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Abstract

The vast portion of workloads employing
LLMs involves answering questions grounded
on PDF or scanned content. We introduce the
Arctic-TILT achieving accuracy on par with
models 1000× its size on these use cases. It can
be finetuned and deployed on a single 24GB
GPU, lowering operational costs while process-
ing rich documents with up to 400k tokens. The
model establishes state-of-the-art results on
seven diverse Document Understanding bench-
marks, as well as provides reliable confidence
scores and quick inference, essential for pro-
cessing files in large-scale or time-sensitive en-
terprise environments. We release Arctic-TILT
weights and an efficient vLLM-based imple-
mentation on a permissive license.

1 Introduction

General-purpose LLMs and their multi-modal
counterparts provide a crucial advantage in pro-
cess automation: they can be applied immediately,
eliminating the expensive and time-consuming ef-
forts of creating dedicated system architecture
and model development. Though they are suit-
able choices for prototyping and building proof-
of-concept solutions, once the case is validated,
it becomes essential to consider the demands of
real-world deployments, such as cost-efficiency (Fu

∗ See Appendix I for contributions.

et al., 2024; Ong et al., 2024), finetunability (Liu
et al., 2022), and ensuring accurate confidence cali-
bration (Van Landeghem, 2024).

We consider these issues in the context of Docu-
ment Understanding (DU), where it is commonly
required to integrate textual, layout and graphical
clues to obtain the required information and in-
troduce the Arctic-TILT, designed to address the
needs of broad-use deployments, cost efficiency,
and domain adaptations for a fraction of the cost of
the leading models. The proposed solution appears
competitive with orders of magnitude larger models
on business and long document benchmarks.

2 Related Works

Traditionally, extracting tables or information from
documents involved distinct steps like form recog-
nition, field detection, and value extraction (Med-
vet et al., 2011; Rusiñol et al., 2013; Peanho et al.,
2012; Tian et al., 2016; Le et al., 2019; Baek
et al., 2019; Holt and Chisholm, 2018; Carbonell
et al., 2019), each requiring separate models or
heuristic pipelines. Later efforts moved towards
more end-to-end graph-based methods (Liu et al.,
2019; Hwang et al., 2021; Yu et al., 2021; Wang
et al., 2024, inter alia). Recently, DU research
closely paralleled advances in LLMs, converging
on unified text-to-text formulations (Mathew et al.,
2021b,a; Borchmann et al., 2021).

Despite being elegant, pure text-based methods
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Figure 1: Our modality fusion. It can be seen as at-
tention with role (Schlag et al., 2019) simplified as we
calculate it over a pair of aligned text and image tokens.

fall short in layout-intensive tasks. This has led
to the emergence of approaches extending LLMs
with visual encoders (Li et al., 2023; Wu et al.,
2023), layout modalities (Fujitake, 2024), or both
(Mao et al., 2024; Li et al., 2024; Tang et al., 2023).
Other research leverage multimodal instruction-
following datasets (Dai et al., 2023; Zhang et al.,
2023; Ye et al., 2023b, inter alia) or introduce aux-
iliary objectives like text-image matching (Peng
et al., 2022; Tang et al., 2023; Xu et al., 2020; Bai
et al., 2022; Feng et al., 2024). Finally, some works
approach DU using vision-only models (Kim et al.,
2021, 2022; Lee et al., 2023a; Beyer et al., 2024).

The key dimension involves balancing model
performance and deployment constraints. We
advocate for lightweight DU models due to their
superior memory efficiency and inference speed—
crucial for practical or edge deployments—aligned
with prior work emphasizing cost-effectiveness (Fu
et al., 2024; Zhao et al., 2024; Ong et al., 2024).

TILT Arctic-TILT

Vision Encoding and its Fusion with Text
sum of text & image fusion by tensor product
first layer only every encoder layer

Pretraining and finetuning
400k steps of adaptation 900k steps
SFT on 4 datasets SFT on 17 datasets

Transformer
dense attention, vanilla sparse attention, SLED
max 9k tokens max 400k tokens
basic optimization heavy optimization

Licensing and availability
closed, proprietary open source

Table 1: Comparison of TILT and Arctic-TILT.

3 Arctic-TILT

We build on the TILT encoder-decoder model,
which extends T5 (Raffel et al., 2020) by incor-
porating (1) an attention bias based on horizontal
and vertical distances and (2) image embeddings
capturing token visual neighborhood (Powalski
et al., 2021). To overcome its limitations, we
introduce novel modality fusion, attention sparsity,
training recipe, and optimized training/inference.
The improved model is referred to as Arctic-TILT
(see Table 1).

3.1 Fusion of Text and Vision

TILT integrates visual and textual semantics
by summing word embeddings with RoI-pooled
bounding box representations, using a U-Net-based
image encoder. Features are fused once, immedi-
ately after embedding. However, ablations from
Powalski et al. (2021) indicate that TILT’s visual
backbone contributes less to performance than lay-
out features, suggesting that single-step summa-
tion loses critical visual details. We attribute this
to (a) the long backpropagation path weakening
visual gradients and (b) summation failing to cap-
ture higher-order text-spatial interactions. To ad-
dress this, we replace TILT’s one-time fusion with
a layer-wise fusion mechanism using tensor prod-
uct representations. This approach enables progres-
sive interaction between modalities in each encoder
block, with gating elements reducing noise.

Fusion by Tensor Product. Specifically, we opt
for the fusion of modalities inspired by approxi-
mation of tensor product representations (Smolen-
sky, 1990; Schmidhuber, 1993; Schlag et al., 2019).
Given the text and image embeddings t, i ∈ Rd, we
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Figure 2: The Arctic-TILT encoder block combines
Vision from U-Net and Textual Semantics from input
embeddings through Fusion (F) operation. The Multi-
Head Attention is augmented with 1D and 2D positional
biases. This procedure is repeated in each layer (Nx).

calculate the fused embedding with: Fuse(t, i) =
O(V (t + i) ⊙ (1 + Rt)) + t where V , R, and O
are Rd×d trainable parameters. In practice, we use
a variant of this mechanism with layer norm and
dropout (Figure 1 and Listing 1).

Placement. We found that placing the fusion mod-
ule after FFNs (Figure 2) is most beneficial. Ad-
ditionally, by applying it after every encoder layer,
we mitigate the vanishing gradient effect and en-
able the model to focus on different visual features
as its comprehension of the document improves.

3.2 Long Context Support

Concerning the product-oriented nature of our
work, it is essential to cover a significant fraction
of real-world documents of potentially arbitrary
lengths while operating within limited resources.
The outlined optimizations are guided by the
need to handle as much context as possible on
widely available A10 and L4 GPUs equipped with
24GB vRAM. We assume a single-GPU setup
and measure the impact of applied techniques and
architectural changes on the maximum context
length used during the finetuning and inference.

