Multi-Step Generation of Test Specifications using Large Language Models
for System-Level Requirements

Dragan Milchevski' Gordon Frank? Anna Hiitty'
Bingqing Wang® Xiaowei Zhou® Zhe Feng?®
'Bosch Center for Artificial Intelligence, Renningen, Germany
2Bosch Vehicle Motion, Abstatt, Germany
3Bosch Research and Technology Center North America, Sunnyvale, USA
{dragan.milchevski,gordon.frank,anna.haetty}@de.bosch.com
{bingging.wang,xiaowei.zhou2,zhe.feng2}@us.bosch.com

Abstract

System-level testing is a critical phase in the de-
velopment of large, safety-dependent systems,
such as those in the automotive industry. How-
ever, creating test specifications can be a time-
consuming and error-prone process. This pa-
per presents an Al-based assistant to aid users
in creating test specifications for system-level
requirements. The system mimics the work-
ing process of a test developer by utilizing a
LLM and an agentic framework, and by intro-
ducing intermediate test artifacts—structured
intermediate representations derived from in-
put requirements. Our user study demonstrates
a 30 to 40% reduction in effort required for
test development. For test specification genera-
tion, our quantitative analysis reveals that itera-
tively providing the model with more targeted
information, like examples of similar test spec-
ifications, based on comparable requirements
and purposes, can boost the performance by up
to 30% in ROUGE-L. Overall, our approach
has the potential to improve the efficiency, ac-
curacy, and reliability of system-level testing
and can be applied to various industries where
safety and functionality are paramount.

1 Introduction

In industries such as aerospace, telecommunica-
tions, electronics, software, and automotive en-
gineering, the systems to be developed are often
complex due to the intricate relationships among
numerous interdependent components. Effective
system-level testing is a critical phase that veri-
fies whether the complete and integrated system
meets their intended functionality and performs as
expected. It guarantees that all components work
together seamlessly, ensuring the safety, functional-
ity, and reliability of complex systems. To achieve
this, system-level testing is typically conducted
in controlled environments such as Software-in-
the-Loop (SiL, Umang et al.) or Hardware-in-the-
Loop (HiL, Ledin, 1999) and must be well doc-

Test Specification 1
(mandatory)

Test Specification 2

Test Scenario 1 (optional)

—
(mandatory) Test Purpose 1

Requirement Test Specification 3

Test Scenario 2
(mandatory)

— TestPurpose2 —
(optional)

Test
Design
Decision Table,

Control Flow, ... jestScenaricl

(optional)

Requirement

— Test Purpose 3 Test Specification 4
(optional) - T &

(mandatory)

Test Scenario 4

(optional) Test Purpose 4 Test Specification 5
(mandatory)
Test Specification 6

(optional)

Requirement 3
(optional)

Intermediate Test Artifacts

Figure 1: Illustrated Workflow - Deriving Test Specifi-
cations from Requirements

umented, as emphasized by standards like Auto-
motive SPICE (ASPICE, VDA QMC, 2023). To
support system-level testing, two distinct roles col-
laborate: the requirements engineer, who authors
system-level requirements, and the test developer,
who derives detailed test specifications from those
requirements. In this paper, we focus on assisting
test developers to create test specifications.

A test specification typically includes the defini-
tion of tests to be performed, the expected result, as-
sociated testing conditions, and other information.
In contrast to software testing, both the system-
level requirements and test specifications are doc-
umented in natural language, taking the form of
text documents rather than code (cf. VDA QMC,
2023). To bridge the large gap between the input
requirements and the final test specifications, test
developers typically follow a structured workflow
of five steps to generate concrete test specifications,
as illustrated in Figure 1:

First, the test developers (i) group input re-
quirements into clusters (see examples given in
Figure 2). Then, they select a test design technique
according to ISO/IEC/IEEE (2021) and (ii) create
a test design based on the requirements. The test
design is an abstraction of the tests, and specifies
the relationship between the input conditions and
the output expected results. Test designs are re-

132

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 132-146
July 28-30, 2025 ©2025 Association for Computational Linguistics

quired to cover a vast array of corner cases, which
helps to verify the logic of the function, and check
potential errors or faults. Test designs can be ex-
pressed in diagrams (see example in Figure 3) or
decision tables (see example in Table 6 in Appendix
A.1 for a corresponding example), with each row or
path defining a single (iii) test scenario. Once they
have identified the test scenarios, they derive a (iv)
test purpose for each scenario, which is a specific
reason or objective that the test specifications need
to cover. In the last step, the developers create (v)
test specifications (see Figure 4) that consist of the
previously generated test purpose, pre- and post-
conditions as well as execution steps that testers
shall follow. To offer a better understanding of the
test development process in massive system pro-
duction, more details on above examples are given
in Appendix A.1.

R1: The lane assist function shall activate only when the
vehicle speed exceeds 60 km/h.

R2: The lane assist function shall require manual
activation by the driver.

R3: The lane assist function shall operate only when
clear lane

Figure 2: Example requirements cluster

Speed >
60 km/h?

Driver
Activated?

Clear Lane
Markings?

v

Lane Assists Operates Lane Assists Does Not Operate

Figure 3: Example control flow chart for lane assist
function

Typically, the process described above will cost
the test developers a huge amount of manual ef-
forts to handle the challenges such as the many-to-
many relationship between requirements and test
specifications, the mixture of natural language de-
scriptions and variable assignments that need to be

precisely met in test specifications, and the injec-
tion of domain know-how. This paper introduces an
Al-based test development assistant that harnesses
large language models and Agentic Al to assist the
test developers to streamline this process. A user
study demonstrates that our approach reduces the
time needed to derive test specifications from re-
quirements by 30—40% on average, significantly
boosting both efficiency and accuracy.

Preconditions
* The vehicle ignition is "ON".
- Vehicle_Speed is at standstill.
+ Lane_Assist_Status = "Off".
+ Driver_Lane_Assist_Activation = "False”.
- Set Lane_Marking_Detected = "True”.

Test Steps and Expected Results
* Activate the lane assist by setting
Driver_Lane_Assist_Activation = "True”.
Expected Value: Lane_Assist_Status = "Ready".
+ Gradually increase Vehicle_Speed to 65 km/h over 10 seconds.
Expected Value: Lane_Assist_Status = "Active”.
« Gradually decrease Vehicle_Speed to 55 km/h over 10 seconds.
Expected Value: Lane_Assist_Status = "Ready”.
- Deactivate the lane assist by setting
Driver_Lane_Assist_Activation = "False”.
Expected Value: Lane_Assist_Status = "Off".
« Gradually decrease Vehicle_Speed to @ km/h over 1@ seconds.
« Retrieve data from the system’s failure memory.
Postconditions

+ Clear the failure memory.
- Reset conditions back to preconditions if required.

