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Abstract
Spanish is an official language in 20 coun-
tries; in 19 of them, it arrived by means of
overseas colonisation. Its close contact with
several coexisting languages and the rich re-
gional and cultural diversity has produced va-
rieties that divert from each other. We study
these divergences with a data-based approach
and according to their qualitative and quanti-
tative effects in word embeddings. We gen-
erate embeddings for Spanish in 24 countries
and examine the topology of the spaces. Due
to the similarities between varieties —in con-
trast to what happens to different languages in
bilingual topological studies— we first scruti-
nise the behaviour of three isomorphism mea-
sures in (quasi-)isomorphic settings: relational
similarity, Eigenvalue similarity, and Gromov-
Hausdorff distance. We then use the most trust-
worthy measure to quantify the divergences
among varieties. Finally, we use the departures
from isomorphism to build relational trees for
the Spanish varieties by hierarchical clustering,
and observe that voseo is the phenomenon that
leaves the strongest imprint in the embeddings.

1 Introduction

Language is a reflection of the needs and be-
haviours of the community that uses and contin-
ually transforms it. One language spoken by di-
verse communities and/or in various regions can
exhibit different characteristics. Spanish is a pro-
totypical example: it lies only behind Chinese in
terms of number of native speakers (Eberhard et al.,
2023) and, different from it, it is a global overseas
language (Ammon, 2010) spoken across c. 11.7 M
km2 by people with diverse cultures and needs.

Originating in the Iberian peninsula as a dialect
of Latin, Spanish spread throughout America as
a consequence of colonisation. The contact with
the indigenous languages present in America in
the 16th century, subsequent immigration fluxes,
diverse language policies, and societal differences
have created a wide variety of Spanishes. Figure 1

shows the linguistic zones. Some of these factors
operate at the country level (e.g., language poli-
cies), but most of them operate at the regional level,
where a region may be part of a single country or
span across several countries. Consequently, politi-
cal borders do not uniquely define the varieties.

We study the Spanish varieties using data-based
approaches. Since large amounts of textual data for
Spanish are only available with, at best, country of
origin identifiers, one of our goals is to investigate
whether natural language processing (NLP) tech-
niques allow to derive relations among countries
and varieties from them. Although the varieties are
intrinsically different, divergences among them are
less prominent than divergences among languages
(e.g., Spanish from Mexico and Spanish from Spain
are more similar than Spanish and Portuguese). Be-
cause of this, methods in NLP that are adequate
and work well in multilingual settings might not
properly work for language varieties.

For the study, we create per-country word embed-
dings and examine the topology of the embedding
spaces and their relations using isomorphism met-
rics, which measure distances between embedding
spaces and, in our case, between language vari-
eties. We question whether these measures, used
mostly in bilingual scenarios, could be adequate in
monolingual settings. We widely explore their per-
formance in controlled quasi-isomorphic scenarios
(being our conclusions also relevant for bilingual
scenarios) and then use the most reliable configura-
tions to measure distances among our embedding
spaces and to derive relational trees. Finally, we
interpret the Spanish data-based tree in terms of
linguistic characteristics. The work aims at two in-
terrelated goals: (i) stressing and evaluating isomor-
phism measures when applied to language variation
and (ii) studying Spanish varieties in a new data-
based approach to gain linguistic insights. Data
and models are available on the project website.1

1https://cereal-es.github.io/CEREAL/
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Figure 1: Common geographic Spanish linguistic zones as described by the Real Academia Española. The mapping
between these linguistic zones and the Spanish varieties might not be one-to-one (Lipski, 2012).

2 The Origins of the Spanish Varieties

Spanish was first derived from Latin in contact with
pre-Roman languages in the Iberian peninsula. Dif-
ferent aspects caused proto-Spanish to move away
from other Romance languages to be (e.g., Cata-
lan, Portuguese). Two come from long-term rul-
ings during which no language imposition existed.
During the Visigothic ruling, multiple words of
Germanic origin were introduced, such as guerra
(war), riqueza (wealth) and yelmo (helmet). The
Arab–Berber control of (up to) two-thirds of the
Iberian peninsula, from the 8th until the 15th cen-
tury, imported novel knowledge and new artifacts,
resulting in the introduction of more than 4k Ara-
bisms to the lexicon (Alatorre, 1989, p. 74, 80).