Chunked processing. To address the quadratic
complexity of encoder self-attention, we employ a

variant of fusion-in-decoder/SLED (de Jong et al.,
2023; Pietruszka et al., 2022; Ivgi et al., 2022),
using zero chunk padding. This approach restricts
encoder attention to a bounded-width neighbor-
hood around its diagonal, forming a block diagonal
matrix and thus linearly reducing attention weights
relative to sequence length (see Appendix E).

Nested stack checkpointing. Applying gradient
checkpointing across the entire 24-layer encoder
stack substantially reduces memory requirements,
storing activations only for the final layer needed
by the decoder. This decreases memory usage
dramatically—for example, from 96GB to just
4GB when processing 1M tokens—at the cost of
an extra encoder forward pass.

Random chunks. Concatenated chunk embed-
dings may still exceed memory limits in the de-
coder cross-attention. Although the model supports
230k tokens during training, we further extended
this by randomly discarding chunks, allowing
exposure to different document parts over epochs.

Beyond primary techniques, we apply additional
optimizations. Mixed-precision training with
bfloat16 and disabled weight caching reduce
RAM usage, doubling inference input length.
Recomputing decoder projections per layer instead
of caching key-value pairs extends inference
context to 389k tokens. Offloading decoder
activations from GPU to CPU minimizes peak
GPU memory at the cost of increased processing
time. Lastly, memory-efficient attention reduces
attention overhead (Rabe and Staats, 2022).

Ultimately, our optimizations culminate in sig-
nificant memory usage improvements, allowing us
to effectively train and deploy Arctic-TILT for doc-
uments up to 500 pages1 on a single 24GB GPU.
The step-by-step summary is studied in Table 2.

3.3 Pretraining and finetuning

The training process began with a self-supervised
pretraining from the T5 large model (Raffel et al.,
2020). Following the introduction of TILT ar-
chitecture changes, which included U-Net (Ron-
neberger et al., 2015) and 2D biases, as well as
text-vision post-fusion, the model underwent fur-
ther self-supervised pretraining for a total of 900k
steps based on documents from the CCpdf (Turski

1Specifically, 390k input tokens with an output of 128
tokens, corresponding to 780 tokens per page on average.
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Inference Training

Vanilla TILT 9k 4k
+ attention sparsity 87k 41k
+ mixed precision 179k 51k
+ memory efficient attention 183k 56k

Inference-only optimizations
+ no cross-attention KV cache 389k

Training-only optimizations
+ nested checkpointing 230k
+ CPU offloading 256k
+ random chunks 389k

Table 2: Max input length (tokens) consumed during
training and inference given single 24GB GPU. Tested
for documents up to 500 pages (389k tokens).

et al., 2022) and OCR-IDL (Biten et al., 2022).
Finally, the model was finetuned on QA and

KIE datasets. In this phase, we increase the
number of supervised datasets to 17, compared to
TILT’s original choice of four. The datasets chosen
represent critical aspects of DU tasks, including,
but not limited to, forms, financial reports, charts,
invoices, insurance documents, contracts, and legal
documents (detailed in Appendix D).

The model features 822M parameters and the
total computational cost of its training is slightly
less than 10 days on 8xH100 GPUs.

4 Experiments

We evaluate our approach across multiple DU
benchmarks spanning diverse tasks and docu-
ment types. DocVQA (Mathew et al., 2021b) as-
sesses systems on QA over scanned documents,
while SlideVQA (Tanaka et al., 2023) addresses
challenges in densely packed presentation slides.
MMLongBench-Doc (Ma et al., 2024) targets ex-
tensive multi-page documents. Kleister NDA
(Stanisławek et al., 2021) emphasizes precise legal-
domain information extraction, whereas Kleister
Charity and VQA-CD (Mahamoud et al., 2022)
focus respectively on financial reports and cor-
porate purchase documents. InfographicsVQA
(Mathew et al., 2021a) highlighting multimodal
reasoning. Finally, we also include long-context
summarization tasks from PubMed-Lay and ArXiv-
Lay (Nguyen et al., 2023). Across these datasets,
input sizes, domain coverage, and visual complex-
ity vary significantly—from single-page invoices
or forms to multi-page legal contracts.

Comparison in Table 3 include only models
previously recognized for achieving SOTA perfor-
mance in their respective settings, alongside Arctic-

TILT results presented in Generalist and Specialist
variants. All baseline scores are sourced from third-
party publications claiming superior performance
over previous models. See Appendix G for com-
parisons with additional open-source models.

4.1 Document Visual QA and KIE

Zero-shot Performance. As shown in Table 3,
our model evaluated in the zero-shot setting often
achieves near-SOTA performance out of the box
(e.g., on VQA-CD, DUDE and Kleister Charity).
However, on Kleister NDA—where the questions
are more complex—its performance is less compet-
itive. On the recently introduced MMLongBench-
Doc (Ma et al., 2024), which evaluates zero-shot
performance on documents up to 400 pages, we
exceed several much larger LLMs and LVLMs
(e.g., Mixtral 8x7B, QWen-Plus, Claude-3 Opus,
InternVL) by substantial margins. Models such as
Gemini 1.5 Pro and GPT-4o do outperform us, but
they reportedly contain hundreds of times more
parameters (full results in Table 8). Section 4.3 ex-
plores how our model’s performance improves with
limited annotated data, comparing it to GPT-4o.

Multi-page. Among six multi-page QA/KIE
datasets, we achieve new SOTA results on four
(MP-DocVQA, Kleister Charity, Kleister NDA,
and DUDE), outperforming larger general-purpose
LLMs such as GPT-4 Family (Vision Turbo
and Omnia) and specialized DU models like
ERNIE-Layout, LAMBERT, GRAM, and BigBird-
Pegasus+Layout. We attribute these gains to our
explicit modeling of long-context interactions.

Three of these datasets include labeled positions
of the target answers, allowing us to analyze per-
formance based on where the relevant information
appears in each document. Figure 3 shows a pri-
macy bias, with higher accuracy when the key text
occurs near the beginning of the input (Liu et al.,
2024a). Overall, considering the input sequence
length in tokens, Arctic-TILT sets new SOTA on
four out of the six longest datasets in Table 3,
demonstrating particular strength on multipage
inputs where many existing DU models struggle.

