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Abstract

This paper introduces Light-R1, an open-
source suite for training long reasoning models
using reproducible and cost-effective methodol-
ogy. Given the proprietary nature of data used
in the DeepSeek-R1 series, we develop an alter-
native approach leveraging exclusively public
data and models. Our curriculum training pro-
gressively increases data difficulty, combined
with multi-staged post-training. Our Light-
R1-32B model, trained from Qwen2.5-32B-
Instruct, outperforms DeepSeek-R1-Distill-
Qwen-32B in math reasoning. Experimen-
tal results show that this curriculum approach
becomes more effective when distinct, di-
verse datasets are available for different train-
ing stages: fine-tuning DeepSeek-R1-Distilled
models (pre-tuned by DeepSeek team on pro-
prietary data) with 3,000 challenging examples
from our curriculum dataset yielded state-of-
the-art 7B and 14B models, while the 32B
model, Light-R1-32B-DS performed compa-
rably to QwQ-32B and DeepSeek-R1. Further-
more, we extend our work by applying GRPO
on long reasoning models. Our final Light-R1-
14B-DS achieves SOTA performance among
14B models in math, with AIME24 & 25 scores
of 74.0 and 60.2 respectively, surpassing many
32B models and DeepSeek-R1-Distill-Llama-
70B. Despite math-focused training, Light-R1-
14B-DS demonstrates strong cross-domain gen-
eralization. Light-R1 represents a significant
advancement in making sophisticated reason-
ing models more accessible and implementable
in real-world applications. Our models, train-
ing data and code have been made available at
https://github.com/Qihoo360/Light-R1.

1 Introduction

Since the release of DeepSeek-R1 (DeepSeek-AI,
2025), long chain-of-thought (OpenAI, 2024; Wei
et al., 2022; Kimi, 2025; Lightman et al., 2023)
reasoning has gained widespread popularity in

Figure 1: Reproducible state-of-the-art long COT mod-
els (top) developed from scratch (=short-COT base),
(bottom) derived from DeepSeek-R1-Distill models
(=long-COT base), via curriculum learning strategy.

both foundational AI models and various indus-
trial AI applications. However, deploying full-
capacity R1-level models (typically 70B+ param-
eters, DeepSeek-R1 with 671B parameters) in-
curs prohibitive computational costs (DeepSeek-AI,
2025; Qwen, 2025). The resource barrier of train-
ing and deploying the giant models makes them
impractical for edge devices and real-time applica-
tions. This limitation has sparked growing interest
in developing compact yet capable models under
a few 10B parameters that can perform extended
long COT - a critical requirement for mathematical
problem solving, algorithmic planning, and scien-
tific analysis. To address this challenge, we present
our work on the Light-R1 series.

As a foundation for our research, we first estab-
lished robust and reproducible evaluation protocols
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that rigorously reproduce the evaluation results re-
ported in DeepSeek-AI (2025). Building upon this
reliable framework, our research systematically ad-
dresses three fundamental challenges through inno-
vative algorithmic and engineering advancements.

The first challenge involves curating an efficient
dataset for Post-Training, a critical factor for long-
COT optimization (Ye et al., 2025; Muennighoff
et al., 2025; Li et al., 2025). We collected diverse
open-source reasoning data covering mathemati-
cal reasoning, logical deduction, and algorithmic
problem-solving. After preprocessing to remove
duplicates and standardize formatting, we imple-
mented a two-stage difficulty filtering methodol-
ogy using DeepScaleR-1.5B-Preview (Luo et al.,
2025b) and DeepSeek-R1-Distill-Qwen-32B mod-
els to quantify difficulty based on pass rates.

The second challenge then emerges as how to
optimize the utilization of this dataset. While con-
ventional approaches typically employ a single SFT
stage (DeepSeek-AI, 2025; Xu et al., 2025; Labs,
2025; Yu et al., 2024), our preliminary experiments
with our 32B model revealed significant limita-
tions—approximately 20% of training data still
exhibited pass rates below 50% across 10 runs, in-
dicating insufficient knowledge assimilation from
heterogeneous difficulty datasets. To address this,
we implemented a multi-staged curriculum training
strategy comprising two consecutive SFT stages
with progressively increasing difficulty, followed
by a DPO stage (Rafailov et al., 2023). Although re-
cent work has explored different curriculum strate-
gies for long-COT training (Luo et al., 2025a; Min
et al., 2024; Xi et al., 2024; Yuan et al., 2025a), our
approach demonstrates superior performance: our
Light-R1-32B model, trained from Qwen2.5-32B-
Instruct (Qwen, 2024), outperforms DeepSeek-R1-
Distill-Qwen-32B in mathematical reasoning.

