling (Predictive Analysis)
…

Requirements

Query Generation Requirements
1. **Identify Key Columns**: Recognize which **numerical columns** are suitable for
trend prediction, correlation, or regression analysis.
2. **Task Suitability**: Select the appropriate modeling technique based on the
relationships between columns.
4. **Contextual Relevance**: Ensure that the queries are business-relevant and match
real-world use cases.

Prompt for TablePilot – Statistics Modeling

Figure 21: Prompt design in TablePilot

392

Code Generation Requirements

1. **Accuracy**: The Python code must be fully executable and correctly implement the
specified statistical technique.
2. **No Visualization**: The output should only be numerical or numerical sequences
(e.g., predicted values, correlation coefficients, or regression results). No plots or
visualizations are required.
3. **Library Usage**: Use `pandas`, `numpy`, `statsmodels`, `scikit-learn` as necessary for
data loading, processing, and modeling.
4. **Code Structure**: The code must include proper data loading, transformation, and
analysis steps, ensuring it's executable with minimal modification. **No code comments
should be generated**.

Logical Consistency

1. **Trend Prediction**: When generating prompts for trend prediction tasks, ensure that
the dataset includes historical data over a long time period to provide a solid basis for
identifying trends accurately.
2. **Correlation Testing**: For correlation analysis, focus on examining data categories
that may have subtle or non-obvious connections, rather than relationships that are
immediately visible. This approach allows for the discovery of deeper insights within the
data.
3. **Regression Forecasting**: Select data types with potential underlying correlations
for regression modeling. Ensure the prompt guides the analysis toward meaningful
predictors that can support accurate regression forecasts.

Integration:
When generating both queries and their corresponding code, ensure that they are
mutually aligned. The query should guide the generated code, and the code should
fully satisfy the query’s requirements. This joint generation will improve coherence and
ensure that each query has a perfectly matched, executable solution.

Output Format:
The output must be in JSON format, containing three distinct **data analysis queries**
with corresponding **Python code** using the appropriate libraries. Each query should
be accompanied by executable code that adheres to the following structure:

Prompt for TablePilot – Statistics Modeling(Cont.)

Figure 22: Prompt design in TablePilot

393

Please propose some queries along with the corresponding executable code for the
following table:
Table
{table}
This table format retains all column names from the full table, with [] showing randomly
sampled rows to represent part of the data. This sampling is only to help you understand
the table's data structure and types. Please generate queries and code based on the
complete table.

The table's explanation is provided below to guide your query and code :
Explanation
{table explanation}

The output format for each specific task is as follows:

1. Trend Prediction (Time Series Analysis)
Result description:
The result returns the forecasted data for the specified time horizon, including the
forecasted dates and corresponding values. The output should be in a `DataFrame`
format, showing predictions for future time points. Additionaly, return the MAPE
calculated between the model's predictions and the ground truth (using the last few rows
of the time-series data as ground truth).
```python
# Output Format: Print the forecast DataFrame
print(forecast_df)
print(f"MAPE: {MAPE}")
```

2. Correlation Testing (Dependency Analysis)
Result description:
The result should include the name of the correlation test used (e.g., Pearson or
Spearman) and the corresponding correlation coefficient and p-value. The output provides
insight into the strength and significance of the relationship between the two variables.
```python
# Output Format: Print correlation method and result
print("Correlation Method: Pearson")  # Or "Spearman" based on the test used
print(f"Correlation Coefficient: {corr}")
print(f"P-value: {p_value}")
```

Prompt for TablePilot – Statistics Modeling(Cont.)

Figure 23: Prompt design in TablePilot

394

3. Regression Modeling (Predictive Analysis)
Result description:
The result should return the full regression model summary, detailing coefficients, p-
values, R-squared, and other relevant statistics that describe the fit of the model.
```python
# Output Format: Print the regression summary
print(model.summary())
```

DO NOT output anything other than the JSON file containing only the `query` and `code`.
The code should return the result using the `print()` function at the end.

Prompt for TablePilot – Statistics Modeling(Cont.)

Figure 24: Prompt design in TablePilot

395

Verifier Prompt for Code Execution Results
You are a seasoned data analyst and professional code verification expert, with extensive
experience in data analysis, a deep understanding of various business contexts, and strong
coding proficiency. Your role involves not only verifying outputs but also identifying
potential issues in data analysis queries and uncovering limitations in the implemented
code.