Single-page. In settings with single-page ex-
cerpts or standalone images (shorter inputs), our
model still performs strongly. It surpasses TILT
by 2 points on the DocVQA dataset (Mathew
et al., 2021b) and also outperforms GPT-4 Vision.
Notably, Arctic-TILT achieves state-of-the-art re-
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Dataset Industrial Multipage State-of-the-Art (Params, Score) Our (Specialist, Generalist)

MP-DocVQA ✓ ✓ GRAM 859M 80.3 81.2 76.9
Kleister Charity ✓ ✓ LAMBERT 125M 83.6 88.1 86.9
Kleister NDA ✓ ✓ ERNIE-Layout 355M 88.1 94.3 38.3
DUDE ✓/ ✗ ✓ GPT-4Vt + OCR 200B+ 53.9† 58.1 55.9
MMLongBench-Doc ✓/ ✗ ✓ GPT-4o 200B+ 42.8† — 25.8
SlideVQA ✗ ✓ GPT-4Vt + OCR 200B+ 57.3† 55.1 40.4
ArXiv-Lay ✗ ✓ BigBird...+Layout 581M 41.2 44.4 —
PubMed-Lay ✗ ✓ BigBird...+Layout 581M 42.1 44.8 —
DocVQA ✓ ✗ InternVL 2.0 Pro 108B+ 95.1† 90.2 88.6
VQA-CD ✓ ✗ QALayout 8M 42.5 90.7 88.7
InfographicsVQA ✗ ✗ InternVL 2.0 Pro 108B+ 86.8† – 57.0

Table 3: Arctic-TILT (822M params) compared to the previous state-of-the-art. Our model remains competitive and
excels when input is a long, business document. Original metrics used for each dataset; † denotes generalist score.

Table 1

Page Arctic-TILT (MP) GRAM (MP) Arctic-TILT (SlideVQA) Arctic-TILT (MMLong) 32K + OCR

1 - 5 77,1 78,2 57,2 26,6

6 - 10 72,9 74,4 55,3 21,4

11 - 15 69,7 69,6 52,6 18,9

16 - 20 72,6 77,2 50,3 22,2

21 - 30 16,5

31 - 40 14,2

41 - 50 18,4

-50 13,3

Method ANLS Accuracy Page 0 Page 1

TILT finetuned 
optuna 3

0,8122 50,7870 0,8639 0,7967

GRAM 0,8032 19,9841 0,8380 0,7854

1-5 26.6

6-10 21.4

11-15 18.9

16-20 22.2

21-30 16.5

31-40 14.2

41-50 18.4
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Figure 3: Scores depending on the evidence location.

sults on the newly introduced VQA-CD dataset
(Souleiman Mahamoud et al., 2022), which in-
cludes invoices and purchase orders. Although we
observe a gap between Arctic-TILT and InternVL
2.0 Pro (108B+ parameters) on certain benchmarks
like InfographicsVQA (Mathew et al., 2021a), the
model’s overall performance in single-page tasks
remains competitive. We attribute some limitations
of Arctic-TILT to the varied aspect ratios and un-
usual formats in these tasks, making it challenging
for our comparatively small, 8M-parameter visual
backbone to encode every layout robustly.

Strengths and Weaknesses. Qualitative anal-
ysis using the DUDE diagnostic subset (see
Appendix G) reveals that Arctic-TILT outperforms
other state-of-the-art (SOTA) models on both
abstractive and extractive questions, while ranking
second-best for list-based and unanswerable
queries. This suggests robust handling of complex

data but also indicates potential areas for improve-
ment on less typical answer types, which could be
addressed by adjusting the supervised fine-tuning
(SFT) data mix. On the SlideVQA dataset (Tanaka
et al., 2023) our model achieves a score 2 points
lower than GPT-4 Vision. We attribute this
shortfall to the predominantly horizontal format
of slides—a layout not specifically targeted in our
current pretraining mix.

4.2 Layout-Aware Summarization
To complement our VQA and KIE results, we also
investigate Arctic-TILT’s capacity for capturing
layout information and long-range dependencies
in the LoRaLay collection of summarization tasks.
Unlike most other summarization benchmarks, Lo-
RaLay includes scientific documents with rich
structure rather than simple text blocks (Nguyen
et al., 2023). As shown in Table 3, Arctic-TILT
outperforms the previous SOTA on both ArXiv-
Lay and PubMed-Lay by several points. Notably,
this is achieved without any specialized pretraining
objectives tailored to summarization, underscor-
ing our model’s general ability to handle complex,
layout-intensive inputs.

4.3 Adapting to Novel Use Cases
Arctic-TILT introduces optimizations to enhance
training under minimal memory constraints, im-
proving adaptability in production settings for out-
of-domain examples and novel use cases. Thus, we
evaluate its zero-shot accuracy improvement when
finetuned on up to 25 annotated documents from
holdout datasets, including Ghega patents (Medvet
et al., 2011) and a private payment stub dataset (see
Appendix F). As shown in Figure 4, Arctic-TILT
rapidly approaches GPT-4o’s accuracy with just
five examples and surpasses it with slightly more.
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Table 1

Page Arctic-TILT (MP) GRAM (MP) Arctic-TILT (SlideVQA) Arctic-TILT (MMLong) 32K + OCR

1 - 5 77,1 78,2 57,2 26,6

6 - 10 72,9 74,4 55,3 21,4

11 - 15 69,7 69,6 52,6 18,9

16 - 20 72,6 77,2 50,3 22,2

21 - 30 16,5

31 - 40 14,2

41 - 50 18,4

-50 13,3

Method ANLS Accuracy Page 0 Page 1 Page 2 Page 3 Page 4

TILT finetuned 
optuna 3

0,8122 50,7870 0,8639 0,7967 0,7551 0,7312 0,7105

GRAM 0,8032 19,9841 0,8380 0,7854 0,7528 0,7908 0,7452
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Figure 4: Improvement of Arctic-TILT zero-shot accu-
racy given finetuning on up to 25 annotated documents.

These results highlight the advantages of special-
ized, smaller LLMs over general-purpose models,
emphasizing cost-effectiveness and adaptability.

4.4 Confidence Calibration

Following van Landeghem et al. (2023), we
evaluate Expected Calibration Error (ECE) and
Area Under the Risk-Coverage Curve (AURC) on
the DUDE dataset. Confidence scores are derived
from per-token lists, where we use the minimum
score instead of the geometric mean, as it proved
empirically superior. Results show exceptional
calibration, with an SOTA ECE of 7.6 (previous
best: 19.0), indicating strong alignment between
confidence and accuracy. Our AURC of 25.3
(previous best: 44.0) further demonstrates effective
uncertainty estimation, allowing for appropriate
low-confidence assignments to ambiguous predic-
tions requiring human review. Beyond DUDE, we
analyze 18k samples from 14 datasets (Figure 5).
The results confirm consistently low ECE and
well-calibrated confidence scores, as accuracy
follows the diagonal y = x in the calibration plot.

4.5 Computational Efficiency

The imperative for businesses to rapidly and
efficiently process substantial document volumes
calls for models that maximize throughput and
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Figure 5: Arctic-TILT calibration.