The third challenge arises from implementing
the final component of Post-Training — Reinforce-
ment Learning (Shao et al., 2024; Wang et al.,
2024; Ouyang et al., 2022; Schulman et al., 2017,
2015) — to further enhance model performance.
We are excited to report our successful reinforce-
ment learning training of Light-R1-14B-DS. While
recent research has shown success in training base
models (Zeng et al., 2025; Hu et al., 2025; Liu et al.,
2025), smaller models (Zeng et al., 2025; Luo et al.,
2025b), or larger models with intensive computa-
tional resources (Qwen, 2025), our long-COT RL
Post-Training represents the first demonstration of
simultaneous increases in both response length and

Table 1: Reproduction of DeepSeek-AI (2025) and
Qwen (2025) evaluation results on AIME24 (MAA,
2024) pass@1 averaged over 64 runs.

Model Paper Ours
DS-distill-32B 72.6 72.3
DS-distill-14B 69.7 69.3
DS-distill-7B 55.5 54.0

QWQ-32B 79.5 78.5

reward scores on long-COT 14B models without
the initial length reduction typically observed. This
breakthrough demonstrates that carefully designed
curriculum strategies can overcome the previously
documented scalability limitations of RL in smaller
models (Gao et al., 2023).

The key contributions of this work include:

• A detailed, fully open-source Curriculum Post-
Training approach to train long-COT mod-
els from scratch. The multi-stage curriculum
training incrementally builds reasoning capac-
ity through difficulty-progressive data expo-
sure, requiring only $1000 training cost (6
hours on 12×H800 GPUs). This approach is
validated on Qwen2.5-32B-Instruct and could
be easily migrated to 7B and 14B models.

• A well established SFT stage 2 dataset of 3k
mostly math questions that could significantly
improve not only SFT stage 1 but also all
DeepSeek-R1-Distill models, resulting in our
SOTA 7B model Light-R1-7B-DS.

• First demonstration of RL effectiveness on
14B models for mathematical reasoning,
achieving around 2% absolute improvement
compared with before-RL, resulting in our
SOTA 14B model Light-R1-14B-DS.

2 The Origin of Everything: Stable and
Trustworthy Evaluation of Long-COT
Models

Following DeepSeek-AI (2025), long-COT models
are commonly deployed with sampling temperature
0.6. While long-COT models generally perform
better with sampling than with greedy decoding, it
brings more burden for model evaluation as mul-
tiple samples for each question may be required,
contrary to previous viable approaches of greedy
decoding for evaluation (Song et al., 2024).
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DeepSeek-AI (2025) generates 64 responses per
query to estimate pass@1. We have verified this
choice, witnessing large deviation of over 3 points
using 16 responses or fewer across different runs of
the same model. Such randomness is unacceptable
to compare model performances.

For stable and trustworthy evaluation, we
adapted (Luo et al., 2025b)’s evaluation code for
all our evaluation runs. Our evaluation code and
logs are all released.

We can reproduce all DeepSeek-R1-Distill mod-
els’ and QwQ’s scores as reported in DeepSeek-AI
(2025); Qwen (2025) as shown in Tab. 1 with 64
samples per query, with deviation around 1 point.

3 Light-R1-32B: Long-COT from Scratch
with Curriculum SFT & DPO

While numerous studies (Ye et al., 2025; Muen-
nighoff et al., 2025; OpenThoughts, 2025; OpenR1,
2025) have open-sourced efforts to replicate
DeepSeek-R1 using models of various sizes, rang-
ing from 1.5B to 32B, none has reached similar per-
formance on the challenging mathematics competi-
tions AIME24 & 25, where DeepSeek-R1-Distill-
Qwen-32B scored at 72.6 & 54.9.

We present our data processing and Post-
Training pipeline in this section as illustrated by
Fig. 2.

3.1 Data Preparation

The whole data preparation process spans data col-
lection, data decontamination and data generation,
detailed as follows.

