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Abstract

With the rapid expansion of e-commerce and
continuous urban evolution, Geospatial Repar-
tition, dividing geographical regions into de-
livery zones, is essential to optimize various
objectives, e.g., on-time delivery rate, for last-
mile delivery. Recently, large language mod-
els (LLMs) have offered promising capabil-
ities for integrating diverse contextual infor-
mation that is beneficial for geospatial reparti-
tion. However, given the inherent uncertainty
in LLMs, adapting them to practical usage in
real-world repartition is nontrivial. Thus, we
introduce CoAlign, a novel three-stage frame-
work that calibrates LLM uncertainty to enable
robust geospatial repartition by transforming
the task into a ranking problem, integrating his-
torical data with LLM-generated candidates.
It first generates explainable candidate parti-
tions with a multi-criteria strategy and then de-
signs a novel conformal method to rank these
candidates relative to historical partitions with
coverage guarantees. Finally, CoAlign deliv-
ers candidates through an interactive decision
support system. Extensive evaluation with real-
world data shows that CoAlign effectively cal-
ibrates LLM uncertainty and generates parti-
tions that better align with human feedback.
Moreover, we have deployed CoAlign in one of
the world’s largest logistics companies, signif-
icantly enhancing their delivery operations by
increasing candidate acceptance rates by 217%
and improving on-time delivery rates by 3%.
Our work provides a novel angle to address
industrial geospatial decision-making tasks by
calibrating LLM uncertainty.

1 Introduction

Geospatial Repartition refers to dynamically ad-
justing geographical regions into multiple delivery
zones, supporting fundamental businesses, e.g., bal-
anced order assignments, for logistics companies,
e.g., Amazon (Amazon), SF Express (S.F. Express)
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and JD Logistics (JDL.COM). With rapid global
e-commerce expansion, effective geospatial repar-
tition is critical for ensuring online operational ef-
ficiency in logistics systems (Hong et al., 2022).
Existing methods typically rely on manual adjust-
ments by experts or algorithmic optimization using
limited offline operational metrics, such as histori-
cal data, to balance order volumes or equalize work-
ing times (Guo et al., 2023; Zhang et al., 2024). In
state-of-the-practice, algorithms generate multiple
repartition candidates according to various offline
metrics and recommend them to experts, who then
decide to accept one candidate or manually de-
vise an alternative. This operational paradigm has
two major limitations: (i) Real-world operational
constraints are significantly more complex and dy-
namic than offline metrics can capture, resulting in
theoretically optimal partitions that are often infea-
sible for practical deployment (Figure 1 provides
an illustrative example), leading to low acceptance
rates in practice; (ii) Experts spend considerable
time reviewing candidates to identify issues. Upon
discovering problems, they must manually reparti-
tion, often leaving their valuable feedback unused.
Our logistics partner reports candidate acceptance
rates often below 10%, with experts spending over
15 hours monthly on reviews and manual reparti-
tion.

Facing these limitations, we identify an opportu-
nity in the extensive contextual information—such
as historical partitions and corresponding expert
and worker feedback—accumulated by existing op-
erational systems, reflecting real-world constraints.
Recent advances have demonstrated the remarkable
capability of large language models (LLMs) in ex-
tracting information, understanding context, and
learning from interactive dialogues (Zhao et al.,
2023; Manvi et al., 2024; Feng et al., 2024; Ya-
mada et al., 2024). Thus, we aim to propose an
interactive LLM approach capable of interpreting
contextual information and interactively generating
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Candidate 1

No way! This zone crosses two major intersections, and there 
have been frequent traffic accidents lately!

Better! But this industrial-park area causes huge demand 
spikes—I’ll be swamped briefly, then idle the rest of the day.
I’ve updated the scheme based on your concern, spreading out 
that industrial-park area evenly between two zones. 
Perfect! After a quick adjustment, we’ll have candidate 2 ready 
to deploy—much faster than doing it manually!

I recommend candidate 1 based on balanced order volume. 8:00

8:10

8:11

8:15

❌

✅

🔁

I modify candidate 1. I’ve adjusted the partition to completely 
avoid those dangerous intersections.