Table 1

Input Phi-3 Mini TILT (KV) TILT

4000 25 3,4 3,4

6500 41 5,3 5,3 7,73584905660377

16000 103 13,1 13,1

64000 412 51,9 51,9

512000 3298 414,5 775

Input Phi-3 Mini TILT (KV) TILT
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Figure 6: Arctic-TILT’s computational efficiency
(TFLOPs, lower is better) compared to Phi-3 Mini on
VQA/KIE given inputs ranging from 4k to 512k tokens.

operational efficiency. To address this aspect of
the model, we analyze the inference floating point
operations per second (TFLOP) required for Arctic-
TILT compared to Phi-3 Mini (Abdin et al., 2024),
an example of a decoder-only model featuring
3.8B parameters and optimized by resorting to the
attention sliding window. The latter was selected
as a well-known reference model concerning the
limited memory and compute regime we aim at,
though it is not capable of achieving satisfactory
accuracy on Document Understanding tasks.

Results presented in Figure 6 indicate that Arctic-
TILT consistently demands lower TFLOP across
all context lengths for our primary use case of
VQA/KIE,2 reflecting its smaller parameter size.

2We assume the output of 8 tokens—longer than the aver-
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Importantly, concerning the input of 6.5k tokens,
the mean input length for VQA/KIE tasks consid-
ered before, we require 8× less operations.

4.6 Ablation Study

We systematically alter one of four key differences
between Arctic-TILT and Vanilla TILT to evaluate
their individual contributions (Table 4).

Concerning the fusion positioning with respect
to the multi-head attention (MHA) and the fusion
mechanism used, results suggest that the approach
from Section 3.1 is optimal. Replacing fusion
by TP with Vanilla TILT fusion (original fusion)
leads to a loss of 1.6 points on average. Similarly,
placing fusion after the MHA and before the
FFN (our but pre-fusion) is worse than placing it
before the MHA (Arctic-TILT) by 1.5 points. We
see that employing sparsity with blocks of 1024
tokens with no overlap (Section 3.2) outperforms
alternative variants. Specifically, Vanilla TILT
(original, dense) cannot consume the entire content
of some lengthy documents, leading to the loss of
15 points. Similarly, varying block sizes between
1024 and 2048 tokens that either overlap with 128
tokens or have no overlap, we see that they lead to
the loss of at least 1.7 points on average. Analysing
the impact of additional self-supervised pretraining
introduced in Arctic-TILT (Section 3.3), we
see they offer an advantage of 4.6 points on
average, indicating that the Vanilla TILT (original
pretraining) was undertrained. Finally, change
in the introduced supervised finetuning data
(Section 3.3) markedly enhanced the model’s
performance across all evaluated tasks.

Overall, we found that any deviation from the
proposed setup leads to the degradation of scores
obtained by the model on downstream tasks.

5 Summary

We have introduced the Arctic-TILT model, which
addresses TILT’s limitations in handling multi-
modal input, suboptimal training procedure, and
maximum context length. By analyzing the results
and considering the cost-efficiency of the designed
solution, we provided practical insights into design-
ing capable, lightweight models for the industry.

Arctic-TILT demonstrates state-of-the-art or
competitive performance across seven diverse

age target length of evaluation datasets from Section 4.1.

Charity DUDE MP- NDA ∆

Arctic-TILT 82.7 44.6 76.7 72.1 –

original fusion 80.3 43.4 76.6 69.5 -1.6
our but pre-fusion 79.4 44.2 77.3 69.2 -1.5

original, dense 55.0 38.6 66.1 56.6 -15.0
1024/128 sparsity 78.6 43.3 75.7 68.2 -2.6
2048/0 sparsity 79.0 43.6 76.9 69.6 -1.9
2048/128 sparsity 80.3 43.7 76.4 69.0 -1.7

original pretraining 79.1 43.6 75.0 69.0 -4.6
original SFT data 40.2 37.1 73.5 17.0 -27.1

Table 4: Results of the ablation study (0-shot ANLS).

benchmarks, often outperforming models signif-
icantly larger, especially on long, business-centric
documents. Our work illustrates that strategic de-
sign and optimization can rival the capabilities of
larger, more resource-intensive models.

Importantly, Snowflake is releasing the Arctic-
TILT model weights and an efficient vLLM-based
implementation to the public, enabling broader ac-
cess and application of this cost-effective and high-
performance solution for Document AI.
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A Limitations

Although our approach demonstrates state-of-the-
art performance on a range of document-related
tasks, it is primarily tailored for unstructured or
semi-structured Document Understanding. This
focus imposes limitations when applied to non-DU
tasks such as Scene Text VQA (Biten et al., 2019),
where text may appear in complex outdoor scenes
with highly variable lighting, orientation, and font
usage. Likewise, because of relying exclusively on
MLM pretraining and lightweight visual encoder,

Arctic-TILT may struggle with VQA assuming the
dominant image component (Antol et al., 2015).
Next, because of the SFT datasets’ composition
and compact model size, it cannot follow complex
instructions, and its intended use is limited to QA
and summarization tasks. Finally, as discussed
earlier and visible in Figure 3, accuracy can suffer
if the key answer appears very late in the document.
Example failure cases illustrating these limitations
are provided in Appendix H.

B Contribution

We have:

• introduced the Arctic-TILT model, which ad-
dresses TILT’s limitations in handling multi-
modal input, suboptimal training procedure, and
maximum context length;

• established state-of-the-art performance on seven
benchmarks demanding text, vision, and layout
comprehension;

• demonstrated that within the industrial applica-
tions setting and while keeping the parameter
count below 1B, one could achieve performance
better or comparable to vastly larger models;

• presented a novel modality fusion mechanism
inspired by tensor product representations, and
have shown how effectively apply it across the
transformer encoder;

• demonstrated how, with well-designed attention
sparsity patterns and numerous other optimiza-
tions, consume extensive input sequences dur-
ing training and inference, given a single cost-
efficient GPU, while maintaining competitive ac-
curacy of the model;

• demonstrated that all of the architectural deci-
sions can be drawn from the systematic ablation
study we conducted;

• provided insights that can be applied to design
future generations of multimodal models, partic-
ularly for visually rich document processing.

Our work illustrates that strategic design and
optimization can rival the capabilities of larger,
more resource-intensive models.

C Why TILT as a Starting Point?

We argue that the effectiveness of the DU model
depends primarily on its ability to understand spe-
cific document formats and structures in the most
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document-native way possible, which can only be
guaranteed by equipping the model with layout-
aware architectural biases as early as possible.

Though a number of large vision-only models
have been proposed (Kim et al., 2022; Davis et al.,
2022; Lee et al., 2022), smaller models with an
explicit OCR step still outperform them. Notably,
even GPT-4 Vision benefits from the availability
of OCR-recognized text (Borchmann, 2024). Al-
though document intelligence requires visual fea-
tures (e.g., to recognize checkboxes, signatures,
text colors, and formatting), the text and its spatial
arrangement are most important. This necessitates
models with heavy textual and lightweight visual
encoders, such as TILT.

Secondly, the imperative for businesses to
rapidly and efficiently process substantial doc-
ument volumes calls for models that maximize
throughput while also maximizing operational ef-
ficiency. Smaller, specialized models, tailored for
such tasks, often surpass their larger LLM counter-
parts, which struggle to meet these criteria due to
their higher computational demands and process-
ing times. The motivation for these is not only
practical, as regulations such as GDPR, CCPA, or
Chinese digital laws may require specific types of
information to be processed locally. This need is
fulfilled with smaller, specialized models that can
be deployed on broadly available GPUs and thus
are not restricted to a handful of regions.