3.1.1 Data Collection
We began by collecting various sources of math
questions with groundtruth answers. Iterating over
all possible sources by the time, we collected
around 1000k math questions as the seed set. See
Appendix B for more details about the data sources.

All data are aggregated together to form around
1000k math questions as the seed set. Within
this 1000k data, we kept only math questions
with groundtruth answers. Questions without
groundtruth answers could be used as synthetic
data by letting multiple strong LLMs vote for
groundtruths but we left it for future work.

The data is then filtered for diversity, where we
tagged each question with an in-house tagging sys-
tem and downsample categories with excessive
data.

3.1.2 Data Decontamination
We evaluated data contamination in several open-
sourced datasets. Our analysis revealed that MATH-
500 (Hendrycks et al., 2021a) contains tens of com-
promised questions that are either identical or differ
only in numerical values. AIME 24 and 25 remain
uncontaminated, though caution is needed when
incorporating AIME data through 2023. Further
details are provided in Appendix C.

Light-R1 underwent comprehensive decontam-
ination using exact matching (excluding digits to
filter questions with only numerical changes) and
N-gram (N=32) matching against AIME24&25,
MATH-500, and GPQA (Rein et al., 2023).

3.1.3 Data Generation
With a diverse and clean dataset, we generate com-
prehensive chain-of-thought (COT) responses for
supervised fine-tuning (SFT). However, not all
data points are equally valuable for training, and
distilling DeepSeek-R1 can be resource-intensive
whether through API queries or local deployment.
We therefore implemented difficulty-based filtering
on the dataset to retain only sufficiently challenging
questions, inspired by recent advances in training
long reasoning models (Luo et al., 2025b; Ye et al.,
2025; Muennighoff et al., 2025).

We initially employ Luo et al. (2025b)’s
DeepScaleR-1.5B-Preview model to generate re-
sponses for each question, as this model offers a
good balance of efficiency and capability. Only
questions with a pass rate < α were selected for
DeepSeek-R1 queries, resulting in approximately
76k data points. After obtaining DeepSeek-R1 re-
sponses, we retained only questions with correct
long-COT answers. For questions with multiple
correct responses, we randomly selected one long-
COT answer for SFT. Through this process, we con-
structed an SFT dataset exceeding 70k examples,
featuring prompts filtered for both diversity and
difficulty, with long-COT responses generated by
DeepSeek-R1 and validated against ground truth.

However, direct training on this dataset alone
did not yield satisfactory results regardless of the
number of training epochs. Upon analyzing the
trained model’s performance across different ques-
tion types, we discovered the need for additional
training on more challenging problems. Conse-
quently, we implemented a second stage of diffi-
culty filtering using the full version of DeepSeek-
R1 instead of DeepScaleR-1.5B-Preview. This
stage retained only questions with pass rate < α
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Figure 2: Overview of training pipeline of Light-R1 series.

and questions where DeepSeek-R1’s sampled re-
sponses were neither uniformly correct nor uni-
formly incorrect, resulting in a Stage 2 SFT dataset
of approximately 3k examples. Notably, this re-
fined dataset demonstrated such high quality that
training exclusively on it produced performance im-
provements across all DeepSeek-R1-Distill models,
as we will discuss in Section 3.4.

3.2 Curriculum Post-Training
Our approach consists of three stages, detailed hy-
perparameters can be found in Appendix D.:

1. SFT Stage 1: Training on 76k filtered mathe-
matical problems

2. SFT Stage 2: Fine-tuning on 3k most chal-
lenging problems

3. DPO Optimization: Preference-based opti-
mization using verified response pairs

SFT stages are trained with the curriculum data
strategy as discussed in Sec. 3.1.3. For DPO, we
implemented a semi-on-policy approach using the
NCA loss (Chen et al., 2024). Rejected responses
were sampled from our SFT-stage-2 model with

verified incorrect answers. Since some rejected
responses reached lengths of 32k tokens or more,
we utilized the DPO implementation with sequence
parallelism from 360-LLaMA-Factory (Zou et al.,
2024). For chosen responses, we used verified cor-
rect answers from DeepSeek-R1. While we had
previously employed fully on-policy DPO exten-
sively, we discovered that for challenging math-
ematical problems, using chosen responses from
significantly stronger models yielded better results.