Figure 4: Example test spec for lane assist function

Overall, our key contributions are summarized
as follows:

(i) An End-to-End Al-Based Test Develop-
ment Assistant: We introduce an innovative
Al-based test development assistant that lever-
ages domain expertise and historical data to
generate high-quality test specifications for
system-level requirements.

(ii) Intermediate Test Artifacts: Our system au-
tomatically generates intermediate test arti-
facts—structured representations such as ta-
bles and graphs—that effectively bridge the
gap between input requirements and final test
specifications, thereby resolving the inherent
many-to-many relationship between them.

(iii) Human-in-the-Loop Test Workflow: De-
signed to foster collaboration, our system of-
fers actionable suggestions while allowing test
developers to inspect, refine, and extend the

133

generated test artifacts and test specifications,
ensuring a seamless iterative process.

(iv) End-to-End Evaluation with Test Experts:
We conducted an end-to-end evaluation with
expert test developers from our organization.

2 Related Work
2.1 System Testing in Industry

Regarding development frameworks, system-level
testing is independent of specific methodologies,
and can be applied to a range of approaches, includ-
ing the V-Model (Johansson and Bucanac, 1999),
Agile, and Waterfall. Various testing method-
ologies exist, each tailored to distinct objectives.
Requirement-based testing (Mustafa et al., 2021),
for instance, extracts test cases directly from sys-
tem requirements, thereby validating all function-
alities. Model-based testing (Mohd-Shafie et al.,
2021), on the other hand, leverages system behavior
models to generate test scenarios, ensuring com-
prehensive coverage of interactions. We follow a
requirement-based testing approach.

2.2 Al in Requirement Engineering

Prior art on requirements analysis include informa-
tion extraction (Holter and Ell, 2023; Das et al.,
2023; Nguyen et al., 2024), classification (Kici
et al., 2021; Li et al., 2022; Khayashi et al., 2022;
Yildirim et al., 2023; Nayak et al., 2023), consis-
tency checking (Bertram et al., 2023; Marchezan
et al., 2024), mapping and consolidating require-
ments (Sonbol et al., 2022; Bertram et al., 2022a,b;
Subahi, 2023) and requirements generation (Kr-
ishna et al., 2024). These Al techniques are either
adopted to identify key information for downstream
tasks, or to improve the writing quality of the re-
quirements, reducing mistakes and resolving ambi-
guities in the writing.

Regarding test specifications, LLM-based test
generation is an increasingly researched subfield
of code generation (Jiang et al., 2024). Generative
Al-based software testing has been studied inten-
sively as shown in surveys (Wang et al., 2024; Jin
et al., 2024), and software testing is mostly applied
for test generation, program debugging and bug
repair. There is a notable amount of work that ex-
plores the relationship between requirements and
test generation. Han et al. (2024) propose a frame-
work for code generation and test execution, where
new requirements are generated to create more cor-
rect tests. Yang et al. (2023) develop an interactive

tool for requirements elicitation, integrating a com-
ponent to write tests. Wei (2024) apply an LLM-
based approach to interpret provided requirements,
modifying extracted information to object-oriented
models to generate test cases. Requirements are of-
ten represented as UML or use case diagrams (e.g.,
Mustafa et al., 2021; Sarma et al., 2007; Swain
et al., 2010), which allows Naimi et al. (2024) to
extract use case details from UML diagrams in
XML format to automatically generate structured
prompts for test creation.

There is limited recent research on Al-supported
generation of natural language test specifications.
Adabala et al. (2024) propose a pipeline for generat-
ing test flows for functional safety requirements by
generating similar test specifications as examples
for the language model. Liu et al. (2024) enhance
a LLM through data augmentation, transforming
the one-to-many relationship between requirements
and test specifications into multiple one-to-one rela-
tionships. They augment the model input by adding
either the test objective or a LLM-generated sum-
mary of the test specification. Arora et al. (2024)
present research closely related to our work us-
ing a RAG framework to generate test specifica-
tions given several input requirements, utilizing a
documentation corpus and optional one-shot exam-
ples. They incorporate a test description to guide
the model during generation. In contrast to these
methods, our approach integrates a retrieval com-
ponent based on historical requirements and test
specifications. As key difference to all previous
approaches, we use test artifacts (i.e., test design,
test scenarios and test purposes) as an intermediate
structured representation to address the many-to-
many relationship of requirements and test specifi-
cations. Notably, Liu et al. (2024) and Arora et al.
(2024) focus on one-to-many and many-to-one re-
lationships, respectively. As a means to address
these challenges, they add test descriptions to the
input of the LLM. In contrast, our approach is fully
automated; test descriptions, in our case the test
purposes, are automatically generated to guide the
model. The test purposes are generated from the
test scenarios, which again are automatically de-
rived from the input requirements applying a test
design technique.

3 Method

We designed a novel system for generating test
specifications from input requirements. The sys-

134

Find similar
requirements

Historical
requirements and
test specifications

Retrieval

Similar req
and testé

B

Requirements

pecs) ;
W Inputs enerate test detail designs

L}
Test
Developer

Test spec generation
Test
specification -
Generate test generation

specifications I N

Multi-agent
generation

1)

Use LLM/Agent

Retrieval

Fine-tuned
embeddings

<

Vector Store

Test artifact generation

Test Test
] ! scenarios purpose
i
. 1
} »| State transitioning |~ N
S -b{ Control flow }--' I
f Uses LLM/Agent

xN

LLama-3.1-70B-Inst

Decision table

P Use case -

Test design
generation

Test Specification

Test purpose and test scenario

Figure 5: System’s workflow and architecture

tem architecture is illustrated in Figure 5. The
system begins with the user entering requirements
as input (point 0 in Figure 5), followed by a re-
trieval step to find similar requirements (1). The
data basis consists of historical requirements and
linked historical test specifications (1.2). The ul-
timate goal of retrieving similar requirements is
to identify one or more existing test specifications
that can serve as examples for the final step: test
specification generation. Consequently, during this
step, users can review associated historic test spec-
ifications and select one or more as examples to
guide the generation process. The retrieval process
is two-pronged, leveraging both sparse retrieval
(BM25) and dense retrieval (with fine-tuned em-
beddings, 1.2). To get more precise results, the
system also allows the user to apply filters to refine
the retrieval outcomes and select more relevant test
specifications from the retrieved ones.

The embedding model used in retrieval is fine-
tuned based on the bge-m3 model (Chen et al.,
2024). We start with continuous pre-training on
the domain, followed by a two-step fine-tuning
approach. First, we fine-tune on abbreviation-
substituted requirement pairs to teach the model the
meaning of the abbreviations in context. Next, we
fine-tune with synthetic similar requirement pairs
and requirement pairs sharing the same test linkage.
Finally, we boost the performance of the model by
merging the original embedding model with the
fine-tuned model using LM-Cocktail (Xiao et al.,
2023). Details for the datasets we used can be
found in Section 4.1. Further details on the fine-
tuning process are given in Appendix A.2.