Overview:
You will evaluate each code snippet, whether successfully executed or encountering errors,
with three main principles in mind:

1. **General Standards**:
 - **Relevance to Table Content**: Assess whether the data analysis code is closely
related to the table content.
 - **Clarity and Business Context Alignment**: Confirm that the code is well-connected
to relevant business scenarios, providing valuable insights for actionable data analysis.
2. **Task-Oriented Standards**: Evaluation is split across three categories, tailored to
specific types of analysis tasks. For each successfully executed code snippet, ensure that
the output aligns with the specific task guidelines.
3. **Error Correction Standards**: For any code snippet that fails to execute successfully,
you will follow a structured approach to identify and resolve issues. The goal is to
diagnose the error’s root cause and apply targeted corrections that ensure consistency
with the intended analysis query and overall functionality.

Task-Specific Guidelines:
1. **Rudimentary Analysis Operations** (Filter, Sort, Aggregation and Group By, Pivot
Table)
 - **Insightfulness**: Verify if the results reveal key characteristics of the data and offer
insightful observations.
 - **User-Friendliness**: Confirm that the output is easily interpretable, and the
operation aligns with common data analysis practices.
 - **Visualization Clarity**: Ensure headers are clearly labeled, and the content is well-
organized, without excessive missing values or unclear cells.

2. **Chart-Based Analysis**:
 - **User Interpretability**: Check if the generated chart is clear and easy for users to
understand, with a well-defined chart type.
 - **Presentation Quality**: Assess if there are any visual issues, such as overlapping
axes, overly dense data labels, or cluttered layouts that detract from readability.

Prompt for TablePilot – Multimodal Revision

Figure 25: Prompt design in TablePilot

396

- **Field Combinations**: Evaluate if the combination of x-axis and y-axis fields presents
meaningful relationships, delivering valuable insights for data analysis. Please ensure the
code's execution success rate while improving the clarity and intuitiveness of the charts,
so that the user can understand them accurately.
 - **Chart Documentation**: In the modified chart code, add a comment in this format:
Chart INFO: {{'x_fields': '', 'y_fields': [], 'chart_type': ''}}. Here, x_fields specifies the x-axis
field, y_fields lists y-axis values (allowing multiple fields), and chart_type defines the chart
type (e.g., lineChart, barChart, scatterChart, pieChart).

3. **Statistical Modeling Tasks** (Trend Prediction, Correlation Testing, Regression
Modeling)
 - **Trend Prediction**: Confirm the appropriateness of the target variable for
forecasting (e.g., time series). Evaluate the prediction window setting and model
suitability for the data characteristics. If NaN values occur, please correct the errors in the
modeling process and generate valid forecasted values.
 - **Correlation Testing**: Check if the selected variables have a meaningful correlation
worth analyzing, beyond obvious or trivial associations.
 - **Regression Modeling**: Ensure the chosen variables are suitable for modeling, with
an appropriate regression model based on data linearity or non-linearity.

Code Error Correction Guidelines:
1. **Step-by-Step Diagnosis**: Carefully consider each step of the code to understand the
error’s root cause. Pinpoint why the code fails when executing the specific data analysis
query.
2. **Query and Code Consistency**: Verify that the code accurately implements the
query’s requirements. Ensure consistency between the query and the code, confirming
that the logic aligns with the query’s intended analysis.
3. **Error Message Analysis**: Use the details from the error message to identify specific
issues. Follow a logical approach, thinking through each possible cause, and apply
corrections that logically address the error.

Prompt for TablePilot – Multimodal Revision(Cont.)

Figure 26: Prompt design in TablePilot

397

Optimized the Successful Results (This part switches conditioned on whether the
execution result is successful or a failure.)

"""Please review and optimize the following content according to the guidelines:
Table Information:
{table}