The fall of the last remains of Arabic and
Mozarabic language varieties came from the 13th
until the end of the 15th century, a period dur-
ing which the kingdom of Castille influenced the
speech of neighbouring kingdoms, such as Leon
and Aragon (Penny, 2002, p. 19). Internally, two
Spanish norms contended: the one of Toledo (later
on Madrid) and the one of Seville.

The path of overseas Spanish expansion started
with the conquest of the Canary Islands, from
which Columbus departed to arrive in the
Caribbean in the late 15th century, unfolding
in the conquest of Hispaniola (current Domini-
can R./Haiti) and Cuba. It is from Cuba that the
conquest of both Mexico and Peru was launched,

as depicted in Figure 1. The norm exported to the
new territories was guided by the origin of the mi-
grant population (e.g., priests, soldiers, settlers).
Since almost 50% left from Andalusia and Ex-
tremadura (López Morales, 1998), these regions
hold Spanish varieties derived from the Seville
norm. As a result, they share phenomena such
as seseo,2 aspirate /h/, and an absence of for-
mal/informal differentiation for the second person
plural: only ustedes is used in America while
both ustedes (formal) and vosotros (informal)
are used in Spain (Penny, 2002, pp. 22–23).

It is assumed that the well-established connec-
tions across some regions kept the varieties of Span-
ish in Mexico and Peru closer to those from Spain.
A weaker influence on more remote or difficult to
reach regions (e.g., Argentina, Paraguay, Uruguay,
Central America) allowed for the organic develop-
ment of farther varieties. The most accepted the-
ory (Penny, 2002, p. 25) is that the influence was
driven by centres of power and strength of com-
munication. Consequently, most of Mexico, Peru,
Bolivia, and Andean Ecuador share the retention of
syllable-final /s/, influenced by central Peninsular
settlers, whereas other areas miss it, influenced by
Southern Peninsular and Canarian Spanish. The
pronoun tú (you), as used in Spain, is predomi-
nant in Mexico, the Caribbean, most of Bolivia and
Peru, and part of Venezuela, whereas vos competes
with tú in more remote areas (e.g., Chile, Ecuador,

2Phenomenon in which c and s share the phoneme /s/.
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Colombia) and is predominant in others (e.g., Ar-
gentina, Uruguay, Paraguay). The phenomenon is
called voseo and implies a change in the verbal
forms used after the pronoun (Benavides, 2003).

Another relevant factor in the development of
the varieties is the long-term influence of coexist-
ing languages. During the whole period of Spanish
rule, the native language of most of the population
in America was prehispanic, be it of American or of
African origin (López Morales, 1998, p. 3). As a re-
sult, Spanish in different regions incorporated large
vocabularies from other languages. Also, phonetics
was affected. One of the most distinctive features
of (South) Argentinian and Uruguayan speakers is
zheísmo (Staggs, 2019), the pronunciation of both
y and ll as [Z] due to the influence of the local
Amerindian languages. Nowadays, the sound has
drifted in some regions to [S] being called sheísmo.

Since independence, Spanish varieties in Amer-
ican countries have been significantly influenced
by imported languages. During the 19th and 20th
centuries, heavy immigration from Italy to Ar-
gentina (Cuadrado Rey, 2020) introduced lexical
borrowings from Italian (e.g., gamba to refer to leg),
Neapolitan and others (Bihan, 2011). Due to geo-
graphical vicinity and global influence, two foreign
languages were the most influential in this same
period: French in Spain and English elsewhere
(e.g., computadora from English is used in most
of Latin America vs ordenador, from the French
ordinateur, in Spain).

Due to these intricacies, there is no straight line
to draw on a map to separate the Spanish vari-
eties. The varieties might form a continuum and
scholars suggest different categorisations. The
closest to our purposes is based on the lexicon;
Henríquez Ureña (1921) distinguishes the varieties
according to the indigenous language substrate:
Nahuatl, Caribbean languages, Quechua, Mapudun-
gun/Araucanian, and Guarani. Lipski (2012) de-
fines 21 varieties (11 for Spain, 10 for America),
and Soler Montes (2015) defines 8 (3 for Spain,
5 for America). In the former, the classification
is based mainly upon phonetic, lexical, and mor-
phosyntactic features; in the latter on geolinguistics.
But these are only two examples. Sippola (2021)
summarises 4 classifications taking into account
geographical variations mostly including phonetic
features. Still, the geographical variations are not
aligned with geopolitical borders and this has an
impact on data-based approaches. Even though few
resources exist for the linguistically motivated vari-

eties with city of origin indications (Robelo, 1904;
Prieto and Roseano, 2013; Albelda Marco and Es-
tellés, sd), large textual corpora in Spanish are, at
best, tagged only with country of origin (Gonçalves
and Sánchez, 2014; Tellez et al., 2023; RAE, 2024;
España-Bonet and Barrón-Cedeño, 2024).