Following the retrieval of similar requirements,
test artifacts are generated (2). The system employs
Llama-3.1-70B as LLM to suggest up to three test

design techniques that are best suited for the se-
lected requirements (2.1). Users can also select an
alternative technique if preferred. The test design
techniques include decision table testing, use case
testing, control flow testing and state transitioning
testing, amongst others. Depending on the cho-
sen technique, the system generates comprehensive
test designs in either Markdown tables or machine-
readable diagrams in Mermaid format. Users can
review and edit these designs. Examples of a con-
trol flow diagram and an equivalent decision table
are provided in Figure 3 and Table 6 (Appendix
A.1), respectively. To enhance the user experience,
our system employs a multi-agent approach (4): a
design agent generates an initial test design, the
user reviews the output and a separate reflection
agent subsequently verifies the design’s adherence
to industry standards, such as ISO 26262.

Using the generated test design as a deterministic
basis, the system extracts a test scenario for each
row in the Markdown table or each path in the
Mermaid diagram (2.2). An LLM is then used to
generate the test purpose for each scenario (2.3).
Users can review and refine these generated test
purposes, selecting the ones they wish to use for
creating test specifications. Example test purposes
for each test scenario derived from Figure 3 (or
from equivalent Table 6) are shown in Table 1.

Finally, the system generates comprehensive test
specifications for the selected test purposes, con-
sidering the test scenario, the input requirements
and similar test specifications (3). The test specifi-
cation is presented in a structured format, outlining
the relevant steps for testers to follow during the
testing process. Notably, the system provides test
specifications in JSON format, enabling seamless
integration with downstream workflow steps, such

135

Verify that the lane assist function operates when the
vehicle speed exceeds 60 km/h, the driver has activated
the system, and clear lane markings are detected.

ment stays similar to the original one. The algo-
rithm works as follows:

Verify that the lane assist function does not operate when
the vehicle speed is below 60 km/h, the driver has acti-
vated the system, and clear lane markings are detected.

Verify that the lane assist function does not operate when
the vehicle speed exceeds 60 km/h, the driver has not
activated the system, and lane markings are detected.

Verify that the lane assist function does not operate when
the vehicle speed exceeds 60 km/h, the driver has
activated the system, and lane markings are not detected.

Table 1: Example test purposes for lane assist function

as automated test script generation for execution
in Software-in-the-Loop (SiL) or Hardware-in-the-
Loop (HiL) environments. Similar to the previous
step, we utilize a multi-agent approach for the en-
hancement of the test specification generation (step
3.1). Demo screenshots of the application and their
intermediate steps are shown in Appendix A.5.

4 Datasets

4.1 Datasets for Embedding Fine-tuning

In order to fine-tune embeddings for retrieving sim-
ilar requirements, we created three datasets: 1)
synthetic sets of similar requirements, 2) test-based
requirement sets, and 3) abbreviation-substituted
requirement pairs. The synthetic requirement sets
were created using the data generation algorithm
described in the next paragraph. To incorporate his-
torical sets of similar requirements, we focused on
those that share the same test linkage, which we re-
fer to as test-based requirements. We then excluded
any requirements with low embedding similarity
within each set (<0.8). Abbreviation-substituted
requirement pairs were created from duplicating
a requirement, and then using the abbreviation in
one instance and the full expression in the other.
Details are given in Appendix A.2.

Generation of Synthetic Requirements. We
propose an algorithm that decomposes the input
requirement into its constituent parts and modi-
fies them to create new requirements that maintais
similarity to the original. The structure of a re-
quirement can be defined as consisting of several
key elements, including condition, subject, action,
object, and constraint of action (ISO/IEC/IEEE,
2011). The core of the algorithm is to selectively
modify specific parts of the requirement under cer-
tain conditions, ensuring that the resulting require-

Algorithm 1 Requirement Modification Algorithm

1: Decompose the input requirement into its con-
stituent parts, including condition, subject, ac-
tion, object, and constraint of action.

2: Select one and only one part that is not
empty, among condition, subject, or object,
and change its content to fit a similar require-
ment.

3: if constraint of action is empty then

4: Create some content that fits a similar re-
quirement (e.g., time, signals with certain
values).

else
Change it to an empty string.

end if

if object is empty then
Create some content that fits a similar re-
quirement.

10: end if

11: Rewrite the synthetic requirement in natural

language.

12: Output the modified requirement in JSON for-

mat, including the "Changed" field with the
name of the changed key.

R A

4.2 Dataset for Evaluation

Retrieval Component. To evaluate the embed-
ding model, a dataset of similar requirement pairs
was curated. It includes 48 pairs selected by test
engineers from existing requirements, as well as 45
pairs, each consisting of one existing requirement
and one newly crafted requirement.

Test Designs. The evaluation of the test design
generation was done with a manually created
dataset, containing 22 decision tables, 20 use case
designs, 6 control flow diagrams, and 2 state tran-
sitioning diagrams. The distribution of test design
techniques is based on simple random sampling.

Test Specifications. For the evaluation of the gen-
erated test specifications, a representative sample
of 98 test specifications was chosen from historical
data. These varied in terms of their related sys-
tem functions and complexity. For the selected test
specifications, all the linked requirements, along
with the test scenarios and the related test purposes,
were used as input, as well as one retrieved simi-
lar requirement with its linked test specification as

136

HIT@1 HIT@3 HIT@5 HIT@10

Sparse Retrieval 46.24 66.67 76.34 82.80
Dense Retrieval - base embedding 45.16 65.59 74.19 81.72
Dense Retrieval - fine-tuned embed. 53.76 76.34 81.72 91.40

Table 2: Evaluation of the requirement retrieval.

ROUGE-L BERTScore LLM-as-Judge
Decision Table Testing 27.13 86.11 26.36
Control Flow 36.37 90.32 38.33
Use Case Testing 20.16 78.07 35.00
State Transitioning 24.88 86.53 25.00

Table 3: Evaluation of the generated test designs

few-shot example. Including the test design itself
was not necessary since the derived test scenarios
and test purposes already included the relevant in-
formation.

5 Experiments

We evaluate the performance of our method by
(i) evaluating every component individually and
employing quantitative metrics such as HIT rate,
ROUGE-L (Lin, 2004), BERTScore (Zhang et al.,
2019), and using a LLM as a judge and (ii) evaluat-
ing the end-to-end system through user evaluation.