8:30

Candidate 2

8:00

Figure 1: A real-world example demonstrates LLM-based interactive geospatial repartition. The dialogue highlights
practical constraints, such as safety hazards at intersections and demand spikes in industrial areas, that current
methods fail to capture. Our LLM-based approach understands these issues, enabling interactive refinement and
enhancing the efficiency of experts through collaboration.

comprehensive, human-aligned repartitions, rather
than merely optimizing offline metrics. Figure 1
illustrates differences between previous approaches
and ours using one real-world example.

However, applying LLMs to geospatial reparti-
tion introduces uncertainty challenges, as LLM
outputs inherently exhibit stochasticity, poten-
tially producing plausible yet incorrect solutions
without proper confidence measures. Given the
excessive expert review time, an uncertainty-
calibration method is necessary to ensure re-
liable high-quality candidates. Therefore, we
present CoAlign (Conformal rAnking-based LLM
Interactive Geospatial repartitioN), a novel three-
stage framework. Firstly, we employ a Multi-
Criteria pipeline that prompts an LLM to generate
candidate partitions with detailed explanations and
scoring across multiple metrics. Secondly, we de-
sign a conformal ranking algorithm to transform the
initial LLM scores into rankings relative to histori-
cal partitions, and then create calibrated prediction
sets with statistical coverage guarantees. Finally,
we integrate these components into a human-in-the-
loop decision-making system, enabling efficient
and explainable collaboration between algorithmic
candidates and human decision-makers.

Our contributions include: (i) A novel LLM-
based framework, CoAlign, that integrates contex-
tual information, provides comprehensive partition,
and enables effective human-AI collaboration to
address limitations in existing geospatial reparti-
tion systems; (ii) A novel conformal ranking de-
sign that transforms subjective LLM scores into
reliable and explainable prediction sets with cover-
age guarantees; (iii) A comprehensive evaluation
with real-world logistics data demonstrates that
CoAlign effectively calibrates LLM uncertainty,
achieving performance in offline metrics compara-

ble to or surpassing state-of-the-art methods while
producing partitions more closely aligned with hu-
man expert feedback. Furthermore, we deployed
CoAlign across over 5,000 delivery stations in one
of the largest logistics companies in the world. The
A/B test results reveal significant improvements
in online metrics (i.e., 3% ∼ 10%), candidate ac-
ceptance rates (i.e., 217% increase), and decision
efficiency (i.e., 56% less human intervention and
25% faster review).

2 Related Work

Geospatial Repartition. The expert manual par-
tition approach leverages domain knowledge that
performs well but is time-consuming. Algorithmic
methods have evolved through several methodolog-
ical paradigms. Traditional operations research
approaches formulate this task as a combinatorial
optimization problem with geometric constraints
(Zhong et al., 2007; Carlsson and Devulapalli,
2013; Banerjee et al., 2022; Carlsson et al., 2024;
Xie et al., 2025). More recently, data-driven meth-
ods offer improved scalability and automation, in-
cluding graph neural networks (Guo et al., 2023)
and deep reinforcement learning (Zheng et al.,
2023b,b). However, these approaches optimize the
partition with narrow offline metrics as objectives,
failing to incorporate rich contextual information
in real-world settings.

Uncertainty in LLM-based Decision Making.
The application of LLMs to decision support sys-
tems has grown rapidly across domains including
urban planning (Zhou et al., 2024; Li et al., 2024),
and spatial-temporal data (Huang et al., 2022; Yang
et al., 2024). These models excel at synthesizing
complex, multi-modal information to generate cre-
ative solutions, but their deployment requires ro-
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bust uncertainty quantification. Recent work intro-
duced conformal prediction techniques (Shafer and
Vovk, 2008; Vovk et al., 2005; Vovk, 2012) to mea-
sure and align uncertainty in LLM-based planners
(Quach et al., 2023; Ren et al., 2023; Cherian et al.,
2024) and they rely on LLM self-reported scores,
which have shown inconsistency in complex tasks.