3 Isomorphism in NLP

Early empirical results using bilingual dictionaries
(Youn et al., 2016) and vector embeddings calcu-
lated on textual corpora (Mikolov et al., 2013) show
that concepts in natural language are structured in
a similar way across languages. Vector embed-
dings in different languages appear to be isomor-
phic —or at least geometrically similar (Marchisio,
2023). However, other studies show that isomor-
phism does not always hold, and the more distant
a pair of languages or the domain is, the weaker
the isomorphism (Søgaard et al., 2018; Patra et al.,
2019; Marchisio et al., 2020). But language and do-
main are not the only factors, differences in training
corpus size, training time or the algorithm used to
compute the embeddings have a significant effect
too (Vulić et al., 2020; Marchisio et al., 2020).

Isomorphism metrics have been introduced in
the context of bilingual lexical induction (BLI)
where most of the previous conclusions have been
drawn. In this context, metrics are used to quan-
tify the similarity (or distance) between embedding
spaces of different languages and to observe how
they correlate with BLI accuracy.

Several metrics deal with word embeddings from
different points of view. Isospectral metrics treat
embedding spaces as graphs in the context of
spectral graph theory: with respect to the spec-
tral characteristics (e.g., eigenvalues and eigenvec-
tors) of the matrix structures (e.g., adjacency and
Laplacian matrices) that represent an embedding
space. The Eigenvector similarity distance (Sø-
gaard et al., 2018), the effective condition num-
ber (Dubossarsky et al., 2020) and the Spectral
Graph-based Matching distance (Dutta Chowdhury
et al., 2021) are examples. Isometric measures
treat word embeddings as coordinates in a metric
space. Earth Mover’s distance is a measure of the
closeness between the distribution of two sets of
words (Zhang et al., 2017) and Relational Similar-
ity is the Pearson’s correlation between their co-
sine similarities (Vulić et al., 2020). The Gromov-
Hausdorff distance scores the largest distance be-
tween a word from one space and the nearest neigh-
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bours from the other space after an isometric trans-
formation between the spaces (Patra et al., 2019).

The mathematical definition of isomorphism, in
which two structures are either isomorphic or not,
is an approximation in NLP. In NLP, one deals with
degrees of isomorphism between representative sub-
structures instead. Due to the large vocabularies,
and the richness and nuances of natural language,
embedding spaces are usually represented by a sub-
graph/subset formed by up to 5–10 k words. The
number of words and which words are used is an
ad-hoc decision.

Going beyond the correlation between the iso-
morphism scores and BLI, the previous metrics
have been used to quantify the isomorphism be-
tween embedding spaces. When multiple metrics
are used, it becomes evident that they do not cor-
relate with each other (Dubossarsky et al., 2020;
Dutta Chowdhury et al., 2021; España-Bonet and
Barrón-Cedeño, 2022; Marchisio et al., 2022).

In this work, we analyse relations among 24 va-
rieties of Spanish using isomorphism metrics. We
expect differences across varieties of the same lan-
guage to be much smaller than across different
languages. Therefore, we first calibrate the iso-
morphism measures in isomorphic settings —same
language, same training data, same embedding al-
gorithm, and hyperparameters (Section 6). As these
metrics do not correlate, this allows us to deter-
mine the best metric and configuration (number
and selection of words) to perform the fine-grained
analysis among varieties (Section 7).

4 Isomorphism Measures

We select three measures that capture the iso-
morphic/isometric degree between two embed-
ding spaces E1 and E2 represented by nearest-
neighbour graphs G1 and G2 and sets of points
S1 and S2. We assume that the embeddings E1 and
E2 are mean-centred and length-normalised.