5.1 Quantitative Evaluation

Evaluating the Retrieval System. The results
for the retrieval system are presented in Table 2.
We observe a 9-point improvement of the fine-
tuned embedding model compared to the sparse
retrieval, and a nearly 10-point improvement com-
pared to the base embedding model.

Evaluating the Generation Components. We
evaluated the performance of our test design and
test specification generation components using two
metrics, ROUGE-L and BERTScore. We used the
mean F1 score from BERTScore as a key metric,
utilizing the default English language embedding
model without fine-tuning on our domain (roberta-
large_L17 no-idf version=0.3.12). Additionally,
we obtained subjective assessments from GPT-4o,
which rated each generated output against a ref-
erence output on a scale of 1 to 10, providing a
detailed explanation to support their rating. The
results of the evaluation of the generated test de-
signs are presented in Table 3 and reported as mean
scores. We evaluated the test specification genera-
tion capabilities of our system through a five-stage
process. First, we employed a zero-shot approach,
where the LLM generated test specifications solely

ROUGE-L BERTScore = LLM-as-Judge

Zero Shot 12.75 82.46 20.52
Zero Shot & Purpose 14.47 83.78 18.96
Few Shot & Purpose

+ similar requirements 37.53 88.86 28.76

+ similar purpose 44.46 90.13 33.71

+ is0 standards 44.12 90.01 34.74

Revised version by a reflection agent

Zero Shot 10.43 81.92 23.64
Zero Shot & Purpose 13.25 83.20 18.76
Few Shot & Purpose

+ similar requirements 29.19 87.05 29.89

+ similar purpose 33.15 87.73 32.06

+ iso standards 32.87 87.69 31.75

Table 4: Evaluation results of the test generation com-
ponent average results from 98 samples

based on the input requirements without specifying
the test purpose which is the main product of the
intermediate test artifacts. Then, we added the test
purpose, still in a zero-shot setting. Next, we pro-
vided the model with examples of similar test spec-
ifications, based on similar requirements. Then, we
enriched the data by fetching similar test specifica-
tions based on the test purpose. Finally, to further
assess the system’s performance, we experimented
with prompting the model to adhere to specific
ISO standards, such as ISO 26262. We conducted
these experiments in both single LLM and multi-
agent settings, where a reflection agent reviewed
the response from the first agent. The results of
our evaluation are presented in Table 4. Appendix
A.3 presents our preliminary experiments across
multiple language models.

Analysis of Evaluation Results. For test design
generation (Table 3), control flow testing gives best
results. We hypothesize that lower scores may be
due to the fact that test developers created the test
data with a focus on relevant scenarios, leveraging
their experience from historical projects, whereas
the language model adopted a more exhaustive ap-
proach, attempting to cover all possible combina-
tions of values and corner cases. The effect of this
is lower for control flow testing than for e.g. table
design testing, since in the latter case a complete
new row needs to be added, while for control flow
testing an additional edge might be sufficient.

For test specification generation, our analysis
reveals that providing the model with examples of
similar test specifications, obtained through similar
requirements and purpose, yields the best perfor-
mance, outperforming the zero-shot approach by
up to 30 points for ROUGE-L. Incorporating few-
shot examples yields significantly greater improve-

137

Retrieval ~ Test Design

3.0 3.0 34 32

Purpose & Scenario Test Spec

Table 5: Component-wise User Evaluation Results: Av-
erage Ratings on a Scale of 1 to 5 from 87 test runs.

ments in the surface-level metric ROUGE-L com-
pared to BERTScore and LL.M-as-a-Judge. This
observation suggests that the LLM does not inher-
ently possess the capability to accurately reproduce
the specific language utilized in system-level tests.
In contrast, instructing the model to adhere to ISO
standards did not lead to significant improvements,
suggesting that the model had already internalized
this knowledge and was applying it without explicit
instruction. The reflection agent underperformed
compared to the initial response in both test design
and test specification generation. This discrepancy
is likely due to the agent’s overly cautious approach,
which prioritized strict adherence to guidelines and
regulations over flexibility and natural language
style. As a result, the generated responses tended
to be more formal and rigid, deviating from the
typical style of human-written test specifications.

5.2 User Study

To facilitate end-to-end evaluation of our system,
we developed a simple application using Stream-
lit (Streamlit, 2024), which guides users through
a four-step wizard process. Screenshots of the
Streamlit demo can be seen in Appendix A.5. Ten
experienced test developers from our organization
participated in the evaluation, conducting a total of
87 test runs. The evaluation process consisted of
four steps: (1) entering requirements, (2) selecting
similar requirements based on the retrieval module
and choosing example test specifications, (3) gen-
erating test design details and test scenarios with
test purposes, and (4) generating test specifications.
We asked the participants to evaluate the quality
of each component on a rating scale of 1 to 5, as
well as the overall usefulness of the system. The
average results of the component evaluations are
presented in Table 5. Notably, the participants
estimated that the system saved them, on average,
30 to 40% of the time typically spent deriving test
specifications from requirements.

6 Conclusions

In this paper, we introduce a novel Al-powered test
development assistant for productive deployment.

It is designed to help users to effectively derive
test specifications from system-level requirements
and significantly improving efficiency and accu-
racy. It employs historical similar requirements and
linked test specifications, and utilizes intermediate
test artifacts such as test designs, test scenarios,
and test purposes, to generate new test specifica-
tions. By incorporating these test artifacts into
the tool’s workflow as a structured intermediate
representation, we address the complex many-to-
many relationships between requirements and test
specifications. A user study showed a 30 to 40%
reduction in effort required to derive test specifica-
tions using our tool. This system exemplifies the
potential of LLMs to extend beyond mere language
generation, showcasing their ability to design and
produce structured outputs as helpful intermediate
representations. Furthermore, our quantitative eval-
uation confirmed the effectiveness of our approach
for system-level test specification language. We ob-
serve an improvement of roughly 30% ROUGE-L
in comparison to the zero-shot approach.

7 Future Work

Although our initial results are encouraging, they
point to two key avenues for further investigation:

Augmenting Inputs and Domain-Specific Fine-
Tuning Our current pipeline relies solely on his-
torical requirements and test specifications. We
plan to explore the integration of additional arti-
facts—such as technical design documents, and
architecture diagrams—either through enriched
prompting or by fine-tuning the base LLM on these
corpora. We hypothesize that this broader context
will improve the model’s domain understanding
and lead to more accurate, context-aware test spec-
ifications.

Standards Compliance and Hallucination Anal-
ysis Preliminary trials showed no benefit from
explicitly prompting the model to adhere to ISO
standards. We will conduct a deeper analysis to
determine whether this stems from prompt formu-
lation, model biases, or gaps in the LLM’s encoded
knowledge of the standard. In parallel, we will de-
velop metrics and manual review protocols to mea-
sure the model’s hallucination rate in generated
test specifications, ensuring that outputs remain
reliable, traceable, and aligned with stakeholder
expectations.