The original TILT offers impressive perfor-
mance despite keeping the number of parame-
ters below 1B because of a well-balanced param-
eter budget and relying on encoder-decoder ar-
chitecture, which, despite lower popularity com-
pared to decoder-only models, offers better quality
in compute-matched setups (Raffel et al., 2020;
Chowdhery et al., 2022; Wang et al., 2022; Tay
et al., 2023). Besides, we prefer them because
achieving optimal attention sparsity patterns is
more straightforward with separate encoder and
decoder modules.

The encoder-decoder model with a sizeable tex-
tual backbone and small visual encoder, equipped
with layout architectural bias that has previously
established state-of-the-art results, appears a viable
starting point for building a modern DU system.

D Datasets for Supervised Finetuning

Training of Arctic-TILT included SFT phase on
twelve publicly available and five in-house anno-

tated datasets. The first group included Kleis-
ter Charity, Kleister NDA (Stanisławek et al.,
2021), CHART-Infographics (Davila et al., 2022),
DeepForm⋆ (Borchmann et al., 2021), DocVQA
(Mathew et al., 2021b), DUDE (Van Landeghem
et al., 2023), FUNSD (Jaume et al., 2019), Info-
graphicVQA (Mathew et al., 2021a), SQuAD 2.0
(Rajpurkar et al., 2018), TAT-DQA (Zhu et al.,
2022), VQA-CD (Mahamoud et al., 2022), and
VQAonBD (Raja et al., 2023).

Private datasets were based on QA annotations
of IRS990 forms, insurance reports, company an-
nual reports, synthetic invoices, and charity annual
reports. To give the research community a grasp on
the characteristics of this collection, we provide the
most important statistics and examples of questions
in Figure 7 and Table ??.

E Used Hyperparameters

Chunking setup. Given hyperparameters—core
chunk length c, overlap size o, and prefix length
l—the input of length C = n · c is divided as
follows: chunk 1 contains prefix tokens followed
by input tokens 0, . . . , c − l. Subsequent chunks
i + 1 start with prefix tokens followed by tokens
t − o + 1, . . . , t − o + c − l, where chunk i used
tokens up to position t. We studied the size of
the attention block, as well as the overlap size of
consecutive blocks. To our surprise, the best setup
for inference was 1024 tokens attention size with
no overlap, and these conclusions are independent
of the setup overlap/attention size during training.
The abstract illustration of this concept is present
in Figure 9.

Learning rate scheduling and precision. We
observed a non-trivial inference between the two
hyper-parameters. Compared to fp32 pretraining,
bf16 pretraining with more aggresive learning rate
scheduling was able to catch up, and with same
learning rate scheduling was observably worse. We
ended up with using cosine_luh scheduler with
1% training steps with constant learning rate of
1e-3 (warm-up), followed by 89% training steps
with linear decay down to 2e-4, followed by cosine
scheduling for the remaining 10% steps decaying
to 5e-5. Same observations were drawn during
finetuning.

Training protocol. The finetuning phase’s hy-
perparameters are set as 100k steps at batch size
128 with the AdamWScale optimizer. We set loss
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        fig = px.histogram(df, x=column, labels={column: header, "count": "Count"}, nbinst=10)
        fig.update_layout(bargap=0.1, barmode="overlay", height=300, font_size=24)

        st.plotly_chart(fig, use_container_width=True, show_curve=False, show_rug=True, config={"displayModeBar": False})

        fig = px.histogram(df, x=column, labels={column: header, "count": "Count"}, nbins=10)
        fig.update_layout(bargap=0.1, barmode="overlay", height=300, font_size=24)

        st.plotly_chart(fig, use_container_width=True, show_curve=False, show_rug=True, config={"displayModeBar": False})

    #         st.metric("Mean ± std", f"{df[column].mean():,.{precision}f} ± {df[column].std():,.{precision}f}")

exception_message = "<built-in function open_stream> returned a result with an exception set"

    fig = px.histogram(df[~df.PAGE_COUNT.isin(to_filter_out)], x="PAGE_COUNT", labels={"PAGE_COUNT": "number of pages", "count": "Count"}, log_y=True, nbins=35)
    fig.update_layout(bargap=0.1, barmode="overlay", height=300, font_size=24, yaxis_range=[0, maximum], xaxis_range=[0, 300]) # 

    st.plotly_chart(fig, use_container_width=True, show_curve=False, show_rug=True, config={"displayModeBar": False})

    fig = px.histogram(df[~df.TOKEN_COUNT.isin(to_filter_out)], x="TOKEN_COUNT", labels={"TOKEN_COUNT": "number of tokens", "count": "Count"}, log_y=True, nbins=27)
    fig.update_layout(bargap=0.1, barmode="overlay", height=300, font_size=24,  yaxis_range=[0, maximum], xaxis_range=[0, 300000])

    st.plotly_chart(fig, use_container_width=True, show_curve=False, show_rug=True, config={"displayModeBar": False})

# make_chart(df[~df.OCR_TOKEN_COUNT.isin(to_filter_out)], "OCR_TOKEN_COUNT", "Number of OCR tokens", 0)
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Figure 7: Lengths of documents included in five private datasets (number of tokens and pages).

Dataset Sample Questions Documents Annotations

IRS990 What is the percentage of public support in the year of the report?
What is the sum of the total liabilities in US dollars? What is the
Employer Identification Number?

3,097 38,025

Insurance Reports What was the value of total premiums written in the Surplus
& Self-Procured category in 2016? Who is the director of the
Alaska Division of Insurance? For whose contributions were tax
credits claimed in 2015?

50 1,702

Company Annual Reports What is the name of the chief executive officer? What is the total
net income for report year? What is the tier 1 capital ratio?

648 3,522

Synthetic Invoices What is the number of items on the invoice? What is the total
net amount of the item described on the invoice? What is the
description of the item of the transaction?

2,707 17,274

Charity Annual Reports What is the independent auditor’s name? What are the charity’s
total funds in the bank and in hand? What is the name of the
organisation’s chairman?

161 4,025

Table 5: Outline of private datasets used for SFT.