The table's explanation is provided below to guide your revision:
Explanation
{table explanation}

```
### Query Details:
**Query**: 
{query}

**Code**:
{code}
`
** Execution Results**:
{Results – text content}

{Results – image content}

Please ensure that the optimized code can produce the correct results; otherwise, do not 
proceed with the optimization.

### Revise the Error  Results (This part switches conditioned on whether the execution 
result is successful or a failure.)

The current code matched to the query is incorrect. Please analyze the reasons for the 
error and suggest how it can be improved. Please review and correct the following 
content according to the guidelines:
### Table Information:
{table}

The table's explanation is provided below to guide your revision:
## Explanation
{table explanation}

### Error Message:
{error}

Please ensure that the optimized code can produce the correct results.

Prompt for TablePilot – Multimodal Revision(Cont.)

Figure 27: Prompt design in TablePilot

398



## Evaluating High-Quality Data Analysis Recommendations
### Task Description:
As the most senior data analysis manager, you bring extensive experience in identifying 
and recommending the most valuable tasks generated by other data analysis processes. 
Your task is to evaluate data analysis operations for a given table. Your input includes a 
sampled version of the table, relevant explanations about the table, and a set of key data 
analysis queries along with their execution results. **Adjust the distribution of 
recommendations across these task types as needed to align with the table’s unique data 
profile.** Ensure that each selected recommendation is of high quality and insight, 
providing professional-level analysis that will leave users highly satisfied.

### Definitions of Data Analysis Task Categories:
1. **Basic Data Analysis Tasks**:  
    This category covers basic operations like filtering, sorting, grouping, and creating pivot 
tables to summarize data. These tasks help organize raw data, making it easier to identify 
trends, compute key metrics, and prepare for deeper analysis.

2. **Table Visualization Data Analysis Tasks**:  
   This category involves visualizing data using charts like line, bar, scatter, pie, column, 
combo and box charts, along with advanced types like stacked and bubble charts. These 
tasks allow users to explore patterns and trends, enabling clearer insights and effective 
decision-making.

3. **Statistics Modeling Analysis Tasks**:  
   This category includes predictive and statistical analyses like trend forecasting, 
correlation testing, and regression modeling. These tasks provide deeper insights by 
predicting outcomes, identifying relationships, and supporting data-driven decisions.

### Evaluation Criteria:
1. **Meaningful (Practical Usefulness)**:  
   **Concept**: The recommendation’s ability to provide practical value in real-world data 
analysis tasks.  
   **Definition**: A meaningful recommendation should address a specific analytical need 
and provide actionable insights that directly support business decisions. It should offer 
solutions to key issues within the data and guide users in making informed choices based 
on the analysis.  
   **Good Performance**: A high-quality recommendation effectively addresses real-
world problems, aligns with the overall objectives of the analysis, and enables users to 
gain useful insights that drive decisions or further exploration.

Prompt for TablePilot – Ranking

Figure 28: Prompt design in TablePilot

399



2. **Relative (Relevance to the Table Theme)**:  
   **Concept**: The degree to which the recommendation is aligned with the core content 
and purpose of the dataset.  
   **Definition**: A relevant recommendation should directly relate to the **Table 
Theme**—the main topic or focus of the dataset being analyzed. The closer the 
recommendation is to the central theme, the more relevant it becomes.  
   **Good Performance**: A well-aligned recommendation highlights key elements of the 
table, such as analyzing core columns or offering insights that support the main subject of 
the table. It enhances the analysis by focusing on the most important data points and 
their relationships.

3. **Reasonableness (Logical Coherence and Suitability to Data Characteristics)**:
   **Concept**: The degree to which a recommendation logically aligns with the table's 
structure and the intrinsic characteristics of its data values.
   **Definition**: A reasonable recommendation should be logically coherent and 
grounded in sound data analysis principles that a data analyst would naturally follow. The 
queries generated should reflect meaningful relationships within the data, and the chosen 
analysis methods should perfectly match the data's properties, highlighting relevant 
patterns or insights.
   **Good Performance**: A well-reasoned recommendation is intuitive, logically 
structured, and tailored to the data's unique attributes, making it feel like a natural and 
insightful extension of the data itself. The generated data analysis content should align 
with the rational understanding and expectations of the data analyst.

4. **Diversity (Variety of Analysis Tasks)**:  
   **Concept**: The extent to which the set of recommendations covers a broad range of 
data analysis operations.  
   **Definition**: Diversity ensures that within the same type of task, recommendations 
reflect a range of different data analysis methods and data columns. 
   **Good Performance**: A diverse set of recommendations should focus on each task 
type, selecting different data analysis methods within each while utilizing various 
combinations of data columns. For example, choose various operations for Rudimentary 
Operations using different column sets, different chart types for Chart-Based Data 
Analysis exploring different data dimensions.

Prompt for TablePilot – Ranking(Cont.)

Figure 29: Prompt design in TablePilot

400



5. **Interpretable (Ease of Understanding and Implementation)**:  
   **Concept**: The clarity and simplicity of the recommendation in terms of how easily it 
can be understood and executed by the user.  
   **Definition**: An interpretable recommendation should be straightforward, with clear 
steps that the user can follow without ambiguity. It must be simple enough to be 
implemented directly and should not require excessive explanation or complex reasoning.  
   **Good Performance**: A well-interpreted recommendation is concise, uses plain 
language, and describes the task in a way that is immediately actionable. Users should be 
able to quickly grasp its value and apply it without needing additional clarification.

6. **Insightful (Ability to Reveal New Data Insights)**:  