138

Acknowledgements

We gratefully acknowledge Michael Hofmann
for his expert guidance and thoughtful feedback
throughout this project. We also thank Tim Lukas
Miiller, Suneel Datta Kolipakula, and the entire
testing team for rigorously testing and evaluating
the system from an end-user perspective. Their
insightful critiques were instrumental in shaping
both the quality and the direction of our work.

References

Bhargav Adabala, Gerhard Griessnig, Adam Schnell-
bach, Martin Ringdorfer, Christian Santer,
Aisha Maria Puchleitner, Kaan Suar, Martin
Mandl, and Vanesa Klopic. 2024. Ai-driven test
flow generation from semi-formal functional safety
requirements. In Systems, Software and Services
Process Improvement, pages 197-205, Cham.
Springer Nature Switzerland.

Chetan Arora, Tomas Herda, and Verena Homm. 2024.
Generating test scenarios from nl requirements using
retrieval-augmented 1lms: An industrial study. In
2024 IEEE 32nd International Requirements Engi-
neering Conference (RE), pages 240-251.

Vincent Bertram, Miriam BoB, Evgeny Kusmenko,
Imke Helene Nachmann, Bernhard Rumpe, Danilo
Trotta, and Louis Wachtmeister. 2022a. Neural lan-
guage models and few shot learning for systematic
requirements processing in mdse. In Proceedings of
the 15th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2022, page
260-265, New York, NY, USA. Association for Com-
puting Machinery.

Vincent Bertram, Miriam Bof}, Evgeny Kusmenko,
Imke Helene Nachmann, Bernhard Rumpe, Danilo
Trotta, and Louis Wachtmeister. 2022b. Technical
report on neural language models and few-shot learn-
ing for systematic requirements processing in mdse.
Preprint, arXiv:2211.09084.

Vincent Bertram, Hendrik Kausch, Evgeny Kusmenko,
Haron Nqiri, Bernhard Rumpe, and Constantin Ven-
hoff. 2023. Leveraging natural language processing
for a consistency checking toolchain of automotive
requirements. In 2023 IEEFE 31st International Re-
quirements Engineering Conference (RE), pages 212—
222.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Souvick Das, Novarun Deb, Agostino Cortesi, and
Nabendu Chaki. 2023. Zero-shot learning for named

entity recognition in software specification docu-
ments. In 2023 IEEE 31st International Require-
ments Engineering Conference (RE), pages 100-110.

Hojae Han, Jaejin Kim, Jaeseok Yoo, Youngwon Lee,
and Seung-won Hwang. 2024. Archcode: Incorpo-
rating software requirements in code generation with
large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13520—
13552.

Ole Magnus Holter and Basil Ell. 2023. Reading be-
tween the lines: Information extraction from industry
requirements. In Proceedings of the 14th Interna-
tional Conference on Recent Advances in Natural
Language Processing, pages 703-711.

ISO/IEC/IEEE. 2011. Systems and software engineer-
ing—Ilife cycle processes—requirements engineer-
ing.

ISO/IEC/IEEE. 2021. Ieee/iso/iec international stan-
dard - software and systems engineering—software
testing—part 4: Test techniques.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. URL https://arxiv.
org/abs/2406.00515.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan,
Bo Li, and Huaming Chen. 2024. From llms to
Ilm-based agents for software engineering: A sur-
vey of current, challenges and future. arXiv preprint
arXiv:2408.02479.

Conny Johansson and Christian Bucanac. 1999. The
v-model. IDE, University Of Karlskrona, Ronneby.

Fatemeh Khayashi, Behnaz Jamasb, Reza Akbari, and
Pirooz Shamsinejadbabaki. 2022. Deep learning
methods for software requirement classification: A
performance study on the pure dataset. Preprint,
arXiv:2211.05286.

Derya Kici, Garima Malik, Mucahit Cevik, Devang
Parikh, and Ayse Basar. 2021. A bert-based trans-
fer learning approach to text classification on soft-
ware requirements specifications. Proceedings of the
Canadian Conference on Artificial Intelligence.

Madhava Krishna, Bhagesh Gaur, Arsh Verma, and
Pankaj Jalote. 2024. Using llms in software require-
ments specifications: An empirical evaluation. 2024
IEEE 32nd International Requirements Engineering
Conference (RE), pages 475-483.

Jim A Ledin. 1999. Hardware-in-the-loop simulation.
Embedded Systems Programming, 12:42—62.

Gang Li, Chengpeng Zheng, Min Li, and Haosen Wang.
2022. Automatic requirements classification based
on graph attention network. IEEE Access, 10:30080—
30090.

139

https://doi.org/10.1109/RE59067.2024.00031
https://doi.org/10.1109/RE59067.2024.00031
https://doi.org/10.1145/3567512.3567534
https://doi.org/10.1145/3567512.3567534
https://doi.org/10.1145/3567512.3567534
https://arxiv.org/abs/2211.09084
https://arxiv.org/abs/2211.09084
https://arxiv.org/abs/2211.09084
https://doi.org/10.1109/RE57278.2023.00029
https://doi.org/10.1109/RE57278.2023.00029
https://doi.org/10.1109/RE57278.2023.00029
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.1109/RE57278.2023.00019
https://doi.org/10.1109/RE57278.2023.00019
https://doi.org/10.1109/RE57278.2023.00019
https://doi.org/10.1109/IEEESTD.2021.9591574
https://doi.org/10.1109/IEEESTD.2021.9591574
https://doi.org/10.1109/IEEESTD.2021.9591574
https://arxiv.org/abs/2211.05286
https://arxiv.org/abs/2211.05286
https://arxiv.org/abs/2211.05286
https://api.semanticscholar.org/CorpusID:237922524
https://api.semanticscholar.org/CorpusID:237922524
https://api.semanticscholar.org/CorpusID:237922524
https://api.semanticscholar.org/CorpusID:269448979
https://api.semanticscholar.org/CorpusID:269448979
https://api.semanticscholar.org/CorpusID:247457973
https://api.semanticscholar.org/CorpusID:247457973

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Hanyue Liu, Marina Bueno Garcia, and Nikolaos Ko-
rkakakis. 2024. Exploring multi-label data augmenta-
tion for llm fine-tuning and inference in requirements
engineering: A study with domain expert evaluation.
2024 International Conference on Machine Learning
and Applications (ICMLA), pages 432-439.

Luciano Marchezan, Wesley K. G. Assunc¢do, Edvin
Herac, Saad Shafiq, and Alexander Egyed. 2024. Ex-
ploring dependencies among inconsistencies to en-
hance the consistency maintenance of models. In
2024 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 147-158.