3 CoAlign Design

3.1 Intuition and Overview
Intuition. Extensive cognitive science and social
choice research has consistently shown that humans
provide more reliable comparative judgments (e.g.,
rankings) than absolute evaluations (e.g., scores)
(Mussweiler, 2003; Arrow, 2012). Recent work on
LLM-as-a-judge confirms this phenomenon in lan-
guage models as well, showing higher consistency
and robustness in relative ordering tasks (Liusie
et al., 2024; Jiang et al., 2023; Wang et al., 2024).
This insight inspired our approach: rather than cal-
ibrating raw LLM confidence scores directly, we
developed a conformal prediction method tailored
specifically for rankings (Luo and Zhou, 2024; Fer-
manian et al., 2025; Xu et al., 2025). By transform-
ing the geospatial repartition problem into a relative
ranking task between historical and newly gener-
ated partitioning schemes, we enable rigorous un-
certainty quantification with statistical guarantees.
This ranking-based paradigm integrates seamlessly
with the existing uncertainty calibration method of
LLM while addressing the uncertainty challenge of
geospatial decision-making.

Overview. As shown in Figure 2, our geospa-
tial repartition framework, CoAlign, includes three
components: Stage 1: generating diverse partition
candidates with a surrogate scoring model; Stage
2: calibrating uncertainty in candidate rankings via
conformal prediction to form a reliable prediction
set; and Stage 3: engaging a domain expert to re-
view and decide the final partition based on this
prediction set.

3.2 Multi-Criteria Partition Generation
(MCPG)

In the geospatial repartition problem, each input
instance X represents a geographic region with
demands, constraints, and relevant attributes. The
goal is to divide X into multiple delivery zones
(partitions) that satisfy various operational criteria.
In our approach, a large language model (LLM)
is prompted to generate M candidate partitions
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Figure 2: CoAlign Framework.

{Ỹ1, . . . , ỸM} for X . Each candidate partition Ỹj
splits X into several zones, and each zone is com-
posed of multiple Areas of Interest (AOIs) (e.g.,
neighborhoods or street clusters). We provide the
LLM with rich context at both the region level
and the AOI level: the prompt includes global
features of X along with summary information
for each AOI (such as historical demand profiles,
road-network connectivity, or known bottleneck
locations). This AOI-level contextual input helps
the LLM reason about fine-grained spatial details
when assigning AOIs to zones. The LLM generates
each partition along with textual explanations and
per-zone evaluations for multiple domain-specific
criteria (for example, workload balance, demand
coverage, or estimated travel time).

After generating candidate partitions, we verify
spatial contiguity at the AOI level for each partition.
We represent the region’s AOIs as nodes in a graph
G = (V,E), where edges connect adjacent AOIs
(for example, sharing a border or linked by a road).
For each zone in a partition, we consider the set
of AOIs assigned to that zone and check whether
the induced subgraph is connected. In practice, we
perform a graph traversal (e.g., breadth-first search)
starting from one AOI in the zone and confirm that
all other AOIs in the zone are reachable. If any
zone is found to be disconnected (i.e., its AOI sub-
graph is not fully connected), the entire partition is
rejected. To speed up this check, we employ simple
heuristics. For instance, we precompute the con-
nected components of G once per region; then any
zone whose AOIs lie in more than one component
can be immediately flagged as invalid without a
full search. In our implementation, this filtering
effectively removes partitions with non-contiguous
zones while imposing minimal computational over-
head.
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Finally, we evaluate each candidate partition Ỹj
by scoring it on each criterion c1, . . . , cL and com-
bining these into a surrogate score S(Ỹj). This
yields a ranked list of partitions.

3.3 Uncertainty Calibration via Conformal
Ranking

We design a rank-based conformal prediction ap-
proach to ensure that our final set of top partitions
(the prediction set) contains the true optimum Y ∗

with probability at least 1 − α. In essence, our
algorithm treats the partition scoring model as di-
rectly producing a rank for the true partition among
candidates and calibrates the uncertainty in that
rank.