   **Concept**: The potential of the recommendation to uncover valuable insights or new 
perspectives from the data.  
   **Definition**: An insightful recommendation should offer more than just surface-level 
observations. It should reveal hidden relationships, highlight trends, or provide a fresh 
perspective that may not be immediately obvious from the raw data.  
   **Good Performance**: A strong recommendation goes beyond basic analysis, helping 
users to identify significant patterns, correlations, or predictions that could lead to deeper 
understanding or strategic actions. It often uncovers key insights that were previously 
unknown or unexplored.

### Evaluation Criteria for Basic Data Analysis
The evaluation of rudimentary data analysis execution results should adhere to the same 
six principles outlined previously. 
1. **Sort-Type Queries**:  
The Table Data provided represents sequential samples from the original table. When a 
column in these samples exhibits an ordered sequence, it indicates that the corresponding 
column in the original table maintains the same ordering pattern. Therefore, any sorting 
operation on such columns would be redundant.
Exclude sort queries if the sorted results are identical to the original table, as this indicates 
an ineffective operation.
2. **Empty or NaN Values**:  
Exclude queries producing results with many empty or NaN values. 
3. **Pivot Table**:  
Carefully evaluate the execution results of pivot tables and retain only those that provide 
truly insightful data analysis.

Prompt for TablePilot – Ranking(Cont.)

Figure 30: Prompt design in TablePilot

401



### Evaluation Criteria for Charts
The evaluation of chart execution results should adhere to the same six principles outlined 
previously. However, as charts are presented in image form, additional criteria are 
necessary to ensure high-quality outputs.
1. **Clarity of Scales and Labels**  
   Ensure that the chart includes clear scales and accurately defined data labels, making it 
easy to interpret the presented data.
2. **Completeness of Content**  
   The chart's content must comprehensively reflect the data analysis operation intended 
by the query, covering all relevant aspects.
3. **Aesthetic Quality and Richness of Meaning**  
   The chart should be visually appealing, well-designed, and capable of effectively 
conveying rich and meaningful insights.

### Evaluation Criteria for Statistics Modeling Data Analysis
The evaluation of advanced data analysis execution results should adhere to the same six 
principles outlined previously. 
1. **Selection of Variables for Analysis**:  
   Prioritize advanced modeling or correlation tests for variables with potential 
relationships, rather than those already exhibiting significant correlations.
2. **Statistically Significant**
   For Statistics Modeling Data Analysis tasks, please evaluate whether the query results 
are statistically significant (i.e., MAPE value < 0.1, P-value < 0.05, R-squared > 0.9). Assign 
higher scores to queries with **statistically significant results** and lower scores to 
queries without statistical significance.

### Input:
1. A subset of the table obtained through a specific sampling method and table 
Explanation.
2. A set of data analysis recommendation queries targeting this table, categorized into 
three types of tasks: **Rudimentary Data Analysis**, **Chart-Based Data Analysis**, 
and **Advanced Data Analysis**. Along with their corresponding execution results.

Prompt for TablePilot – Ranking(Cont.)

Figure 31: Prompt design in TablePilot

402



## Table Data:
{table}

## Explanation
{table explanation}

Here are the queries and its results for the three task categories:
1. Basic Data Analysis Queries:
{basic analysis queries}
{basic analysis results}

2. Visualization Data Analysis Queries:
{visualization analysis queries}
{visualization analysis results – image content}

3. Statistics Modeling Data Analysis Queries:
{statistics modeling  analysis queries}
{statistics modeling analysis results}

Please evaluate all the queries listed above across the three categories. Each query from 
these three types of tasks must be evaluated and assigned a score without omitting any. 

Please evaluate all queries based on the six dimensions in the Ranking Criteria: 
Meaningful, Relative, Reasonableness, Diversity, Interpretable, Insightful. Assign a score 
to each dimension on a scale of 0 to 5, where a higher score indicates that the query 
result better aligns with that criterion. Additionally, provide an explanation for each score 
to justify the rating.

Be strict. Comprehensively consider all queries and results to ensure that the evaluation 
scores exhibit a certain degree of differentiation.

Retain the original query information exactly as it is, without making any modifications to 
its content. 

Prompt for TablePilot – Ranking(Cont.)

Figure 32: Prompt design in TablePilot

403



## Table Analysis Assistant
You are an advanced data analysis assistant specializing in generating actionable **query 
and code recommendations** based on a given table and its explanations. Your objective 
is to create **diverse, practical, and business-relevant queries** spanning three types of 
tasks:

1. **Basic data operations**: Filtering, sorting, grouping & aggregation, pivot table 
creation, and insightful column insertion.  
2. **Data Visualization analysis**: Generating various charts like line, bar, scatter, pie, 
combo, and advanced charts such as stacked bar and bubble charts.  
3. ** Statistics modeling**: Conducting trend prediction, correlation testing, and 
regression modeling.  

For each query, generate **Python code** that:  
- Accurately implements the query using the appropriate libraries (`pandas`, `matplotlib`, 
`statsmodels`, or `scikit-learn`).  
- Fully aligns with the query’s intent and logic.  
- Outputs the analysis results in a clear and interpretable format.  

## **Query Generation Guidelines**
1. **Diversity and Variety**: Ensure the queries cover different analysis operations, chart 
types, and statistical models, utilizing the table’s columns comprehensively.  
2. **Practicality**: Queries must align with real-world data analysis needs and the table's 
context, avoiding overly generic or irrelevant analyses.  
3. **Specificity**: Clearly define the scope and purpose of each query to ensure precision 
in the generated code.  

 Please propose some queries for each task along with the corresponding executable code 
for the following table: 

## Table Data:
{table}

## **Code Input **
- Import `pandas` for data manipulation. 
  - Import `pandas` and `matplotlib` for chart creation.
  - Import `pandas` and the relevant statistical libraries (`statsmodels`, `scikit-learn`, or 
`numpy`).
```

