
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 200–207
July 28-30, 2025 ©2025 Association for Computational Linguistics

Run LoRA Run:
Faster and Lighter LoRA Implementations

Daria Cherniuk1, Alexandr Mikhalev2, Ivan Oseledets1,2,
1Artificial Intelligence Research Institute,

2Skolkovo Institute of Science and Technology, Moscow,
daria.cherniuk@skoltech.ru, al.mikhalev@skoltech.ru, oseledets@airi.net

Abstract

LoRA is a technique that reduces the number
of trainable parameters in a neural network by
introducing low-rank adapters to linear layers.
This technique is used for fine-tuning and even
training large transformer models from scratch.
This paper presents the RunLoRA framework
for efficient implementations of LoRA, which
significantly improves the speed of neural net-
work training and fine-tuning with low-rank
adapters. The proposed implementation op-
timizes the computation of LoRA operations
based on the shape of the corresponding linear
layer weights, the input dimensions, and the
LoRA rank by selecting the best forward and
backward computation graphs based on FLOPs
and time estimations. This results in faster train-
ing without sacrificing accuracy. The experi-
mental results show a speedup ranging from
10% to 28% on various transformer models.

1 Introduction

LoRA (Hu et al., 2022) paper introduced the idea
of updating a low-rank correction of the linear layer
instead of the full matrix of its weigths. This ap-
proach quickly became popular due to the reduced
cost of the update: the number of parameters in
the adapter is significantly lower than the origi-
nal because of its low-rank structure. Several pa-
pers have emerged that prove LoRA’s efficacy not
only for fine-tuning on downstream tasks but also
for full training (ReLoRA(Lialin et al., 2023)) or
style-transfer (ZipLoRA(Shah et al., 2023)). Dif-
ferent modifications of LoRA followed, incorporat-
ing quantization (QLoRA(Dettmers et al., 2023)),
weight-sharing (LoTR(Bershatsky et al., 2024),
VeRA(Kopiczko et al., 2024)), etc.

However, all variations of LoRA use the default
chain of operations while calculating the output,
which often leads to a suboptimal computation
graph. None of the papers on low-rank adapter
training consider computation costs. We propose

RunLoRA, a framework that includes different vari-
ations of the forward and backward pass through
an adapter-induced linear layer and selects the best
pair for a given architecture. We provide a thor-
ough analysis (both empirical and theoretical) of
the areas of optimality for each pass.

Since modifying the computational graph does
not affect the layer output, our method enables
faster calculations without compromising model
accuracy. RunLoRA retains the same convergence
properties and expressive capabilities as vanilla
LoRA, unlike common acceleration techniques
such as sparsification, quantization, and pruning.

Our framework is compatible with PyTorch and
can be used as a simple model wrapper, similar
to the LoRA implementation from the PEFT1 li-
brary. We also provide functionality to work with
quantized model weights to fine-tune models in
the fashion of the QLoRA (Dettmers et al., 2023)
paper.

We evaluated our framework’s performance on
a series of NLP models, including RoBERTa, OPT,
and LLaMA, achieving up to a 28% speedup (Fig-
ure 1) solely due to an optimized chain of PyTorch
operations. Furthermore, we managed to save up
to 5,5 GB of memory by reducing the number of
saved activations (Table 2).

The summary of our contributions is as follows:

1. We implemented several alternative forward
and backward computation passes through
low-rank adapters and investigated the areas
of optimality for each pass.

2. We developed a framework called RunLoRA:
a model wrapper for training with low-rank
adapters that uses the best forward-backward
passes for each LoRA-induced layer.

3. We evaluated our framework on several
language models, demonstrating significant

1https://github.com/huggingface/peft

1
200

speedups (up to 28%) and proving the effi-
ciency of RunLoRA.

The code for the RunLora framework and related
experiments can be found on GitHub2.

2 Problem setting and Methodology

Default forward pass through LoRA-induced linear
layer looks the following:

Y = XW + (XA)B, (1)

where X represents the input batch, W represents
the linear layer weights, A and B are the LoRA
factors, Y is the layer output.

The backward pass is automatically determined
by the framework using an autograd feature. All the
optimizations are left to the neural network training
framework, which often performs sub-optimally.