Relational similarity (RS) (Vulić et al., 2020).
One can presume that the similarity between words
is distributed similarly in different spaces and, so,
the cosine similarity of aligned words should be
similar in both spaces. RS uses a list with k words
from E1 aligned to k words from E2 (a dictionary)
and calculates the cosine similarities between all
the pairs of words in E1 and E2 independently:

simE1(S
p, Sr) ∀Sp, Sr, p ̸= r ∈ list(E1)

simE2(S
p, Sr) ∀Sp, Sr, p ̸= r ∈ list(E2) (1)

RS is the Pearson correlation ρ between the sorted
lists of similarities resulting from the spaces:

RS = ρ
(
simsorted

E1
, simsorted

E2

)
. (2)

Eigenvector similarity (EV) distance (Søgaard
et al., 2018). A total of k words in Ei are used to
construct n-nearest neighbour unweighted graphs
Gi. The nearest neighbours are extracted by com-
puting the cosine similarity between the k words in
Ei and all the words in Ej . Given Gi, EV estimates
the degree of isomorphism from the eigenvalues of
the Laplacian of G1 and G2. Let the Laplacian be

Li = Di −Ai(Gi), (3)

where Ai is the adjacency matrix of Gi, and Di is
the diagonal matrix of degrees. After computing
the Laplacian eigenvalues, following Søgaard et al.
(2018), one finds the smallest m such that the sum
of the m largest Laplacian eigenvalues is <90% of
the total. Using the smallest m of E1 and E2, EV
is defined as

EV =

m∑

j=1

(λ1j − λ2j)
2 , (4)

where λij are the top j eigenvalues of Li.

Gromov-Hausdorff (GH) and Bottleneck dis-
tances (Patra et al., 2019). GH is an isometric
measure that treats word embeddings as coordi-
nates in a metric space. It gives the worst-case dis-
tance (E1 vs E2) of nearest neighbours in a shared
embedding space after an optimal isometric trans-
formation.

For each word x in Si, one finds its nearest neigh-
bour y in Sj (NNj). The Hausdorff distance H is
the largest of the two distances:

H = max (dist(x1,NN2),dist(x2,NN1)) . (5)

The Gromov-Hausdorff distance is the infimum of
the Hausdorff distances under all possible orthogo-
nal transformations. Since computing GH is an NP-
hard problem, the Bottleneck distance B, bounded
by GH, is used as an approximation (Chazal et al.,
2009). B is the shortest distance for which there
exists a perfect matching between the points p and
r of the persistent diagrams3 built from S1 and S2:

B = inf
matches

max
(p,r)

||p− r||∞. (6)

3A persistent diagram is a set of points in R2 in the half-
plane above the diagonal.
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CEREAL Twitter

Country & Code Segments Words Vocab. Vocab.

Andorra ad 13,023 543,047 2,671 –
Argentina ar 20,950,705 986,413,066 284,191 673,424
Bolivia bo 975,429 49,518,821 53,799 47,012
Chile cl 12,079,476 548,257,312 199,493 282,737
Colombia co 8,323,794 375,326,751 163,212 324,635
Costa Rica cr 825,513 37,760,657 45,893 103,086
Cuba cu 1,919,998 93,368,177 82,275 18,682
Dominican R. do 1,183,336 48,726,587 52,409 108,655
Ecuador ec 1,624,269 66,662,454 64,312 147,560
Spain es 20,950,705 880,495,659 596,842 571,196
Eq. Guinea gq 4,050 329,469 1,698 1,167
Guatemala gt 561,714 23,421,191 35,860 95,252
Honduras hn 656,212 24,971,660 35,707 60,580
Mexico mx 20,875,244 912,645,564 250,313 438,136
Nicaragua ni 405,935 18,921,537 31,345 68,605
Panama pa 448,974 18,431,387 31,268 111,635
Peru pe 5,066,369 213,937,404 122,884 178,113
Philippines ph 1,382 75,761 405 –
Puerto Rico pr 128,103 5,619,179 15,062 23,062
Paraguay py 775,101 33,771,401 46,513 124,162
El Salvador sv 401,348 17,068,212 29,433 73,833
USA us 376,839 21,335,770 34,368 292,465
Uruguay uy 1,804,329 85,809,183 75,491 200,032
Venezuela ve 1,201,624 55,514,289 59,334 271,924

Table 1: Number of segments and words used to com-
pute the variety-specific word embeddings.