Muhammad Lugman Mohd-Shafie, Wan Mohd
Nasir Wan Kadir, Horst Lichter, Muhammad Khatib-
syarbini, and Mohd Adham Isa. 2021. Model-based
test case generation and prioritization: a systematic
literature review. Software and Systems Modeling,
pages 1-37.

Ahmad Mustafa, Wan MN Wan-Kadir, Noraini Ibrahim,
Muhammad Arif Shah, Muhammad Younas, Atif
Khan, Mahdi Zareei, and Faisal Alanazi. 2021. Au-
tomated test case generation from requirements: A

systematic literature review. Computers, Materials
and Continua, 67(2):1819-1833.

Lahbib Naimi, Mohamed Manaouch, Abdeslam Jakim,
and 1 others. 2024. A new approach for automatic
test case generation from use case diagram using
llms and prompt engineering. In 2024 International

Conference on Circuit, Systems and Communication
(ICCSC), pages 1-5. IEEE.

Anmol Nayak, Hari Prasad Timmapathini, Vidhya
Murali, and Atul Anil Gohad. 2023. Few-shot
learning approaches for classifying low resource
domain specific software requirements. Preprint,
arXiv:2302.06951.

Tai Nguyen, Yifeng Di, Joohan Lee, Muhao Chen, and
Tianyi Zhang. 2024. Software entity recognition with
noise-robust learning. In Proceedings of the 38th
IEEE/ACM International Conference on Automated
Software Engineering, ASE *23, page 484-496. IEEE
Press.

Klaus Pohl. 2010. Requirements engineering Funda-
mentals, Principles, and Techniques. Springer Hei-
delberg Dordrecht London New York.

Monalisa Sarma, Debasish Kundu, and Rajib Mall. 2007.
Automatic test case generation from uml sequence
diagram. In I/5th International Conference on Ad-
vanced Computing and Communications (ADCOM
2007), pages 60—67. IEEE.

Yingxia Shao Zhao Cao Shitao Xiao, Zheng Liu. 2022.
Retromae: Pre-training retrieval-oriented language
models via masked auto-encoder. In EMNLP.

Riad Sonbol, Ghaida Rebdawi, and Nada Ghneim. 2022.
The use of nlp-based text representation techniques to
support requirement engineering tasks: A systematic
mapping review. IEEE Access, PP:1-1.

Streamlit. 2024. Streamlit: Streamlit — a faster way
to build and share data apps. https://github.com/
streamlit/streamlit. Accessed: 2024-08-01.

Ahmad F. Subahi. 2023. Bert-based approach for green-
ing software requirements engineering through non-
functional requirements. /EEE Access, 11:103001—
103013.

Santosh Kumar Swain, Durga Prasad Mohapatra, and
Rajib Mall. 2010. Test case generation based on use
case and sequence diagram. International Journal of
Software Engineering, 3(2):21-52.

Gudapareddy Sasidhar Reddy Umang, Kushal Koppa
Shivanandaswamy, S Pallavi, and Sivakumar Ra-
jagopal. Software-in-the-loop (sil) method. In Pro-
ceedings of the 10th International Conference on
Mechanical, Automotive and Materials Engineering:
CMAME 2023, 20-22 December, Da Nang, Vietnam,
page 243. Springer Nature.

WG13 VDA QMC. 2023. Automotive spice®. Prozess
Assessment Model, 4:142.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. 2024. Software testing
with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering.

Bingyang Wei. 2024. Requirements are all you need:
From requirements to code with llms. arXiv preprint
arXiv:2406.10101.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xin-
grun Xing. 2023. Lm-cocktail: Resilient tuning
of language models via model merging. Preprint,
arXiv:2311.13534.

Chenyang Yang, Rishabh Rustogi, Rachel Brower-
Sinning, Grace A Lewis, Christian Késtner, and Tong-
shuang Wu. 2023. Beyond testers’ biases: Guid-
ing model testing with knowledge bases using llms.
arXiv preprint arXiv:2310.09668.

Savas Yildirim, Mucahit Cevik, Devang Parikh, and
Ayse Basar. 2023. Adaptive fine-tuning for multi-
class classification over software requirement data.
Preprint, arXiv:2301.00495.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng
Dou, and Jian-Yun Nie. 2023. Retrieve any-
thing to augment large language models. Preprint,
arXiv:2310.07554.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

140

https://api.semanticscholar.org/CorpusID:276784716
https://api.semanticscholar.org/CorpusID:276784716
https://api.semanticscholar.org/CorpusID:276784716
https://doi.org/10.1109/SANER60148.2024.00023
https://doi.org/10.1109/SANER60148.2024.00023
https://doi.org/10.1109/SANER60148.2024.00023
https://arxiv.org/abs/2302.06951
https://arxiv.org/abs/2302.06951
https://arxiv.org/abs/2302.06951
https://doi.org/10.1109/ASE56229.2023.00203
https://doi.org/10.1109/ASE56229.2023.00203
https://arxiv.org/abs/2205.12035
https://arxiv.org/abs/2205.12035
https://api.semanticscholar.org/CorpusID:249240207
https://api.semanticscholar.org/CorpusID:249240207
https://api.semanticscholar.org/CorpusID:249240207
https://github.com/streamlit/streamlit
https://github.com/streamlit/streamlit
https://doi.org/10.1109/ACCESS.2023.3317798
https://doi.org/10.1109/ACCESS.2023.3317798
https://doi.org/10.1109/ACCESS.2023.3317798
https://arxiv.org/abs/2311.13534
https://arxiv.org/abs/2311.13534
https://arxiv.org/abs/2301.00495
https://arxiv.org/abs/2301.00495
https://arxiv.org/abs/2310.07554
https://arxiv.org/abs/2310.07554

A Appendices

In the following sections, we report additional de-
tails on the following topics:

* Definitions and Examples for Main Concepts
(Section A.1)

* Finetuning of Embeddings (Section A.2)

* Experiments with different LLMs (Section
A.3)

e LLM Prompts (Section A.4)
¢ Demo Screenshots (Section A.5)

A.1 Definitions and Examples for Main
Concepts

We first define the terms used in system testing,
then introduce the example for each concept.

* Requirements: a documented representation
of condition or capacity, that must be met or
possessed by the system, in order to satisfy a
contract, standard, or other formally imposed
documents. (Pohl, 2010)

* Test Design: abstraction of the tests, describe
the input conditions and the expected output,
and describe the function at high level. De-
velopers set various values for input condi-
tions, and check if the test results are expected,
which helps to verify function logic and as-
sure all aspects of the function are evaluated.
Some common test design techniques include:
decision table, control-flow diagram.

* Test Scenario: according to the test design,
developers choose a set of input condition val-
ues as test scenario to verify the function, and
check its performance.