Table 1

Page Arctic-TILT (MP) GRAM (MP) Arctic-TILT (SlideVQA) Arctic-TILT (MMLong) 32K + OCR

1 - 5 77,1 78,2 57,2 26,6

6 - 10 72,9 74,4 55,3 21,4

11 - 15 69,7 69,6 52,6 18,9

16 - 20 72,6 77,2 50,3 22,2

21 - 30 16,5

31 - 40 14,2

41 - 50 18,4

-50 13,3

Method ANLS Accuracy Page 0 Page 1 Page 2 Page 3 Page 4

TILT finetuned 
optuna 3

0,8122 50,7870 0,8639 0,7967 0,7551 0,7312 0,7105

GRAM 0,8032 19,9841 0,8380 0,7854 0,7528 0,7908 0,7452

1-5 26.6

6-10 21.4

11-15 18.9

16-20 22.2

21-30 16.5

31-40 14.2

41-50 18.4

50-10000 13.3

Payment Stubs Ghega Patents

0-shot 52,4 37,9 paystubs:

5- 92,2 76,7 0-shot: 52.4

10- 93,2 82,8 5-shot: 92.2

15- 93,5 86,1 10-shot: 93.2

20- 93,4 90,1 15-shot: 93.5

25-shot 94,9 89,7 20-shot: 93.4

30-shot 95,2 90,5 25-shot: 94.9

30-shot: 95.2

ghega:

0-shot: 37.9

5-shot: 76.7

10-shot: 82.8

15-shot: 86.1

20-shot: 90.1

25-shot: 89.7

30-shot: 90.5

Page

0,50
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0,650,640,64
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Figure 8: Impact of chunk size and overlap size (chunk/overlap) on a downstream inference for two models,
assuming in-house dataset of business use cases. We observe no positive impact of overlap for sufficiently long
input sequences, such as 1024 tokens.
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Figure 9: An illustration of sparse attention matrices
assuming a two-layer encoder and decoder. The origi-
nal TILT (A) consumes the complete input at once, in
contrast to Arctic-TILT (B) with blockwise attention

reduction to mean and weight decay to 1e−5. Ad-
ditionally, we used case augmentation of the whole
triple consisting of the document, question, and an-
swer. Specifically, if we detect that the document
is not already cast to upper or lowercase, we create
an augmented version of the three-tuple question-
document-answer by casting them all to that case,
similarly to Powalski et al. (2021). This means that
there are up to three versions of each data point,
such as the original one, uppercase, and lowercase.

Downstream tasks evaluation. For downstream
task evaluation on benchmarks providing trainset
(DocVQA, MP-DocVQA, DUDE, Kleister Char-
ity, Kleister NDA, SlideVQA, InfographicsVQA,
VQA-CD) we performed additional training with
Optuna (Akiba et al., 2019) hyperparameter tun-
ing. We performed 10-40 studies optimizing the
following hyperparameters:

• case augmentation (on, off) – augment dataset
with lowercased/uppercased version of train-
ing samples, in case they are statistically dis-
tinguishable;

• answer variants sampling (on, off) – for ques-

Table 1

Brochure Guidebook Industry Tutorial Report Academic Financial

Arctic-TILT 0,6875 0,73015873015873 0,845849802371542 0,531062124248497 0,54911838790932 0,649717514124294 0,408898305084746

GPT-4o 1 1 1 1 1 1 1

GPT-4V 0,700520833333333 0,732426303854875 0,806324110671937 0,909819639278557 0,727959697732997 0,590395480225989 0,853813559322034

GPT-4 0,723958333333333 0,580498866213152 0,812252964426877 0,637274549098196 0,546599496221662 0,692090395480226 0,739406779661017

SOTA Open-
Source LVLM

0,46875 0,723356009070295 0,693675889328063 0,523046092184369 0,546599496221662 0,72316384180791 0,550847457627119

Gemini 1.5 Pro 0,606770833333333 0,453514739229025 0,774703557312253 0,659318637274549 0,375314861460957 0,296610169491525 0,455508474576271

Arctic-TILT 26,4 32,2 42,8 26,5 21,8 23,0 19,3

GPT-4o 38,4 44,1 50,6 49,9 39,7 35,4 47,2

GPT-4V 26,9 32,3 40,8 45,4 28,9 20,9 40,3

GPT-4 27,8 25,6 41,1 31,8 21,7 24,5 34,9

SOTA Open-
Source LVLM

18,0 31,9 35,1 26,1 21,7 25,6 26,0

Gemini 1.5 Pro 23,3 20,0 39,2 32,9 14,9 10,5 21,5

Brochure

Guidebook

Industry

TutorialReport
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0,25

0,5
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1

Arctic-TILT GPT-4o
SOTA Open-Source LVLM Gemini 1.5 Pro
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Figure 10: Fine-grained MMLongBench-Doc results.
Arctic-TILT appears better than or comparable to the
best open-source LVLMs and Gemini 1.5 Pro despite
having at least 30x fewer parameters.

tions with multiple versions of the correct an-
swer (e.g. 100, $100), we either pick the same,
or sample variant per epoch;

• dropout sampled with uniform distribution
from the interval (0, 0.2);

• weight decay sampled with log-uniform distri-
bution from the interval (1e−6, 1e−2);

• learning rate sampled with log-uniform distri-
bution from the interval (1e−4, 5e−3).

F Finetuning Study

GPT-4o baseline. Following the findings of
Borchmann (2024), we assume input images of
2048px along longer dimensions (usually height)
and similar prompts. The latter were subject to
further per-dataset optimization to cover the con-
vention used in considered datasets (final form pre-
sented in Table ??).

Payment Stubs. The private dataset used for
evaluation consists of American payment stubs,
i.e., documents obtained by an employee regard-
ing the salary received. The test split contains 39
documents with 448 annotations. Since all come
from different companies, their layouts differ sig-
nificantly. Questions aim to extract employee and
employer names, dates, addresses and information
from payment tables, where each row consists of
payment type, hours worked, and payment amount,
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Dataset Prompt

Payment Stubs Replace [ANSWER] with a value in the template given question and document.←↩ Question: [TEXT]←↩
Template: Based on the context, the answer to the question would be "[ANSWER]". ←↩←↩ Normalize
amounts to two decimal places, without thousand separator and without dollar sign. ←↩ Normalize
states using postal abbreviations, e.g., TX or NJ.

Ghega Patents Replace [ANSWER] with a value in the template given question and document. ←↩ Question: [TEXT]
←↩ Template: Based on the context, the answer to the question would be "[ANSWER]". ←↩←↩ Normal-
ize dates to YYYY-MM-DD format except question about priority which should remain similar to
"DD.MM.RRRR (country code) (optional number)."

Table 6: Final prompts used for GPT-4o baselines.

Figure 11: Question: Is Dacca in the West or East Pak-
istan? Arctic-TILT: West. Ground Truth: East. Due
to a lack of advanced visual comprehension, the model
cannot determine the city’s precise location within the
country.

e.g., ‘What is the name of the US state of the em-
ployee’s address?’ or ‘When does the pay period
finish?’

G Broader Evaluation Tables

This section presents a detailed performance anal-
ysis of various models on DUDE (Table 7),
MMLongBench-Doc (Table 8), and a broad range
of datasets featured in the main part of the paper
(Table 9). Additionally, a fine-grained analysis of
the top four models’ performance is illustrated in
Figure 10.