Prompt for Baseline

Figure 33: Prompt design in TablePilot

404

- **Output Format**:
…

Output Requirements
The output must be a JSON object containing **queries** and corresponding **Python
code** for the three task types:

1. **Rudimentary Data Operations**: Queries that involve filtering, sorting, grouping,
aggregation, pivot table, or insightful column insertion.
2. **Chart-Based Analysis**: Queries that involve generating different types of charts,
clearly specifying the chart type and data scope.
3. **Advanced Statistical Modeling**: Queries that involve statistical analysis tasks such
as trend prediction, correlation testing, or regression modeling.

Each query must be aligned with its code, and the JSON object must strictly include only
the `query` and `code` fields.

Important Notes
1. **Output Alignment**: Ensure each query’s code satisfies the requirements and intent
of the query.
2. **Clean Code**: Provide executable code without unnecessary comments or
explanations.
3. **No Extra Information**: DO NOT include anything outside the JSON object
containing the `query` and `code`.

Prompt for Baseline(Cont.)

Figure 34: Prompt design in TablePilot

405

Your task is to predict meaningful user queries based on a given table and its
explanations. Recommend diverse and practical queries, each accompanied by the
corresponding Python code using the pandas library. The query recommendations should
encompass different data analysis operations: filtering, sorting, grouping and
aggregation, pivot table operations, and insert insight columns. Your goal is to ensure that
both the queries and the code are useful for real-world analysis scenarios based on the
table's content. Select the most appropriate operations based on the table's
characteristics.

Purpose of Basic Data Analysis Task:
This task involves essential data manipulation operations for organizing raw data,
simplifying complex datasets, and generating quick overviews. The purpose of these tasks
is to help users streamline their datasets, making it easier to spot trends, derive key
metrics, and prepare data for deeper analysis.

Please propose queries and corresponding executable code based on the table provided:
Table:
{table}
This table format is the result of sampling a portion of the original CSV file, providing an
overview. Please generate data analysis recommendations for the complete table.
Explanations:
{Explanations}

Prompt for Constructing Dataset - DART

Figure 35: Prompt design in TablePilot

406

Your task is to predict meaningful chart-based data analysis queries and generate the
corresponding Python code using the matplotlib library. Your objective is to recommend
some business-relevant chart queries, each accompanied by executable code that matches
the query. The chart types can range from basic charts like line, bar, scatter, pie, column,
combo and box charts to more complex charts such as clustered bar, stacked bar, 100%
stacked bar, area and bubble charts. Your goal is to ensure that both the queries and the
code are useful for real-world analysis scenarios based on the table's content and its
explanations.

Purpose of Chart-Based Data Analysis Task
This task focuses on visualizing data to enable users to explore patterns, relationships, and
trends effectively. By creating clear and compelling visuals, users can gain deeper insights
and facilitate decision-making. Chart types vary in complexity and should be selected
based on the structure and purpose of the tabular data being analyzed.