Data Points (Word) Selection In all the mea-
sures above, we characterise each embedding space
by k words (k ∈ {100, 500, 1000, 2500, 5000})
following 5 criteria:

• Most frequent words (Frequent, MFW). We
use the top-k words in an embedding space ranked
by frequency. This is the standard choice for EV
and GH in previous work.

• Random words (Random). We randomly select
k words within the top half of the frequency-ranked
embeddings.

• Aligned random words (Random BiDict). As
in Random, but only words that appear simulta-
neously in the two spaces are considered. This is
equivalent to using a bilingual lexicon in the gen-
eral case, which is the standard choice for RS.

• Numbers. Random k numbers appearing simul-
taneously in the two spaces.

• Named Entities (NEs). Random k NEs appear-
ing simultaneously in the two spaces. The list of
NEs contains 3,416 single words extracted from the
CoNLL-2002 shared task (Tjong Kim Sang, 2002).

We adapt the implementation for RS, EV, and
GH in Vulić et al. (2020)4 to consider our lists.

4https://github.com/cambridgeltl/iso-study

5 Variety-Specific Embedding Spaces

We use the CEREAL corpus (España-Bonet and
Barrón-Cedeño, 2024) to obtain embedding spaces
for 24 varieties of Spanish. CEREAL contains doc-
uments in Spanish extracted from OSCAR (Open
Super-large Crawled Aggregated coRpus version
22.01 (Ortiz Suárez et al., 2019; Abadji et al., 2021)
and annotated with the country of origin. We use
the documents in CEREAL where the country of
publication is codified in the URL and discard
documents whose country was inferred automat-
ically (CEREALex). To compute the embeddings,
we eliminate sentences having only punctuation
and numbers, as well as those with at least one
Arabic, Chinese, Cyrillic or Greek character. We
then normalise and tokenise the texts using Moses’
scripts (Koehn et al., 2007) and lowercase. Table 1
shows the statistics of the final dataset together
with the code we use to identify each variety. We
estimate fastText (Bojanowski et al., 2017) embed-
dings using the default skip-gram configuration to
train 300-dimensional embeddings for tokens ap-
pearing at least 20 times.

The amount of text in Spanish from Spain in
CEREAL is significantly larger than for the other va-
rieties (70.5 M segments for es vs 20.9 M for ar,
the second largest). For comparability reasons, we
use a subset of 20 M segments to train es embed-
dings. With this, ar, es, and mx have a similar
amount of training data, whereas ad, gq, ph, pr,
sv and us have less than 0.5 M segments and are
discarded for our high-resourced experiments.

Our calibration experiments (Section 6) are done
with Spanish from Spain embeddings. We create
10 models from CEREAL: 5 models using 5 seeds
for fastText on a fixed subset of 20 M segments
(model perturbation) and 5 models using 5 ran-
dom extractions of 20 M segments over the whole
70.5 M segments (data perturbation).

Our exploration experiments (Section 7) con-
sider embeddings for the 24 varieties. We gener-
ate 3 embedding models per variety with different
seeds and show the mean in our results. In this case,
we also use existing Twitter embeddings (currently
X) for 22 varieties (Tellez et al., 2023).5 Since the
training corpus is not available, we use their pre-
trained embeddings with a single run. Otherwise,
our setting with CEREAL is comparable to theirs ex-
cept for the minimum frequency of in-vocabulary

5https://ingeotec.github.io/
regional-spanish-models
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tokens (the default being 5 in their case) and the
fact that they remove diacritics from the data.

6 Isomorphism Measures Calibration

If isomorphism metrics are a good measure to ac-
count for distances among languages, they should
drop to zero when computing the distance between
embeddings of a single language —or approach
1 when they imply correlations. As described in
Section 3, differences in size and domain of the
training data and in the algorithm used to train the
embeddings affect their performance. In this sec-
tion, we isolate all these factors and evaluate the
metrics in an isomorphic setting: same variety (es),
same corpus (CEREAL) and same algorithm (skip-
gram). We perturb the basic setting by (i) applying
several initialisations for training the embeddings
while keeping skip-gram and all its parameters con-
stant (model perturbation) and (ii) subsampling the
training data from a larger dataset (data perturba-
tion). With these variations, we aim to study the
robustness of the metrics to minor changes and at
determining the best configuration for each of them.
This study provides insights on the feasibility of
using one or more isomorphism metrics to explore
relations between language varieties in Section 7.