Many scientists and engineers avoid the follow-
ing chain of computations:

Y = X(W +AB). (2)

This avoidance stems from an implicit assump-
tion that weights W are large, making it undesir-
able to form a matrix AB of the same size. How-
ever, real-world LoRA-adapter training deals with
large input X in an attempt of maximizing batch
size to utilize GPU RAM at its full capacity. Large
batch size leads to a contradiction to the assump-
tion and inefficient LoRA implementation.

Our current implementation contains two vari-
ants of the forward pass and five variants of the
backward pass. Formally, the forward variants co-
incide with Equations 1 and 2. However, unlike
the default LoRA implementation, neither forward
function in RunLoRA saves the result of XA to
context. This memory allocation reduction is par-
ticularly beneficial when training with large input.

The backward pass through a LoRA adapter re-
quires us to calculate the following tensors:





dA = X⊤dY B⊤,
dB = A⊤X⊤dY,
dX = dYW⊤ + dY B⊤A⊤.

(3)

where dX = ∂L
∂X , and similarly for dY , dA, dB.

Due to the the associativity of matrix multiplica-
tion, several computation graphs lead to the same
result, up to rounding errors. There are three mul-
tiplications, and each can be done in two ways,

2https://github.com/KamikaziZen/RunLoRA

which leads to the eight variants of the backward
pass. Equations and corresponding algorithms are
presented in the Appendix A.

Table 1 shows the number of FLOPs required
to perform each variant of forward and backward
computation. These expressions were determined
from the combination of all matrix multiplications
in the respective algorithm. The number of FLOPs
required for the multiplication of m-by-k and k-by-
n matrices is 2mkn.

It is worth noting that out of eight variants of
backward paths we implement only the first five
since others require an equal or greater number
of FLOPs in any setting. Specifically, backward6
would require more FLOPs than backward5 for any
architecture and training configuration, while back-
ward7 and backward8 require the same number of
FLOPSs as backward3 (Table 1).

We analyze the area of optimality for each for-
ward pass and backward pass, considering a neces-
sary condition on parameters reduction: the num-
ber of trainable parameters after LoRA transform
should be less than that of the original layer.

r(i+ o) < io (4)

where r denotes LoRA rank, i and o denote input
and output dimensions respectively.

Figure 2 depicts case study examples for some
batch sizes and sequence lengths. The colored ar-
eas illustrate the optimal choice of forward or back-
ward pass determined from minimizing the number
of required FLOPs. Subfigures 2a and 2d on the left
consider a square weight layer where the number
of input features and the number of output features
equal the model’s embedding size (i.e., query, key,
and value layers in transformers). Subfigures 2b
and 2c on the right depict an expanding linear layer
(typically, 4× expansion is used in MLP blocks of
transformers). In all cases, parameter reduction is
satisfied only under the dashed line.

In all depicted cases backward2 and backward3
did not emerge as the best choices satisfying con-
dition 4. It can be further proved that neither back-
ward2 nor backward3 will provide the least number
of FLOPs under this restriction. It is sufficient to
prove that at least one of the other backward al-
gorithms is a better option. For both cases, it is
convenient to compare against backward5. We will
use proof by contradiction.

Suppose FLOPs(backward2) ≤ FLOPs(back-
ward5). From Table 1 it follows that:

2
201

Figure 1: Maximum speedups for the forward-backward pass through network achieved on different families of
models and with different data types. Here, b denotes batch size, r denotes LoRA rank, and s denotes sequence
length.

(a) Input and output dimensions are equal to the model’s
embedding size. batch size = 2, sequence length = 100.

(b) The input dimension equals the model’s embedding size,
the output dimension is four times bigger. batch size = 2,
sequence length = 100.

(c) Input and output dimensions are equal to the model’s
embedding size. batch size = 20, sequence length = 1024.

(d) The input dimension equals the model’s embedding size,
the output dimension is four times bigger. batch size = 1,
sequence length = 600.

Figure 2: Areas of best forward/backward pass choice. The region under the dashed line satisfies condition 4.

2bs(or + 2ir+2io) + 2ior

≤ 2bs(2or + 2ir + oi) + 2ior

2bsor + 4bsir+4bsio+ 2ior

≤ 4bsor + 4bsir + 2bsoi+ 2ior

2bsio ≤ 2bsor

Using 4 and knowing that i > 0, o > 0:

i ≤ r <
io

i+ o
≤ i

We reached a contradiction. That means FLOPs(
backward2) > FLOPs(backward5).