Calibration Set Design. From N historical in-
stances {(Xi, Y

∗
i )}Ni=1, we run the same partition

generation and scoring pipeline as used for new pre-
dictions. This yields a rank ηi = rank(Xi, Y

∗
i )

for each instance i, where ηi is the position of the
true optimum Y ∗

i in the model’s sorted list of can-
didate partitions for Xi. Intuitively, ηi represents
the error made by the model on instance i—a small
value means the model ranked the true partition
highly, whereas a large ηi means the true partition
was buried lower in the list.

Cutoff Determination. We sort the set of calibra-
tion ranks {ηi}Ni=1 in nondecreasing order and de-
termine the cutoff index kα = ⌈(1−α)(N +1)⌉ .
By construction, approximately (1 − α)N of the
calibration instances have Y ∗ ranked within the top-
kα positions of the candidate list. In other words, in
most calibration examples the true optimum would
be among the model’s top-kα predictions.

Transductive Adjustment. In practice, introduc-
ing a new instance can slightly shift the distribution
of ranks because the model’s ranking function may
depend on the set of items being ranked. To safe-
guard the coverage guarantee in such a transductive
setting, we adjust the cutoff kα upward by a small
margin if needed. Concretely, we simulate the ef-
fect of adding new test instances on the calibration
ranks by randomly perturbing each ηi within a pos-
sible range of rank shifts, and choose an adjusted
cutoff kadjα that still covers roughly (1−α) fraction
of the simulated rank outcomes. This procedure
yields a slightly larger prediction set size when nec-
essary, ensuring our method remains valid even if
the new instance(s) alter the ranking distribution.

Prediction Set Generation. For a new instance
Xnew, we generate M candidate partitions, com-
pute each candidate’s surrogate score S(Ỹj), and
sort the candidates in descending order of S to ob-
tain the ranked list [Ŷ(1), Ŷ(2), . . . , Ŷ(M) ]. We then
take the top kα after any transductive adjustment as
the prediction set: Γ(Xnew) = {Ŷ(1), . . . , Ŷ(kα)} .

Theoretical Guarantee. Assume the calibration
data {(Xi, Y

∗
i )}Ni=1 and the new instance(s) are

exchangeable. Then for any α ∈ (0, 1), the predic-
tion set Γ(Xnew) obtained by the above procedure
satisfies

Pr
{
Y ∗

new ∈ Γ(Xnew)
}
≥ 1− α .

In other words, the method achieves the target
marginal coverage level 1 − α (Luo and Zhou,
2024). Moreover, consider a batch of m i.i.d. new
instances with prediction sets constructed using the
same calibration. With probability at least 1 − β
(over the randomness of the calibration procedure),
the false coverage rate is bounded as

1

m

m∑

i=1

1{Y ∗
i,new /∈ Γ(Xi,new) } ≤ α+ λN,m ,

for some tolerance term λN,m = O
(√

ln(Nm/β)
Nm

)

that approaches 0 as N,m→∞ (Fermanian et al.,
2025; Xu et al., 2025). In particular, in the limit of
large sample sizes, the average miscoverage (error
rate) on m new instances does not exceed α.

3.4 Human-in-the-Loop Decision

After constructing Γ(Xnew) for a new instance,
the system presents these top kα candidate par-
titions to a domain expert, together with the scores
{cℓ(Ŷ(j))} and a brief LLM-generated explanation
(if desired). The expert selects the best partition
Y ∗

final or indicates that none is satisfactory (in which
case Y ∗

new lies outside Γ(Xnew)—an event that, by
design, should occur in at most α fraction of cases).
Crucially, this feedback can be incorporated into
the calibration set by adding (Xnew, Y

∗
final) as a new

example, along with its observed rank ηnew.
Over time, the rank distribution and/or the surro-

gate score weights {wℓ} can be updated to better
match expert preferences. In practice, if Γ(Xnew)
is empty or too small, we may adjust α← α+∆
until at least one partition meets the expert’s accep-
tance threshold, following the approach of (Vovk
et al., 2005) for iterative significance tuning.
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4 Evaluation in Last-mile Delivery