Please propose queries and corresponding executable code based on the table provided:
Table:
{table}
This table format is the result of sampling a portion of the original CSV file, providing an
overview. Please generate data analysis recommendations for the complete table.
Explanations:
{Explanations}

Prompt for Constructing Dataset – DART(Cont.)

Figure 36: Prompt design in TablePilot

407

Your task is to predict meaningful data analysis queries and generate the corresponding
Python code using appropriate libraries like statsmodels, scikit-learn, and numpy. The
analysis tasks focus on trend prediction, correlation testing, and regression modeling.
Your objective is to recommend some distinct data analysis queries, each accompanied by
executable code that matches the query. Your goal is to ensure that both the queries and
the code are useful for real-world analysis scenarios based on the table's content and its
explanations.

Purpose of Advanced Data Analysis Task
This task includes predictive and statistical analyses such as trend forecasting using
historical data, correlation testing to quantify relationships between variables, and
regression modeling to predict outcomes based on one or more independent variables.
These tasks are essential for performing in-depth analysis that moves beyond descriptive
statistics, offering predictive power and helping users understand the underlying factors
that influence key outcomes. The purpose is to support data-driven predictions, identify
correlations, and build models that provide actionable insights for future planning and
decision-making.

Please propose queries and corresponding executable code based on the table provided:
Table:
{table}
This table format is the result of sampling a portion of the original CSV file, providing an
overview. Please generate data analysis recommendations for the complete table.
Explanations:
{Explanations}

Prompt for Constructing Dataset – DART(Cont.)

Figure 37: Prompt design in TablePilot

408

Your task is to evaluate data analysis operations for a given table. Your input includes a
sampled version of the table, relevant explanations about the table, and a set of key data
analysis queries along with their execution results. Your goal is to assess these queries
from a professional data analysis perspective, assign a reasonable score and reason based
on the following Evaluation Criteria:

1. Meaningful (Practical Usefulness):
 - A meaningful recommendation should address a specific analytical need and provide
actionable insights that directly support business decisions.
2. Relative (Relevance to the Table Theme):
 - A relevant recommendation should directly relate to the "Table Theme"—the main
topic or focus of the dataset being analyzed.
3. Reasonableness (Logical Coherence and Suitability to Data Characteristics):
 - A reasonable recommendation should be logically coherent and grounded in sound
data analysis principles that a data analyst would naturally follow.
4. Diversity (Variety of Analysis Tasks):
 - Diversity ensures that within the same type of task, recommendations reflect a range
of different data analysis methods and data columns.
5. Interpretable (Ease of Understanding and Implementation):
 - An interpretable recommendation should be straightforward, with clear steps that the
user can follow without ambiguity.
6. Insightful (Ability to Reveal New Data Insights):
 - An insightful recommendation should offer more than just surface-level observations. It
should reveal hidden relationships, highlight trends, or provide a fresh perspective that
may not be immediately obvious from the raw data.

The above outlines the requirements of your task. Below are the corresponding data
points that you need to evaluate:

Table Data:
{table}
Explanation
{table explanation}
Here are the queries and its results for the three task categories:
1. Basic Data Analysis Queries:
{basic analysis queries}
{basic analysis results}
2. Visualization Data Analysis Queries:
{visualization analysis queries}
{visualization analysis results – image content}
3. Statistics Modeling Data Analysis Queries:
{statistics modeling analysis queries}
{statistics modeling analysis results}

Please evaluate all the queries listed above across the three categories. Each query from
these three types of tasks must be evaluated and assigned a score without omitting any.

Prompt for Constructing DPO Positive Data

Figure 38: Prompt design in TablePilot

409

You often make some erroneous judgments about phenomena in the real world and
provide absurd and abstract explanations. You will receive some tables, as well as data
analysis queries and corresponding results on top of these tables. Please generate random
and unreasonable scores for all queries, accompanied by an extremely absurd
explanation.

Please generate random scores ranging from positive 100 to negative 100.

Table Data:
{table}

1. Basic Data Analysis Queries:
{basic analysis queries}
{basic analysis results}

2. Visualization Data Analysis Queries:
{visualization analysis queries}
{visualization analysis results}

3. Statistics Modeling Data Analysis Queries:
{statistics modeling analysis queries}
{statistics modeling analysis results}

Prompt for Constructing DPO Negative Data

Figure 39: Prompt design in TablePilot

410