3.3 Results
We observe consistent improvements across our
curriculum SFT & DPO post-training stages (Tab.
2). Following DPO, we use the TIES-merging (Ya-
dav et al., 2023) method from the Goddard et al.
(2024) toolkit to merged models from SFT-stage2,
DPO, and another DPO variant (AIME24 score:
74.7) that had special tokens inadvertently removed
from rejected responses, the resulting merged
model demonstrates additional performance gains.
Although our mathematics-focused training led to
some forgetting on untrained GPQA scientific ques-
tions, Light-R1-32B still demonstrates strong gen-
eralization capabilities.
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Stage AIME24 AIME25 GPQA LCB
Instruct (base) 16.6 13.6 48.8 24.6
+SFT-stage1 69.0 57.4 64.3 42.9
+SFT-stage2 73.0 64.3 60.6 42.0
+DPO 75.8 63.4 61.8 N/A
+Model Merging 76.6 64.6 61.8 44.7

Light-R1-32B 76.6 64.6 61.8 44.7

Table 2: Stage-wise performance improvement of our
Light-R1-32B. We observe a decrease in GPQA (Sci-
ence QA) scores beginning from STF-stage2, indicating
a partial degradation of the model’s generalization ca-
pabilities during extensive math-focused training. How-
ever, Light-R1-32B still demonstrates strong generaliza-
tion compared to the base model.

Model AIME24 AIME25 GPQA LCB
DS-distill-7B 55.5 39.2 49.1 tbd
Light-R1-7B-DS 59.1 44.3 49.4 tbd
DS-distill-14B 69.7 50.2 59.1 52.9
Light-R1-14B-DS’ 72.3 58.9 60.3 55.9
DS-distill-32B 72.6 54.9 62.1 58.8
Light-R1-32B-DS 78.1 65.9 68.0 66.1

Table 3: Effectiveness of the 3k data from SFT stage2.
Fine-tuning on stronger base models, which presum-
ably utilize datasets orthogonal to ours, consistently en-
hances performance across all model sizes. The notation
Light-R1-14B-DS’ refers to the SFT-only version of
our final Light-R1-14B-DS model, which subsequently
undergoes an additional stage of GRPO RL training.

3.4 High-Quality Data is All You Need

Considering DeepSeek-R1-Distill-Qwen models
as a stronger version of our SFT stage 1, we per-
formed SFT stage 2 with the 3k stage 2 data on top
of DeepSeek-R1-Distill-Qwen models.

Surprisingly as Tab. 3, we could achieve univer-
sal improvement on DeepSeek-R1-Distill-Qwen
models with this 3k data alone, demonstrating the
high quality of the stage 2 data. It may also be
because this 3k data is to some extent orthogonal
to DeepSeek-R1-Distill-Qwen models’ 800k SFT
data, hence such easy improvement.

GPQA performance is unexpectedly high for
Light-R1-32B-DS, despite the absence of domain-
specific training in science and code domains, sug-
gesting that stronger base models may benefit from
stronger generalization capacities. In contrast,
Light-R1-7B-DS, while trained on identical data
curriculum, exhibits improvements confined solely
to in-domain tasks.

4 Light-R1-14B-DS: Reinforcement
Learning from Long-COT Models

We conduct our reinforcement learning experi-
ments on DeepSeek-R1-Distill-Qwen-14B. To the
best of our knowledge, this is the first publicly
documented work demonstrating significant im-
provement in performance through RL on already
long-COT 14B models.

Previous studies by DeepSeek-AI (2025), Yuan
et al. (2025b), and Zhang et al. (2025) have shown
that smaller models (with 32 billion parameters or
fewer) can reach high performance levels through
distillation from larger reasoning models. However,
further improvement via RL (Reinforcement Learn-
ing) on already long-COT finetuned models is not

yet widely reached by the community and is not as
easily reachable as zero RL (Sec. 1). While Luo
et al. (2025b) successfully demonstrated promis-
ing RL training on a smaller model DeepSeek-R1-
Distill-Qwen-1.5B, we encountered challenges in
replicating similar results with the larger DeepSeek-
R1-Distill-Qwen-14B model using the same recipe.