3
202

Method FLOPs
forward1 2b · s · (i · o+ r · i+ o · r)
forward2 2(i · o · r + b · s · o · i)

backward1 2b · s · (2o · r + 3i · r + o · i)
backward2 2b · s(o · r + 2i · r + 2i · o) + 2i · o · r
backward3 2b · s · (2i · o+ o · r + i · r) + 4i · r · o
backward4 2(2b · s · i · o+ 3i · o · r)
backward5 2b · s · (2o · r + 2i · r + o · i) + 2i · o · r
backward6 2b · s · (2o · r + 2i · r + 2o · i) + 4i · o · r
backward7 2b · s · (o · r + i · r + 2o · i) + 4i · o · r
backward8 2b · s · (o · r + i · r + 2o · i) + 4i · o · r

Table 1: The number of floating-point operations per
second (FLOPs) for our implemented forward and back-
ward passes. b denotes batch size, s denotes sequence
length, i denotes input dimension, o denotes output di-
mension, and r denotes adapter rank.

Suppose FLOPs(backward3) ≤ FLOPs(back-
ward5). From Table 1 it follows that:

2bs(2io+ or+ir) + 4ior

≤ 2bs(2or + 2ir + oi) + 2ior

4bsio+ 2bsor+2bsir + 4iro

≤ 4bsor + 4bsir + 2bsoi+ 2ior

2bsio+ 2iro ≤ 2bsor + 2bsir

bs(io− or − ir) ≤ −iro

Using 4 and knowing that i > 0, r > 0, o > 0, b >
0, s > 0:

0 < bs ≤ −iro

io− or − ir
< 0

We reached a contradiction. That means FLOPs(
backward3) > FLOPs(backward5).

Areas of optimality can also be researched in
batch size and sequence length space. For example,
Figure 3 depicts the best backward and forward
passes for the LlamaMLP linear layer with adapters
of rank 128. This configuration satisfies condition
4.

3 Numerical experiments

To evaluate RunLoRA’s performance, we have con-
ducted experiments on several NLP models with
the number of parameters ranging from 60 mil-
lion up to 7 billion: LLama (Touvron et al., 2023),
OPT (Zhang et al., 2022), and RoBERTa (Liu et al.,
2020). We measured the mean time of a forward-
backward pass through the network for different
architectures and training settings and compared
it to PEFT LoRA implementation. Additionally,
we performed several epochs of training and com-
pared steps-per-second and samples-per-second as

well as total training runtime. We also evaluated
our framework on the large Llama2 model with
7 billion parameters in a distributed training set-
ting. Furthermore, through experiments on ViT
models, we demonstrate numerical correctness of
RunLoRA implementation by comparing training
loss and validation accuracy measurements.

Llama We used the Llama model implementa-
tion with Flash Attention from PyTorch frame-
work. As shown in Table 2, we achieved up to
16% speedup compared to PEFT when running
the model with the float32 data type for weights
and operations. When running the same experi-
ment in bfloat16 we manage to achieve up to 17.8%
speedup. This slight improvement results from the
fact that training in bfloat16 is generally faster than
training in full precision, which makes the reduc-
tion in FLOPs due to RunLoRA more influential
on the loop runtime.

When training Llama for 100 epochs on
WikiText-2, we achieved a 17.56% reduction in
total runtime. Accordingly, the number of training
samples per second and the number of train steps
per second increased by 1.2 times (Table 3).

RoBERTa Another family of models we con-
sider in our experiments consists of RoBERTa-base
and RoBERTa-large pretrained models from the
Hugging Face Hub3. They contain about 125 mil-
lion and 355 million parameters, respectively. In
terms of mean forward-backward time, RunLoRA
performs 11.88% faster in float32 and 22.06%
faster in bfloat16 data type (Table 2).

As for training RoBERTa on WikiText-2, Run-
LoRA shows up to 20.27% speedup in total runtime
and 1.25 times increase in train samples per second
and train steps per second (Table 3).

OPT As with RoBERTa, we use pretrained
weights and model implementations from the Hug-
ging Face Hub. For the OPT models, we also use
FlashAttention2 (Dao, 2024) mechanism, which
only supports the bfloat16 data type.