To evaluate the effectiveness of CoAlign, we con-
ducted both offline evaluation and online deploy-
ment in collaboration with one of the world’s
largest logistics companies. Our evaluation aims to
answer the following research questions:
RQ1: Operational Performance. How does
CoAlign perform compared to methods specifically
designed to optimize offline operational metrics?
RQ2: Uncertainty Calibration. Does CoAlign
provide reliable prediction sets?
RQ3: Decision Efficiency. How does CoAlign
improve human decision after deployment?
RQ4: Real-world Benefit. Does CoAlign im-
prove the acceptance rate and online operational
metrics after the deployment?

4.1 Data and Offline Evaluation Setup

Data Preparation. We conducted offline ex-
periments using logistics-related data from Oc-
tober 2023 to June 2024 by our industry part-
ner. Over this period, the company deployed var-
ious algorithm-generated partition recommenda-
tions across over 900 regions nationwide, logging
35,000+ repartitioning operations and 150,000+
algorithm-generated recommendations, with corre-
sponding accept/reject decisions and comments by
region managers. Each record includes: (i) Con-
text: Station information (e.g., geospatial bound-
aries and operational constraints), current partition
configuration, and historical logs (e.g., courier feed-
back); (ii) Candidates: Recommended partitions
from prior heuristic algorithms; (iii) Annotations:
Manager acceptance/rejection decisions, detailed
feedback, and operational metrics (delivery order
volume, courier working time, etc.).

Metrics. We evaluate our approach with 14 met-
rics across 4 types aligned with research questions.
Table 1 summarizes directionalities and descrip-
tions of these metrics. More detailed definitions of
these metrics are provided in Appendix A.

Baselines and Training Setup. We split the
dataset chronologically, using the first six months
for training/calibration and the last two months for
held-out testing. To contextualize our results, we
compare CoAlign to several baselines that either
represent the state-of-the-art or classic methods:

• Heuristic-Only: A manual or rule-based ap-
proach that divides regions via simple constraints.

Table 1: Evaluation metrics used in our experiments.
Metrics are defined as ratios to protect commercial pri-
vacy and normalized to [0,1] for easy comparison, ex-
cept for those marked with *, which are non-negative.

Type Metric Description

RQ1

↓ OVB Coefficient of variation in order volume.
↓ WTB Coefficient of variation in working time.
↓ WDB Gini coef. of workload distribution.
↑ MS Maximum similarity between candidate

set and deployed partition.
↑ MSR* Ratio of method MS to historical candi-

date MS.

RQ2
↓ PSR Ratio of prediction set (PS) size to total

candidate set size.
↑ ECR Proportion of true ranks covered in PS.
↓ FCR Proportion of ranks incorrectly covered

in PS.

RQ3
↓ HIR Proportion of cases requiring significant

manual intervention.
↓ RRT* Ratio of current review time to historical

average review time.
↑ RAR Proportion of algorithm recommenda-

tions accepted.

RQ4
↑ HER* Ratio of post/pre-deploy HR efficiency.
↑ PVR* Ratio of post/pre-deploy pick-up vol-

ume.
↑ OTR* Ratio of post/pre-deploy on-time rate.

We compare with two representative methods,
CKmeans (Zhang et al., 2024) (a constrained clus-
tering method) and CPSC (Joshi et al., 2012) (an
A-star-based partitioning method).

• DL-based Single/Multi Optimization: Deep
learning-based approaches that optimize one
or multiple operational objectives (e.g., WTB
or OVB). We compare with a DRL-based
multi-optimization urban-planning method DRL
(Zheng et al., 2023b,a) and a GNN-based single-
optimization model E-partition (Guo et al.,
2023), both trained on the same historical data
without LLM-generated candidates.