H Qualitative Examples of Model Errors

Qualitative analysis of model answers reveals limi-
tations such as varied signs of limited visual com-
prehension (Figure 11, Figure 12, Figure 14, Fig-
ure 15), problems with counting (Figure 13). Addi-
tionally, because of relying on a third-party OCR
engine, Arctic-TILT can copy from the provided
textual layer that sometimes contains incorrectly
recognized words (Figure 16).

Figure 12: Question: In which year did admissions
fall? Arctic-TILT: 1971. Ground Truth: 1974. Due to a
lack of advanced visual comprehension and the limited
presence of chart data in SFT datasets, the model cannot
interpret the line plot correctly.

Figure 13: Question: How many Members of the
Committee on Utility Association Oversight are there?
Arctic-TILT: 4. Ground Truth: 3. Like many heavier
LLMs, Arctic-TILT struggles with counting objects.
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Figure 14: Question: What colors are in the logo of the
Common Cause? Arctic-TILT: blue, red. Ground Truth:
blue, grey. Our image encoder consumes grayscale
images, yielding color recognition based on guessing or
approximations.

Figure 15: Question: What is the date on the stamp?
Arctic-TILT: 19th September, 1962. Ground Truth:
1962-09-21. Arctic-TILT returns the first date found
in the document, struggling to discriminate between the
dates that appear in different visual contexts.

Figure 16: Question: What is the mentioned branch
of war food administration? Arctic-TILT: Nutrition
Program Branch. Ground Truth: Nutrition Programs
Branch. Because of relying on a third-party OCR en-
gine, Arctic-TILT can copy from the provided textual
layer that contains incorrectly recognized words (here
in singular form instead of plural).

I Contributions

ŁB. Performing early-stage architecture abla-
tions, writing most of the paper and preparing fig-
ures, final fusion by TP module design and related
ablation studies, implementation of GPT-4o base-
line for Arctic-TILT SFT, analysis of results on
public benchmarks, overseeing initial model sparsi-
fication experiments, study of long context utiliza-
tion, self-supervised pretraining of the model.

ŁD. Various contributions related to configura-
tions and automatizations of experiments.

PD. Optimization of various data pipelines (im-
age processing, loading, metric computation).
Datasets updates and modifications (main focus
on increasing loading speed and OCR correctness).

ŁG. Technical leadership and participation in the
codebase implementation, performance optimiza-
tion, and attention sparsity efforts. Writing parts of
the paper.

AG. Efficient implementation of attention spar-
sity. Contributions to codebase implementation and
memory optimizations. Preparation and cleaning
of some datasets. Experiments with model sizes
and architectures.
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PH. Major contributions to memory- and
compute-efficiency, including evaluation of long
context approaches with a theoretical memory
model, implementing nested checkpointing and
mixed-precision, and empirically evaluating the
complete solution’s performance and memory us-
age characteristics.

WJ. Leading SFT efforts, including finetuning
the model’s final version, experiments with hyper-
parameters, training protocols, and dataset compo-
sition. Model performance improvements. Various
contributions in the model and training code. Prepa-
ration and cleaning of some datasets.

PJ. Memory fragmentation handling. Implemen-
tation and creation of semi-synthetic long doc-
ument Needle-in-a-Haystack benchmark used in
early experiments. Data management, curating
final training and performing a few downstream
evaluations (DUDE, VQA_CD). Wrote parts of the
paper. Performed final ablations.

DJ. Leading efforts to increase the context length
from 25 to 500 pages (conceptualization, brain-
storming, planning, guidance). Conducting initial
memory and throughput experiments, as well as
final stress tests and quality experiments for very
large context lengths. Implementation of CPU of-
floading. Performing few-shot finetuning experi-
ments. Delivering results for SlideVQA, Kleister
Charity, and Kleister NDA datasets.

PL. Implemented TP fusion and conducted ab-
lation studies focusing on module placement. De-
vised enhanced training protocol, performed hyper-
parameter tuning, and contributed to various model
improvements. Performed experimental evaluation
on DocVQA and InfographicsVQA.

GN. Preparation and management of datasets,
the idea behind creating semi-synthetic long doc-
uments, automation of data processing pipeline,
conducting experiments and analyzing the results
with long documents.

JO. Selection and improvements of the training
datasets (analysis of data quality, filtering the data,
fixing quality issues), optimizations of image en-
coder and data processing.

MP. Performing early-stage architecture abla-
tions (researching, implementing, and studying
effects) that lead to co-authoring TP fusion (i.e.,

proposing initial attn-based version, module place-
ment study, and fusion in every layer). Leading
efforts in writing parts of the paper (technical opti-
mizations, training, related works, analysis, struc-
turing and rewriting).

KS. The idea behind attention sparsification, ab-
lation studies of various approaches, implemen-
tation of required prototypes, and analysis of the
results.

MT. Training loop optimization (in terms of
processing time and data efficiency), performing
downstream evaluations (DocVQA, MP-DocVQA,
MMLongBench-Doc), dataset preparation and
cleaning, error analysis, and organization of work.

AZ. Various contributions to the development of
the codebase.
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1 class TiltLayerNorm(nn.Module):
2 """
3 This is essentially the T5 modification of layer norm , referred to as RMS norm.
4
5 Args:
6 dim: the dimension of vectors to be normalized , i.e. the last dimension of the input tensor
7 eps: small positive value added to computed second moment for numerical stability
8 """
9

10 def __init__(self , dim: int , eps: float = 1e-6) -> None:
11 super().__init__ ()
12 self.w = nn.Parameter(torch.ones(dim))
13 self.eps = eps
14 self.init_weights ()
15
16 def forward(self , inp: Tensor) -> Tensor:
17 dtype = inp.dtype
18 x = inp.to(torch.float32)
19 squared_norm = x.pow (2).mean(dim=-1, keepdim=True)
20 x = x * torch.rsqrt(squared_norm + self.eps)
21 return self.w * x.to(dtype)
22
23 def init_weights(self , factor: float = 1.0) -> None:
24 self.w.data.fill_(factor * 1.0)
25
26
27 class TiltPostFusionModule(nn.Module):
28 """
29 Introduced in the Arctic -TILT paper.
30
31 Args:
32 d_model: dimension of input vectors
33 dropout: probability of dropout applied to input embeddings
34 layer_norm: the module responsible for input embeddings
35 """
36
37 def __init__(self , d_model: int , dropout: float , layer_norm: TiltLayerNorm):
38 super().__init__ ()
39 self.layer_norm = layer_norm
40 self.to_v = nn.Linear(d_model , d_model , bias=False)
41 self.to_out = nn.Linear(d_model , d_model , bias=False)
42 self.to_r = nn.Linear(d_model , d_model , bias=False)
43 self.dropout = nn.Dropout(dropout)
44
45 def forward(self , text_queries: Tensor , image_queries: Tensor) -> Tensor:
46 """
47 Compute module 's forward pass.
48
49 Args:
50 text_queries (Tensor): Tensor representing the primary input in the fusion , which is text -

based , or mixed.
51 image_queries (Tensor): Tensor representing the secondary input in the fusion , which is

image -based.
52 """
53 bs, l, d = text_queries.shape
54 inputs = torch.stack ([ text_queries , image_queries], dim=-2)
55 inputs = inputs.view(bs * l, 2, d)
56 normed_inputs = self.dropout(self.layer_norm(inputs))
57 normed_primary_input = normed_inputs [:, 0]
58 out: Tensor = self.to_v(normed_inputs.sum(-2))
59 out = out + out * self.to_r(normed_primary_input)
60 out = self.to_out(out)
61 out = out.view(bs, l, d)
62 return text_queries + out