* Test Purpose/Goal: a prescriptive statement
that describe the test intention regarding the
objectives, and functionality of the system.
(Pohl, 2010)

* Test Specification: concrete textual descrip-
tion of the test case, detailed describing input
conditions, test steps, expected output, etc, in
the test document.

Below is a full set of requirements, test design,
scenarios, and one purpose as well as one related
test specification. For clarity, we will reproduce the

previously shown decision table and control flow
chart.!

From these examples, we want to demonstrate
that test development in massive systems involves
lots of formal textual content written in natural
language, which would cost much manual efforts.

Requirements

(i) The lane assist function shall activate only
when the vehicle speed exceeds 60 km/h.

(i) The lane assist function shall require manual
activation by the driver.

(iii) The lane assist function shall operate only
when clear lane markings are detected.

Test Design & Scenario

Note that for test development, only one test design
technique is necessary; therefore, in this case, ei-
ther the decision table or the control flow diagram
will suffice.

C1: Speed C2: Driver C3: Lane Al: Lane Assist
> 60 km/h Activated Markings Operates

Yes Yes Yes Yes

Yes No No No

No Yes No No

No No Yes No

Table 6: Example decision table for lane assist function

Test Purpose

Based on the test design, four test purposes arise.
We are using only the following one here; the re-
maining ones can be found in Table 1.

Verify that the lane assist function operates when
the vehicle speed exceeds 60 km/h, the driver has
activated the system, and clear lane markings are
detected.

This test purpose can lead to several different
test specifications. The following is one example.
Other valid test specifications are possible based
on the same purpose. For simplicity, we will omit
certain details in the test specification, such as
settings of gear, brake, and accelerator pedal.

Test Specification
Preconditions

* The vehicle ignition is "ON".
* Vehicle_Speed is at standstill.
'All given examples in the paper are synthetically gen-

erated and manually reviewed, since we cannot disclose the
original data.

141

Start

Speed >
60 km/h?

Driver
Activated?

Clear Lane
Markings?

y

Lane Assists Operates

Lane Assists Does Not Operate

Figure 6: Example control flow chart for lane assist
function

e Lane Assist_Status = "Off".
e Driver_Lane_Assist_Activation = "False".
» Set Lane_Marking_Detected = "True".

Test Steps and Expected Results

1. Activate the lane assist by setting
Driver_Lane_ Assist_Activation = "True".
Expected Value: Lane_Assist_Status =
"Ready".

2. Gradually increase Vehicle_Speed to 65 km/h
over 10 seconds.

Expected Value: Lane_Assist_Status = "Ac-
tive".

3. Gradually decrease Vehicle_Speed to 55 km/h
over 10 seconds.
Expected Value:
"Ready".

4. Deactivate the lane assist by setting
Driver_Lane_Assist_Activation = "False".
Expected Value: Lane_Assist_Status = "Off".

5. Gradually decrease Vehicle_Speed to 0 km/h
over 10 seconds.

6. Retrieve data from the system’s failure mem-
ory.

Lane_Assist_Status =

Postconditions

* Clear the failure memory.
» Reset conditions back to preconditions if re-
quired.

A.2 Finetuning of embeddings

For the retrieval step, we fine-tune the bge-m3 base
model (Chen et al., 2024) in several steps (Figure 7).
We first use our available function documentation
for continuous pre-training on the domain using
RetroMAE (Shitao Xiao, 2022). As training data,
the documentation is split in roughly 720k chunks
of text. We use a learning rate of 2e—5, a batch
size of 4, and we train for 2 epochs. The fine-
tuning process consists of two stages: initially, we
fine-tune the model using abbreviation-substituted
pairs, followed by fine-tuning on combined sets of
test-based and augmented requirements. This two-
step approach is applied because the model needs
to learn the contextual meaning of abbreviations
from the abbreviation-substituted data first, similar
to pre-training. Abbreviations can have two long
forms even within the domain, e.g. LAF can either
denote lane assist function or load adaptive friction.
We retrieve the correct long form from a dictionary
that we extracted from our documentation. An
abbreviation-substituted pair would then look like
this:

* The LAF shall activate only when the vehicle
speed exceeds 60 km/h.

* The lane assist function shall activate only
when the vehicle speed exceeds 60 km/h.

We train on roughly 17k abbreviation-substituted
pairs. We separate this step from the final fine-
tuning step, because these are not realistic similar
requirement pairs we want to find in our retrieval
step. Instead, this should be a pre-step to learn
the meaning of domain-specific abbreviations. The
other two datasets reflect realistic similar require-
ments and are therefore utilized for fine-tuning in
the final stage. The final combined training dataset
comprises 3204 similar requirement pairs. A simi-
lar requirement pair could be:

* LAF shall not be activated if vehicle velocity
is low.

e JAF should not switch on when the vehicle
speed is low.

We employ contrastive learning for fine-tuning
and incorporate the sampling of hard negatives to
enhance the results (Zhang et al., 2023). We sam-
ple hard negatives in the range of 2-200 and se-
lect 15 negatives per pair. For the fine-tuning, we

142

Base
embedding
model

Selection of
hard negatives

Continuous
pre-training

Merge of base
model and
fine-tuned

model

Finetuning for
abbreviations
and long forms

Finetuning for
similar
requirements

Figure 7: Embedding finetuning steps.

use a learning rate of le—>5, a batch size of 1, a
temperature of 0.02, and train for 5 epochs. As
a last step, we further tune the embedding model
by merging the original bge-m3 model with the
fine-tuned model using LM-Cocktail (Xiao et al.,
2023), with a 50-50 ratio. This step is particularly
advantageous as similar requirements exhibit varia-
tions in both common language usage (e.g., a test
developer’s preference for using the terms stop or
end) and domain-specific terms.

A.3 Experiments with different LLMs

To determine an optimal backbone for our study, we
first conducted a comparative evaluation of several
state-of-the-art language models. Figure 8 presents
the aggregated results: although Qwen-2.5-14B-
Instruct and GPT-40 each achieve the bigger scores
on some metrics, LLama-3.1-70B-Instruct delivers
the strongest overall performance when all mea-
sures are combined. Based on these findings, we
selected LLama-3.1-70B-Instruct as the sole model
for our primary experiments.

A4 LLM Prompts

The following section presents example LLM
prompts for generating the different test artifacts.

A.4.1 Prompts for Test Design Generation

Test Design Generation: User Prompt

Create a {test_design_technique} for the following
requirements and their verification criteria.

For all requirements, you should create one single
{test_design_technique}.

Output Format:
{output_format}
Definition:
{definition}
Examples:
{few_shot_examples}
Input Requirements:

{formatted_requirements}

Figure 9: Example user prompt for generating test de-
signs based on input requirements.