• LLM-Based Methods: Two categories of LLM-
based methods are used as baselines. The
first does not include uncertainty calibration, in-
cluding Vanilla (Zhao et al., 2023), the plan-
ner OPRO (Yang et al., 2024), and the multi-
agent discussion-based solution LLM4PUP (Zhou
et al., 2024). The second category incorporates
uncertainty calibration for LLMs, specifically
KnowNo (Ren et al., 2023), which uses confor-
mal prediction in single-step uncertainty align-
ment (SUA) or multi-step uncertainty alignment
(MUA) modes that differ from our conformal
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ranking design.1

4.2 Offline Evaluation Results (RQ1&RQ2)

RQ1: Operational Performance. Table 2
presents 5 metrics on the test set. CoAlign per-
forms best in WDB, MS and MSR, and second
in OVB and WTB. Figure 3 illustrates CoAlign is
competitive with DRL for OVB and E-partition
for WTB in most regions, outliers cause minor vari-
ations. Hence, CoAlign (i) achieves comparable
(OVB, WTB) or better (WDB) performance versus
specialized DL approaches (DRL, E-partition),
and (ii) delivers significantly stronger alignment
(MS, MSR) than all baselines. We vary the LLM
scale (4B, 10B, 81B) for selected LLM-based base-
lines. Table 3 reports MS and MSR. CoAlign and
KnowNo-SUA with 81B models generally reach to
exceed MSR=1.0, indicating that a larger model is
critical for complex multi-criteria solutions. These
results demonstrate that CoAlign effectively lever-
ages human feedback to produce partitions closely
aligned with humans, while simultaneously match-
ing DL-based baselines in optimizing offline oper-
ational metrics.

Table 2: RQ1 results on five metrics. MSR > 1.0 indi-
cates closer alignment than historical recommendations.

Method OVB↓ WTB↓ WDB↓ MS↑ MSR↑
CKmeans 0.291 0.246 0.253 0.45 0.85
CPSC 0.318 0.278 0.269 0.44 0.80
DRL 0.234 0.182 0.227 0.59 0.98
E-partition 0.251 0.165 0.232 0.57 0.97

Vanilla 0.418 0.365 0.342 0.35 0.70
OPRO 0.368 0.302 0.321 0.38 0.75
LLM4PUP 0.385 0.287 0.311 0.39 0.78
KnowNo-SUA 0.283 0.244 0.211 0.65 1.05
KnowNo-MUA 0.321 0.278 0.290 0.46 0.92

CoAlign 0.245 0.168 0.190 0.71 1.20

RQ2: Uncertainty Calibration. Table 4 shows
CoAlign achieves the best results in all 3 metrics.
DRL shows the second-highest ECR but requires a
larger set (PSR=0.32). KnowNo-SUA outperforms
KnowNo-MUA, suggesting SUA is more stable for
geospatial repartition tasks than MUA, likely due
to weak causality between different times of histor-
ical records. Removing conformal ranking (CR) or
mixing SUA/MUA consistently degrades coverage
and inflates FCR. Notably, CoAlign achieves an

1Due to our partner company’s policy, we can only use its
internal ChatRhino LLMs with 4B, 10B, and 81B parameter
sizes. All LLM results use LLM-81B unless otherwise noted.

Figure 3: Offline Metrics of key baselines v.s. CoAlign.

FCR of 0.08, consistently below our preset thresh-
old α=0.1. For α ∈ {0.05, 0.10, 0.15}, smaller α
boosts ECR but enlarges the prediction set (PSR).
Setting α = 0.1 is a balanced choice (ECR ≈ 0.92,
PSR ≈ 0.20). Thus, CoAlign’s use of CR indeed
addresses geospatial repartition’s complexity better
than existing uncertainty alignment strategies.

Table 3: LLM size v.s. MS and MSR.