Listing 1: Complete Arctic-TILT modality fusion module.
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Method ANLS↑ ECE↓ AURC↓ AUROC Extract↑ Abstract↑ List↑ Unanswerable↑
Arctic-TILT 0.8B 58.1 7.6 25.3 52.9 62.7 56.5 46.7 62.6
GPT-4 Vt + Azure OCR 53.9 55.8 43.2 50.0 59.7 52.5 57.9 51.3
GRAM 53.4 44.0 44.0 50.0 56.8 52.3 20.0 65.4
GRAM C-Former 51.0 46.1 46.1 50.0 55.1 50.5 17.3 61.0
DocGptVQA 50.0 22.4 42.1 87.4 51.9 48.3 28.2 62.0
DocBlipVQA 47.6 30.6 48.6 78.3 50.7 46.3 30.7 55.2
model_0327 46.6 19.0 44.0 88.5 55.2 46.6 17.9 47.3
T5-concat 38.7 24.9 43.4 51.1 37.3 37.5 16.8 52.9
Multi-Modal T5 (2023-04-20) 37.9 59.3 59.3 50.0 41.5 40.2 20.2 34.7
Multi-Modal T5 (2023-04-19) 37.9 59.3 59.3 50.0 41.5 40.2 20.3 34.7
Hi-VT5 35.7 61.4 61.0 50.0 28.3 33.0 10.6 62.9
Hi-VT5 w. token type 35.6 28.0 46.0 48.8 30.9 35.1 11.8 52.5
QAP 11.6 41.7 90.8 50.1 0.1 0.1 0.0 62.0

Table 7: DUDE performance metrics for different methods. Bolded is the best result in a given criteria.

Model #Param Context Window ACC F1

GPT-4o - 128k 42.8 44.9
GPT-4V(vision) - 128k 32.4 31.2
Arctic-TILT 822M 390k 25.8 –
Gemini-1.5-Pro - 32k 31.2 24.8
GPT-4o - 128k 30.1 30.5
GPT-4-turbo - 128k 27.6 25.9
Mixtral-Instruct-v0.1 8x22B 64k 26.9 24.7
Claude-3 Opus - 32k 26.9 24.5
DeepSeek-V2 - 32k 24.9 19.6
Gemini-1.5-Pro 128k - 22.8 20.6
QWen-Plus - 32k 18.9 13.4
Mixtral-Instruct-v0.1 8x7B 32k 17.0 16.9
Mistral-Instruct-v0.2 7B 32k 16.4 13.8
ChatGLM-128K 6B 128k 16.3 14.9
InternLM-Chat-V1.5 26B 8k 13.5 13.0
InternLM-XC2-4KHD 8B 8k 8.8 8.9
MiniCPM-Llama3-V2.5 8B 8k 8.5 8.6
EMU2-Chat 37B 2k 8.3 5.5
Claude-3 Opus 200k - 7.6 7.4
DeepSeek-VL-Chat 7.3B 4k 7.4 5.4
Idefics2 8B 8k 7.0 6.8
mPLUG-DocOwl 1.5 8.1B 4k 6.9 6.3
Monkey-Chat 9.8B 2k 6.2 5.6
Qwen-VL-Chat 9.6B 6k 6.1 5.4
CogVLM2-LLAMA3-Chat 19B 8k 4.4 4.0

Table 8: Performance metrics for different models. Results follow Ma et al. (2024).

282



Model Size MP- Kleister Kleister DUDE MMLong Slide ArXiv PubMed Doc VQA Infographic
DocVQA Charity NDA Bench-Doc VQA -Lay -Lay VQA CD VQA VQA

Arctic-TILT 822M 81.2 88.1 94.3 58.1 – 55.1 44.4 44.8 90.2 90.7 –
Arctic-TILT† 822M 76.9 86.9 38.3 55.9 25.8 40.4 – – 88.6 88.7 57.0
ERNIE Layout (1) 355M – – 88.1 – – – – – 88.4 – –
LAMBERT (2) 125M – 83.6 81.8 – – – – – – – –
Hi-VT5 (3) 784M 73.5 – – 49.2 – – – – – – –
InternVL 1.5 (4) 26B – – – – – – – – 90.9 – 72.5
InternVL2-Pro 108B – – – – – – – – 95.1 – 83.3
Claude-3 Opus (OCR) 72B – – – – 26.9 – – – 89.3 – –
Gemini-1.5-Pro (OCR) – – – – 46.0 31.2 – – – 93.1 – 81.0
LayoutLMv2 (5) 426M – – 85.2 – – 26.5 – – 86.7 – 28.3
GPT-4o (OCR) – – – – – 30.1 – – – – – –
GPT-4 Vt + OCR (6) – – – – 53.9 – 57.3 – – – – –
mPLUG-DocOwl 1.5 (7) 8.1B – – – – 6.9 – – – 81.6 – 50.4
mPLUG-DocOwl 2 (8) 8B – – – – 6.9 – – – 80.7 – 46.4
TextMonkey (9) 9.7B – – – – – – – – 64.3 – 28.2
GRAM (10) 859M 79.7 – – 53.4 – – – – – – –
UReader (11) 86M – – – – – – – – 65.4 – 42.2
BigBird... + Layout (12) 581M – – – – – – 41.2 42.1 – – –
Pix2Struct Large (13) 1.3B – – – – – – – – 76.6 – 40.0
Donut (14) 176M – – – – – – – – 67.5 – 11.6
StrucTexTv3 (15) 1.8B – – – – – – – – 72.8 – 68.6
DocKylin (16) 7B – – – – – – – – 77.3 – 46.6

Table 9: Comparison of DU-models and LLMs on a broad range of datasets. (1) Peng et al. (2022), (2) Garncarek et al. (2021), (3) Tito et al. (2023), (4) Chen et al. (2024),
(5) Xu et al. (2020), (6) Borchmann (2024), (7) Hu et al. (2024a), (8) Hu et al. (2024b), (9) Liu et al. (2024b), (10) Blau et al. (2024), (11) Ye et al. (2023a), (12) Nguyen
et al. (2023), (13) Lee et al. (2023b), (14) Kim et al. (2022), (15) Lyu et al. (2024), (16) Zhang et al. (2024).
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