After weeks of investigation, we arrived at our
final RL solution consisting of a two-pass process,
drawing inspiration from our effective curriculum
SFT attempt and Cui et al. (2025). The process is
as follows:

1. Offline Data Selection: Use Light-R1-7B-
DS to sample results of RL training prompts.
Keep only the prompts whose pass rate is be-
tween 0.25 and 0.625.

2. Online Reinforcement Learning: Apply
GRPO on the filtered dataset.

In our observation, offline data selection plays
a critical role. It filters out prompts that are too
easy or too hard and ensures that the training data
aligns with our rule-based answer verifier. When
manually checking data with a pass rate of 0, we
found that over half of the prompt answers are
either unverifiable (due to containing text or com-
plex conditional expressions) or incorrect. We uti-
lize Light-R1-7B-DS as the difficulty estimation
model because it is more efficient and demonstrates
similar performance to larger models in terms of
pass@64. Additionally, we use a model verifier to
re-check data with a pass rate of 0. By filtering out
the mis-verified data, we can successfully identify
difficult prompts for future curriculum reinforce-
ment learning.
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Figure 3: RL Learning curves of response length and
train-reward, smoothed with Savitzky-Golay filter.

Model AIME24 AIME25 GPQA LCB
DS-distill-14B 69.7 50.2 59.1 52.9
+ SFT 72.3 58.9 60.3 55.9
+ GRPO epoch1 72.3 57.8 N/A 56.6
+ GRPO epoch2 73.4 60.5 N/A 56.5

Light-R1-14B-DS
(GRPO epoch3)

74.0 60.2 61.7 56.0

GRPO data batch2 75.0 65.0 62.6 57.9

Table 4: RL performance improvement of Light-R1-
14B-DS. Notably, we observe out-of-domain improve-
ment in GPQA, indicating that reinforcement learning
on mathematics-focused datasets potentially facilitates
generalization across diverse domains.

We choose GRPO (Shao et al., 2024) as the opti-
mization algorithm and implement it based on verl
(Sheng et al., 2024). We also employ two tech-
niques to stabilize the RL training process: mod-
ified version of length reward (Yeo et al., 2025)
with weaker preference for short correct answers
and importance sampling weight clipping (Mini-
Max, 2025).

For length control, we adopt a modified version
of the approach proposed by (Yeo et al., 2025).
Specifically, we clip the shortening reward when
answers are correct to prevent initial length col-
lapse. This technique helps maintain a reasonable
answer length during training, ensuring that the
model does not overly shorten its responses at the
beginning of the learning process.

Regarding importance sampling weight clipping,
we implement a broader two-sided clipping mech-
anism. Our observations have shown that occa-
sional large positive policy ratios combined with
negative advantages can lead to loss spikes, disrupt-
ing policy optimization. This two-sided clipping
technique was also implemented in our previous
experiments, in parallel with the findings reported
by MiniMax (2025). By clipping the importance
sampling weights, we can limit the influence of
extreme values and make the training process more
stable.

We use a rule-based reward and the de-
duplicated version of the Big-Math dataset (Al-
balak et al. (2025)). The experiments are conducted
on a cluster of 16 * 8 A100 GPUs. The offline data
selection process takes 4 hours, while the online
reinforcement learning takes 26 hours to complete
140 steps and 42 hours to complete 220 steps.

As can be seen from Fig. 3, our RL training
demonstrates expected behavior: simultaneous in-

crease in response length and reward score. No
interesting length dropping in the beginning. We
evaluated RL epochs 1 and 2 after we finished train-
ing 3 epochs. As shown in Tab. 4, although first
two epochs seem to bring not much improvement,
the healthy RL training curves offer us confidence
to continue training. Light-R1-14B-DS is finally
RL trained for around 3 epochs, or 220 steps.

5 Conclusion

Our Light-R1 series addresses the challenge of
training long reasoning models under resource con-
straints. We successfully train a long-COT model
from scratch through our curriculum training strat-
egy. Our carefully curated 3K dataset demonstrates
remarkable transferability across various model
sizes, significantly enhancing DeepSeek-R1-Distill
models and establishing new performance bench-
marks for models with 7B, 14B, and 32B param-
eters. Additionally, we investigate the efficacy of
reinforcement learning when applied to a strong
multi-stage finetuned base model, achieving supe-
rior performance while maintaining stable response
length growth throughout the training process.