MS↑ / MSR↑
4B 10B 81B

Vanilla 0.29 / 0.55 0.32 / 0.63 0.35 / 0.70
OPRO 0.32 / 0.60 0.35 / 0.68 0.38 / 0.75
LLM4PUP 0.34 / 0.61 0.33 / 0.65 0.39 / 0.78
KnowNo-SUA 0.43 / 0.82 0.50 / 0.87 0.65 / 1.05
KnowNo-MUA 0.40 / 0.72 0.42 / 0.75 0.46 / 0.82

CoAlign 0.44 / 0.89 0.58 / 0.95 0.71 / 1.20

4.3 Real World Deployment (RQ3 & RQ4)
We integrated CoAlign into a human-AI collab-
oration platform at over 5,000 stations. We per-
formed an A/B test from July to August 2024, split-
ting stations into the Control Group (deployed

Table 4: RQ2 results for uncertainty quantification.

Method PSR↓ ECR↑ FCR↓
DRL 0.32 0.85 0.22
LLM4PUP 0.27 0.65 0.25
KnowNo-SUA 0.28 0.78 0.15
KnowNo-MUA 0.35 0.72 0.20

CoAlign w/o CR 0.40 0.60 0.28
CoAlign w/o CR + MUA 0.38 0.70 0.23
CoAlign w/o CR + SUA 0.26 0.75 0.16

CoAlign 0.20 0.92 0.08
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state-of-the-practice pipeline) and the Experimen-
tal Group (deployed CoAlign).

Results. Table 5 shows the results of the control
group (Ctrl.) and the experimental group (Exp.)
before (Pre.) and after (Post.) deploying CoAlign.
All metrics in the control group remained stable be-
fore and after deploying CoAlign. The recommen-
dation acceptance rate (RAR) in the experimental
group increases from 0.06 to 0.19. Even when the
recommended partition is not directly accepted, the
AI-generated result remains close to the optimum
and allows timely human feedback, lowering the
final human intervention rate (HIR) from 0.94 to
0.41. Overall, the review time drops by about 25%,
with 90% of cases requiring fewer than 3 inter-
action rounds. Meanwhile, the real-world benefit
metrics all exceed 1.0, confirming notable gains in
HR efficiency, pickup volume, and on-time rate.

Table 5: A/B test results of the CoAlign deployment.

HIR↓ RRT↓ RAR↑ HER↑ PVR↑ OTR↑
Ctrl. (Pre.) 0.93 1.00 0.07 1.00 1.00 1.00
Ctrl. (Post.) 0.92 1.02 0.08 1.01 1.02 1.01

Exp. (Pre.) 0.94 1.00 0.06 1.00 1.00 1.00
Exp. (Post.) 0.41 0.75 0.19 1.12 1.06 1.04

Hence, CoAlign significantly improves accep-
tance (RQ3) and operational metrics (RQ4) com-
pared to the baseline pipeline, largely due to its
ability to incorporate human feedback effectively
and produce partitions closer to expert preferences.

Remark. We observed intriguing patterns where
LLM-generated partitions occasionally proposed
“unorthodox” solutions characterized by near-equal
zone sizes—partitions rarely produced by purely
metric-driven baselines. Although these atypical
recommendations were not always optimal by con-
ventional standards, they enriched the solution
space and were sometimes favored by experts for
their ease of manual fine-tuning. For instance, as
shown in Figure 4, experts actively encouraged
LLMs to generate partitions that isolate the 4 ar-
eas highlighted by red circles. This observation
suggests a broader insight: the value of LLMs ex-
tends beyond achieving higher acceptance rates
through conventionally “correct” partitions; they
also effectively address diverse practical require-
ments encountered in daily operations.

Figure 4: A real-world case of “unorthodox” partitions.

5 Conclusion and Limitation

We propose CoAlign for calibrating uncertainty in
LLM explicitly for geospatial repartition. CoAlign
generates comprehensive and human-aligned par-
titions via integrating diverse contextual informa-
tion and maintains robust uncertainty calibration
of LLM through a novel conformal ranking ap-
proach. Extensive offline evaluations demonstrate
that CoAlign achieves superior performance across
multiple offline metrics. More importantly, we
have deployed CoAlign in a leading logistics com-
pany for geospatial repartition in over 5,000 deliv-
ery stations, generating positive societal and eco-
nomic impact.