Table 2 shows a maximum speedup of 28.29%
for the forward-backward pass with a sequence
length of 512 and 26.24% for the maximum se-
quence length of the model. Thereafter, the
WikiText-2 training experiment (Table 3) depicts a
maximum reduction of 26.65% in total runtime, a
1.36 times increase in training samples per second,
and training steps per second.

3https://huggingface.co/docs/hub/en/index

4
203

(a) Best backward path as a function of batch size and sequence
length.

(b) Best forward path as a function of batch size and sequence
length.

Figure 3: Areas of best forward/backward pass choice for the LlamaMLP linear layer. The input dimension equals
4096, the output dimension equals 11008. Rank is 128.

Implementation Mean F-B loop, ms Memory for F-B loop, MB Speedup, % Memory Saved, MB
llama 250m, b=34, r=256, s=1024, dtype=fp32
RunLoRA 3092.25 65345.14 15.99 5543.5
PEFT 3680.99 70888.64 - -
llama 250m, b=58, r=128, s=1024, dtype=bf16
RunLoRA 877.34 64134.84 17.81 2381.38
PEFT 1067.41 66516.21 - -
llama 350m, b=48, r=128, s=1024, dtype=bf16
RunLoRA 902.74 61515.97 16.94 1954.91
PEFT 1086.8 63470.88 - -
llama 1.3b, b=24, r=512, s=1024, dtype=bf16
RunLoRA 2120.75 57419.04 12.06 3530.33
PEFT 2411.64 60949.38 - -
opt-125m, b=64, r=128, s=512, dtype=bf16
RunLoRA 172.49 16418.51 24.87 556.75
PEFT 229.58 16975.26 - -
opt-350m, b=100, r=128, s=512, dtype=bf16
RunLoRA 569.2 43708.9 28.29 1745.25
PEFT 793.75 45454.15 - -
opt-1.3, b=100, r=128, s=512, dtype=bf16
RunLoRA 1551.24 72789.15 21.41 1690.0
PEFT 1973.8 74479.15 - -
roberta-base, b=64, r=128, s=512, dtype=fp32
RunLoRA 1416.9 46810.08 11.88 1126.12
PEFT 1607.87 47936.21 - -
roberta-base, b=64, r=128, s=512, dtype=bf16
RunLoRA 295.61 23408.94 20.02 563.56
PEFT 369.63 23972.5 - -
roberta-large, b=64, r=128, s=512, dtype=bf16
RunLoRA 644.19 46536.75 22.66 1106.1
PEFT 832.93 47642.85 - -

Table 2: Comparison between RunLoRA and the PEFT LoRA implementation. b denotes batch size, r denotes
LoRA rank, s denotes sequence length.

Additionally, since RunLoRA forward functions
do not save intermediate result XA, in certain ex-
periments we managed to save up to 5.5GB of GPU
memory.

Llama2-7b Since training such a model on a sin-
gle GPU proves to be a tedious and often impos-
sible task, we use the LitGPT4 framework to get
advantages of FSDP training. We train the Llama2-
7b model on the Alpaca dataset for 100 iteration

4https://github.com/Lightning-AI/litgpt

steps, using two GPUs with a minibatch size of
40. Results are presented in Table 4: RunLoRA
achieves a 21.47% speedup in mean iteration time.

ViT We used base and large ViT (Dosovitskiy
et al., 2021) variations to demonstrate both Run-
Lora’s efficacy and accuracy. Fig 4 depicts a com-
parison of training loss and test accuracy values
between LoRA and RunLora while training a clas-
sification task on the Food101 dataset. It can be
seen that these metrics coincide up to only a small
difference due to initialization or rounding errors.

5
204

Implementation Train Samples per Second Train Steps per Second Train Runtime, Min Speedup, %
llama-350m, b=40, r=128, s=1024, dtype=bf16
PEFT 38.1 0.96 121.98 -
RunLoRA 46.2 1.16 100.56 17.56
opt-350m, b=32, r=128, s=1024, dtype=bf16
PEFT 34.07 1.07 115.19 -
RunLoRA 46.45 1.46 84.49 26.65
opt-1.3b, b=20, r=128, s=1024, dtype=bf16
PEFT 15.81 0.79 248.29 -
RunLoRA 20.03 1.0 196.01 21.05
roberta-large, b=46, r=128, s=512, dtype=bf16
PEFT 42.79 0.93 186.87 -
RunLoRA 53.67 1.18 148.99 20.27

Table 3: RunLora vs PEFT performance while training for 100 epochs on the WikiText-2 dataset. b denotes batch
size, r denotes LoRA rank, s denotes sequence length.