These advancements not only democratize ac-
cess to R1-level reasoning capabilities but also pro-
vide valuable insights into curriculum design, data
efficiency, and RL scalability for long reasoning
models. Our open-source models, datasets, and
code aim to accelerate research in developing com-
pact yet powerful reasoning systems, particularly
for resource-constrained applications. Future work
will explore the integration of enhanced general-
ization capabilities for long reasoning models and
further optimization of RL training efficiency.
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A Light-R1 Series of Models

Table 5: Light-R1 models. “-DS” = from DeepSeek-R1-Distill, otherwise from Qwen-Instruct.

Model AIME24 AIME25 GPQA LCB Training Recipe
Light-R1-32B 76.6 64.6 61.8 44.7 SFT stage1&2 + DPO
Light-R1-7B-DS 59.1 44.3 49.4 tbd SFT stage2
Light-R1-14B-DS 74.0 60.2 61.7 56.0 SFT stage2 + GRPO
Light-R1-32B-DS 78.1 65.9 68.0 66.1 SFT stage2

B Dataset composition for full 59K questions

Table 6: Composition of the released data. Here we summarize the data composition after the first stage diversity
and difficulty filtering. Different sources may contain overlapping examples, we use OpenR1-Math-220k as our
initial seed dataset, which explains why this source contributes the largest portion of our data.

Source Description #Samples
OpenR1-Math-220k (OpenR1,
2025)

Math problems with two to four reasoning
traces generated by DeepSeek R1 for prob-
lems from NuminaMath 1.5.

58224

OpenThoughts-
114k (OpenThoughts, 2025)

Open synthetic reasoning dataset with
114k high-quality examples covering math,
science, code, and puzzles

14214

OpenMathInstruct-2 (Toshni-
wal et al., 2024)

Math instruction tuning dataset generated
using the Llama3.1-405B-Instruct model
by Nvidea

1786

OmniMath (Gao et al., 2024) Math problems from competitions 567
s1K-1.1 (Muennighoff et al.,
2025)

Diverse, high-quality & difficult questions
with distilled reasoning traces & solutions
from DeepSeek-R1

346

LIMO (Ye et al., 2025) Three-stage filtered data from the LIMO
paper

246

hendrycks-math (Hendrycks
et al., 2021b)

12,500 challenging competition mathemat-
ics problems. Each problem in MATH has
a full step-by-step solution which can be
used to teach models to generate answer
derivations and explanation

179

Ours In-house math dataset 3877
Total Composite of the above datasets with rea-

soning traces and solutions
79439

C Data Decontamination
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Table 7: Number of matched prompts in open-source datasets against benchmarks.

Dataset AIME24+25 MATH-500 GPQA Diamond
OpenThoughts-114k 0 100 0
Open-R1-Math-220k 0 10 0

DeepScaleR-Preview-Dataset 0 196 0
LIMO 0 0 0

Bespoke-Stratos-17k 0 125 0
Open-Reasoner-Zero 0 325 0

simplescaling/data_ablation_full59K 0 244 1
simplescaling/s1K-1.1 0 3 1

ours 0 0 0

D Training hyperparameters for Light-R1 series

Table 8: Training hyperparameters for Light-R1 series. Sequence length is determined by training data characteristics,
except for GRPO where it balances multiple factors: minimizing roll-out computational costs, reducing inference
cut-off ratio, and optimizing 32k context evaluation performance. To overcome the limitation of GPU memory
for training DPO with 32k context length, we utilize the DPO implementation with sequence parallelism from
360-LLaMA-Factory (Zou et al., 2024). Models with the "-DS" suffix derive from the DeepSeek-R1-Distill-Qwen
series, while others from Qwen2.5-32B-Instruct.

Model Names Learning Rate Batch Size Seq Length
Light-R1-32B SFT Stage1 5.0× 10−5 96 20k
Light-R1-32B SFT Stage2 1.0× 10−5 32 20k
Light-R1-32B DPO 5.0× 10−7 16 32k
Light-R1-7B-DS 5.0× 10−6 32 20k
Light-R1-14B-DS-SFT 5.0× 10−6 32 20k
Light-R1-14B-DS (GRPO) 1.0× 10−6 128 24k
Light-R1-32B-DS 5.0× 10−6 32 20k
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