Although CoAlign already achieves strong per-
formance suitable for real-world deployment with-
out additional pre-/post-training of LLM, its suc-
cess relies on the availability of rich, domain-
specific data. For broader and more complex
tasks, recent methods like RAG (Gao et al., 2023),
CoT (Wei et al., 2022), or RLHF (Ouyang et al.,
2022) could boost efficiency and performance, even
with smaller models. Exploring these techniques is
a promising direction for future work.
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A Metric Definition

This section details the metrics used in our exper-
iments, organized by research question (RQ). All
metrics are either normalized to the range [0, 1] or
defined as ratios for ease of comparison. Metrics
marked with ‘*‘ may exceed 1.0 or be nonnegative
values rather than strictly bounded in [0, 1].

RQ1: Operational Effectiveness
(i) OVB (Order Volume Balance)

OVB =

√
1
|Z|

∑
z∈Z

(
vz − v̄

)2

v̄
,

where Z is the set of subregions, vz is the or-
der volume of subregion z, and v̄ is the mean
order volume. Lower OVB indicates better
balance.

(ii) WTB (Working Time Balance)

WTB =

√
1
|C|

∑
c∈C

(
tc − t̄

)2

t̄
,

where C is the set of couriers, tc is the working
time of courier c, and t̄ is the mean working
time. Lower WTB indicates better time bal-
ance.

(iii) WDB (Workload Distribution Balance)

WDB = Gini
(
{wz | z ∈ Z}

)
,

where wz is the workload of subregion z.
Lower WDB indicates more uniform work-
load distribution.
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(iv) MS* (Maximum Similarity)

MS = max
Y ∈Γ(X)

sim
(
Y, Y ∗),

measuring the highest similarity (e.g. IoU or
overlap) between the prediction set Γ(X) and
the deployed partition Y ∗. Higher is better.

(v) MSR* (Method Similarity Ratio)

MSR =
MS(Method)

MS(Historical)
,

the ratio of our method’s MS to the historical
candidate’s MS. A value above 1.0 indicates
the method produces partitions more aligned
with final deployments than past baselines.

RQ2: Uncertainty Quantification

(i) PSR (Prediction Set Ratio)

PSR =
Avg size of prediction set

Avg number of total candidates
,

indicating how large the top-kα set is relative
to all generated partitions. Lower PSR indi-
cates a more selective set.

(ii) ECR (Empirical Coverage Rate)

ECR =
#{X : Y ∗ ∈ Γ(X)}

#{X} ,

the fraction of instances whose true optimum
Y ∗ appears in the prediction set. Higher ECR
is better.

(iii) FCR (False Coverage Rate)

FCR =
#{incorrectly covered instances}

#{X} ,

the fraction of instances where the prediction
set includes a suboptimal or invalid partition
that might mislead decisions. Lower is better.

RQ3: Decision Efficiency

(i) HIR (Human Intervention Rate)

HIR =
#{cases needing manual edits}

#{total cases} ,

representing the proportion of partitions that
required substantial manual adjustment be-
yond the recommended set.

(ii) RRT* (Relative Review Time)

RRT =
Tcurrent

Tbaseline
,

where Tcurrent is the average manager review
time under the new system, and Tbaseline is
the pre-deployment average. A value below 1
indicates faster reviews.

(iii) RAR (Recommendation Acceptance Rate)

RAR =
#{accepted recommendations}
#{total recommendations} ,

the fraction of algorithm-proposed partitions
eventually adopted (with or without minor ed-
its). Higher is better.

RQ4: Deployment Benefit
(i) HER* (HR Efficiency Ratio)

HER =
HRpost

HRpre
,

the ratio of post-deployment to pre-
deployment human resource efficiency. A
value above 1 implies improved workforce
productivity.

(ii) PVR* (Pick-up Volume Ratio)

PVR =
PVpost

PVpre
,

the ratio of post- to pre-deployment pickup
volume. Values above 1 indicate increased
pickup throughput.

(iii) OTR* (On-time Ratio)

OTR =
OTpost

OTpre
,

the ratio of on-time deliveries post- vs. pre-
deployment. Values above 1 reflect improved
timeliness.
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