As shown in Table 5, RunLoRA manages to ac-
celerate Visual Transformer up to 14.8%, according
to mean forward-backward measurements in the
float32 data type.

All experiments were performed on a single
Nvidia A100 GPU 80GB (except for the Llama2-7b
experiment, which was conducted on two GPUs).
In all experiments, LoRA dropout was fixed at 0;
other parameters are stated in the referenced tables.
For measuring mean forward-backward pass we
utilized the torch.benchmarking5 package. Run-
LoRA adapters were applied to all linear weights
in attention and MLP blocks.

4 Related Work

The introduction of LoRA (Hu et al., 2022) has
sparked a wave of new publications on the topic of
low-rank updates. For example, ReLoRA (Lialin
et al., 2023) has devised a special learning rate
scheduler for full training with low-rank updates;
ZipLoRA (Shah et al., 2023) merges adapters
trained separately for style and object, enabling
effective style transfer; and DyLoRA (Valipour
et al., 2023) trains LoRA blocks for a range of
ranks instead of a single rank.

Many papers aim to further reduce the costs
of training. QLoRA (Dettmers et al., 2023)
utilizes adapters together with quantization of
original weights to reduce memory requirements.
Vector-based Random Matrix Adaptation (VeRA)
(Kopiczko et al., 2024) reduces the number of train-
able parameters by using a single pair of low-rank
matrices shared across all layers and learning small
scaling vectors instead. LoTR (Bershatsky et al.,
2024) also proposes weight sharing for factors in
the Tucker2 decomposition of low-rank adapters.

5https://pytorch.org/docs/stable/benchmark_utils.html

LoRA-FA (Zhang et al., 2023) aims to reduce mem-
ory consumption by freezing downscaling half of
the LoRA adapters.

Our method also seeks to further increase the
efficiency of low-rank adapter training, but with
a different approach: we neither reduce the num-
ber of LoRA parameters nor compromise training
accuracy. Our framework achieves computational
speedups and memory reduction solely due to the
choice of the optimal computation graph.

5 Conclusion and Future Work

We have proposed several variants of forward-
backward computational algorithms as alternatives
to the default pass through low-rank adapters and
derived theoretical bounds for their optimality.
We have implemented the proposed methods in a
PyTorch-compatible framework called RunLoRA,
which selects the best computation graph based on
model architecture and training parameters. We
have demonstrated RunLoRA’s efficiency by com-
paring it to the PEFT LoRA implementation.

One of the possible directions for future work
is finding optimal computation graphs for approxi-
mate versions of low-rank adapters (for example,
vector analogs like VeRA (Kopiczko et al., 2024)
and DoRA (Liu et al., 2024)).

6 Acknowledgments

This work was supported by the Ministry of Eco-
nomic Development of the Russian Federation
(code 25-139-66879-1-0003).

References
Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev,

Aleksandr Mikhalev, and Ivan Oseledets. 2024.

6
205

Implementation Mean Iteration Time, Sec Speedup, % Train Runtime, Sec Memory used, GB
llama2-7b, b=2x40, r=128, s=512, dtype=bf16
PEFT 7283.90 - 719.76 24.09
RunLoRA 5720.12 21.47 573.35 23.72

Table 4: Training Llama2-7b model for 100 iterations on the Alpaca dataset. b denotes batch size, r denotes LoRA
rank, s denotes sequence length. Notation "2x40" indicates that training was conducted on two GPUs each with
mini-batch size of 40.

(a) Training loss during ViT-base training. (b) Test accuracy during ViT-base training.

Figure 4: Training ViT-base model for 8 epochs on Food101 dataset. LoRA and RunLoRA training loss and
accuracy values coinide.