Test Design Generator Agent: System Prompt

You are an AI test developer in the automotive industry,
responsible for creating high-quality test designs. Your
expertise is crucial in ensuring that the test designs
meet the required standards and regulations.

Input:

+ A set of requirements that needs to be covered.

+ Optional verification criteria provided by the
function developer. These criteria should be used
only as supplementary information and must not be
the sole source for deriving test designs or test
specifications.

{standards_regulations}
Task Requirements:

- Generate detailed test designs that are accurate,
complete, and unambiguous.

Response format:

+ Your output must be either: a single block of
mermaid flowchart code, or exactly one markdown
table.

Figure 10: Example Generation Agent prompt for creat-
ing test designs.

Test Design Reflection Agent: System Prompt

You are an AI test supervisor in the automotive industry,
renowned for your meticulous attention to detail and
dedication to upholding industry standards. Your
expertise is crucial in ensuring that test detail designs
meet the required standards and regulations.

Input: A set of test detail designs for the automobile
system, generated by an AI test developer

{standards_regulations}
Critique Requirements:

+ Scrutinize the test detail designs for any harmful
elements or regulatory violations

+ Evaluate the quality of the test detail designs,
including accuracy, completeness, and clarity

- Ensure that your critique is objective,
constructive, and actionable

Additional Guidelines:

+ Restrict your answer to the exact question asked,
without introducing unnecessary information or
assumptions

+ Focus on providing actionable feedback that enables
the test developer to improve the test detail
designs

+ Make sure that the output is consistent throughout
the test detail designs.

Figure 11: Example Reflection Agent prompt for pro-
viding feedback on generated test designs.

143

BertScore

Rouge-L LLM as a Judge
1
1 1
0,9 09 0,9
0.8 08 08
0,7 0.7 0,7
B
0,6 0,6 0,6
,
0,5 0,5 0,5
0,4 0,4 0,4
0,3 0,3 0,3
02 02 02
o " IIIIl "
0 0 - - 0
Purpose Precondition Execution Notes Purpose Precondition Execution Notes Purpose Precondition Execution Notes
I lama-3. I lama-3. e pames: Jama—B.T—BB;nstmn lama-3. Jama-3.1-8B-Instruct
mQwen/Qwen2.5-14B-Instruct mmistralai/Mistral-7B-Instruct-v0.3 i) mQwen/Qwen2.5-14B-Instruct mmistralai/Mistral-7B-Instruct-v0.3
uGPT-40 =Pt wGPT-40

Figure 8: (a) Comparison of BertScore for different language models when generating various sections of the test
specifications; (b) Corresponding ROUGE-L comparison across the same models and sections; (c) LLM-as-a-Judge
assessment of the quality of each generated section by those models.

A.4.2 Prompts for Test Purpose Generation A.4.3 Prompts for Test Specification
Generation

Test Purpose Generator: System Prompt

Test Spec Generation: User Prompt
You are an expert in system-level test development. Your

task is to create test scenarios along with corresponding
high-level test purposes that describe what each test
case should verify.

Write a test specification for the following test purpose
and test scenario.

Purpose: {test_purpose
You will be provided with a set of requirements, optional P { —purpose}

verification criteria, and a test design. Test Scenario: {test_scenario}

Input Requirements:

. . input_requirements

Figure 12: Example system prompt for generating test s !

purposes. {example_requirements_and_test_specs}

Start the generation of the test specification. Do not
change the purpose in the output as it comes from the user.
Do not respond with anything else and think carefully.

Test Purpose Generator: User Prompt \ J

For the following requirements generate test purposes for . .
each row in the decision table. Figure 14: Example User prompt for generating Test

Specifications.

Input Requirements:
{input_requirements}
Test Detail Design:
{test_detail_design}

The output should contain the test purpose in natural
language and the test scenarios in the following format:

{output}

Ensure the revised text stays within the 250-character
limit while preserving all essential context, values, and
meaning.

Figure 13: Example prompt for generating test purposes
from a decision table.

144

Test Specification Generator Agent: System Prompt

You are an AI test developer in the automotive industry.
Your task is to write test descriptions on a system level
based on the provided requirements and test design
details.

Resources:

« A set of requirements and verification criteria
A list of similar requirements with test
specifications

Guidance:

+ The verification criteria and test design details
describe how each requirement can be tested.

- When writing test descriptions, prioritize the test
purpose and test conditions. These are the most
important aspects of the test.

- To ensure comprehensive testing, review the
provided similar requirements. These references can
help you understand how to effectively cover the
input requirements with corresponding test
specifications. Use this information as a guide to
create the test specifications that align with the
given purpose and input requirements.

OQutput Format:

Please respond using the following structure:

TTTjson

{
"purpose”: "<The purpose of the test that is in the input>",
"precondition”: "<Precondition as text with bullet points>",
"execution”: "<Test execution steps as text numbered list>",
"notes”: "<Any additional notes for the test developer>"

Figure 15: Example Generation Agent prompt for creat-
ing test specifications.

Test Specification Reflecti gent: System Prompt

You are an AI test supervisor in the automotive industry,
renowned for your meticulous attention to detail and
dedication to upholding industry standards. Your
expertise is crucial in ensuring that test specifications
align with regulatory requirements and meet the highest
quality standards.

Scope of Review:

« Scrutinize test specifications for any elements
that may compromise safety, security, or regulatory
compliance.

- Evaluate the overall quality of the test
specifications, including clarity, concision, and
effectiveness.

{standards_regulations}
Key Focus Areas:

Ensure that the purpose of the test is clearly
defined and given sufficient emphasis for the
generation of the test specification.

+ Make sure that the input requirements, specifically
the requirement text and verification criteria are
given sufficient emphasis.

Critique Guidelines:

Your critique should be constructive and actionable,
enabling the Test Specification Generator Agent to refine
their work and meet the required standards.

Figure 16: Sample Reflection Agent prompt for gener-
ating test specifications.

145

A.5 Demo Screenshots

In this section, we present screenshots of our evaluation demo system implemented in Streamlit. Our
production system however looks differently. Note that step 2 has been omitted from the screenshots due
to restrictions on sharing internal requirements.

Steps Input Requirements

© outrequirements
Insert your input requirements

m Req2 Req3 @ Delete Requirement

Requirement ID
Reql

Requirement Specification

Figure 17: Step 1 Insert input requirements

Test Design and Purposes

| TestDesign Details Test purposes

Ouput Rawoutput

Below 60km/h True Clear False

Above 60km/n e Clear e
Above 60km/h False Clear False
Above 60 km/h Te Not Clear False

Above 60km/n e Clear e

Add test purpose
Edit Columns

Generate test purposes

Figure 18: Step 3 Generate intermediate test artifacts

Steps Test Specifications

Figure 19: Step 4 Generate test specifications

146