Implementation Mean F-B loop, ms Memory for F-B loop, MB Speedup, % Memory Saved, MB
vit-base, b=100, r=32, dtype=fp32
RunLoRA 505.23 13488.84 14.37 370.88
PEFT 590.01 13859.73 - -
vit-base, b=100, r=64, dtype=fp32
RunLoRA 539.58 13499.44 14.79 531.54
PEFT 633.22 14030.97 - -
vit-large, b=100, r=32, dtype=fp32
RunLoRA 1631.81 35602.61 11.45 613.33
PEFT 1842.81 36215.94 - -
vit-large, b=100, r=64, dtype=fp32
RunLoRA 1702.24 35630.24 12.31 928.47
PEFT 1941.24 36558.71 - -
vit-large, b=100, r=128, dtype=fp32
RunLoRA 1838.88 35685.49 13.66 1560.98
PEFT 2129.76 37246.47 - -

Table 5: Comparison between RunLoRA and the PEFT LoRA implementation. ViT family of models. b denotes
batch size, r denotes LoRA rank.

Lotr: Low tensor rank weight adaptation. Preprint,
arXiv:2402.01376.

Tri Dao. 2024. Flashattention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Repre-
sentations.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image

recognition at scale. In International Conference on
Learning Representations.

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. Lora: Low-rank adaptation of large
language models.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M.
Asano. 2024. Vera: Vector-based random matrix
adaptation. Preprint, arXiv:2310.11454.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Stack more layers
differently: High-rank training through low-rank up-
dates. Preprint, arXiv:2307.05695.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting

7
206

https://arxiv.org/abs/2402.01376
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2307.05695

Cheng, and Min-Hung Chen. 2024. Dora:
Weight-decomposed low-rank adaptation. Preprint,
arXiv:2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu,
Svetlana Lazebnik, Yuanzhen Li, and Varun Jampani.
2023. Ziplora: Any subject in any style by effectively
merging loras. Preprint, arXiv:2311.13600.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3274–3287, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. Preprint, arXiv:2308.03303.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

A Appendix

Here we provide more details on the backward
paths stemming from Equation 3 in Section 2. Due
to the the associativity of matrix multiplication,
several computation graphs lead to the same result,
up to rounding errors. There are three multiplica-
tions, and each can be done in two ways, which
leads to the eight variants of the backward pass.
Equations and corresponding algorithms (first five)
are presented below.

1. dA = X⊤(dY B⊤),
dB = (A⊤X⊤)dY ,
dX = dYW⊤ + (dY B⊤)A⊤.

2. dA = X⊤(dY B⊤),
dB = A⊤(X⊤dY),
dX = dYW⊤ + (dY B⊤)A⊤.

3. dA = (X⊤dY)B⊤,
dB = A⊤(X⊤dY),
dX = dYW⊤ + (dY B⊤)A⊤.

4. dA = (X⊤dY)B⊤,
dB = A⊤(X⊤dY),
dX = dY (W⊤ +B⊤A⊤).

5. dA = X⊤(dY B⊤),
dB = (A⊤X⊤)dY ,
dX = dY (W⊤ +B⊤A⊤).

6. dA = (X⊤dY)B⊤,
dB = (A⊤X⊤)dY ,
dX = dYW⊤ + (dY B⊤)A⊤.

7. dA = (X⊤dY)B⊤,
dB = (A⊤X⊤)dY ,
dX = dY (W⊤ +B⊤A⊤).

8. dA = X⊤(dY B⊤),
dB = A⊤(X⊤dY),
dX = dY (W⊤ +B⊤A⊤).

Algorithm 1: backward 1

Z1 ← dY B⊤

Z2 ← XA
dA← X⊤Z1

dB ← Z⊤
2 dY

dX ← dYW⊤ + Z1A
⊤

Algorithm 2: backward2

Z1 ← dY B⊤

Z2 ← X⊤dY
dA← X⊤Z1

dB ← A⊤Z2

dX ← dYW⊤ + Z1A
⊤

Algorithm 3: backward 3

Z1 ← dY B⊤

Z2 ← X⊤dY
dA← Z2B

⊤

dB ← A⊤Z2

dX ← dYW⊤ + Z1A
⊤

Algorithm 4: backward 4

Z1 ←W +AB
Z2 ← X⊤dY
dA← Z2B

⊤

dB ← A⊤Z2

dX ← dY Z⊤
1

Algorithm 5: backward 5

Z1 ← dY B⊤

Z2 ← XA
Z3 ←W +AB
dA← X⊤Z1

dB ← Z⊤
2 dY

dX ← dY Z⊤
3

8
207

https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://arxiv.org/abs/2311.13600
https://arxiv.org/abs/2311.13600
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