Model Perturbation We use 5 embedding mod-
els for es trained with different seeds on the same
data (i.e. the vocabulary is the same for all 5). We
calculate RS, EV and GH for 10 combinations of
embeddings with the 25 possible configurations of
Section 4. Detailed results for the pairwise combi-
nations are in Appendix A and the mean over the
10 combinations is in Table 2.

For all three metrics, there are definite trends
when the mean is considered, but the trends are
less evident when looking at individual embedding
pairs. The variations, due only to different runs,
are significant. Frequent and Random BiDict per-
form the best; i.e. distances EV and GH are the
smallest and correlation RS the highest. In this set-
ting, the most frequent words in both es spaces are
the same and therefore behave similarly to a dic-
tionary —this does not need to happen in the data
perturbation setting and even less in the general
multilingual setting. As expected, random words
unrelated across spaces perform the worst. Also,
numbers and NEs do not perform well (except for
RS with numbers). This might be related to the fact
that they cluster in a specific region of the space
and cannot represent the topology of the whole. In

Model Perturbation Data Perturbation

RS↑ EV↓ GH↓ RS↑ EV↓ GH↓
Frequent
100 0.989±0.000 2±1 0.02±0.00 0.860±0.056 2±1 0.03±0.01
500 0.982±0.001 2±1 0.02±0.00 0.314±0.032 3±1 0.02±0.00
1000 0.979±0.002 3±1 0.02±0.00 0.131±0.014 2±1 0.02±0.00
2500 0.976±0.002 3±1 0.01±0.00 0.038±0.000 4±1 0.01±0.00
5000 0.974±0.003 5±2 0.01±0.00 0.015±0.001 5±4 0.01±0.00

Random
100 0.000±0.008 3±1 0.17±0.12 0.002±0.015 5±1 0.15±0.06
500 0.000±0.002 5±3 0.15±0.06 0.000±0.001 5±2 0.19±0.10
1000 0.000±0.000 6±2 0.16±0.07 0.000±0.000 5±1 0.13±0.05
2500 0.000±0.000 10±3 0.11±0.03 0.000±0.000 7±1 0.13±0.03
5000 0.000±0.000 14±7 0.07±0.01 0.000±0.000 14±5 0.12±0.04

Random BiDict
100 0.959±0.002 1±1 0.03±0.01 0.884±0.008 3±2 0.05±0.02
500 0.959±0.002 3±1 0.02±0.00 0.882±0.004 4±1 0.03±0.01
1000 0.959±0.002 4±1 0.02±0.00 0.883±0.002 6±4 0.03±0.01
2500 0.960±0.002 7±3 0.02±0.00 0.883±0.001 7±2 0.03±0.01
5000 0.960±0.002 5±2 0.01±0.00 0.883±0.000 8±4 0.02±0.00

Numbers
100 0.997±0.000 3±1 0.05±0.05 0.604±0.087 3±1 0.06±0.04
500 0.994±0.000 4±1 0.02±0.00 0.116±0.012 5±2 0.05±0.00
1000 0.993±0.001 5±2 0.02±0.00 0.061±0.008 9±6 0.02±0.00
2500 0.988±0.001 9±5 0.02±0.00 0.037±0.007 12±4 0.02±0.00
5000 0.985±0.001 7±1 0.02±0.00 0.022±0.003 11±3 0.05±0.01

NEs
100 -0.003±0.013 3±1 0.10±0.03 -0.001±0.018 2±1 0.08±0.02
500 0.002±0.007 7±3 0.07±0.03 -0.003±0.007 3±1 0.07±0.03
1000 0.002±0.006 6±3 0.09±0.03 -0.002±0.004 7±2 0.07±0.02
2500 0.000±0.003 7±3 0.03±0.00 -0.002±0.002 7±2 0.05±0.02
5000 – – – – – –

Table 2: Mean and standard deviation (µ ± σ) score
for the three isomorphism metrics used in this study.
Perfect isomorphism implies RS 1, and EV and GH 0.

terms of the number of datapoints, EV performs
best with few, GH with a large set and RS in this
setting does not seem to be sensitive to the volume.

Data Perturbation We use 5 embedding models
for es trained with different random subsets of the
same corpus (i.e. the vocabulary of the models is
different). As before, we calculate RS, EV, and
GH for a total of the 10 combinations of embed-
dings, and use 5 different types and a number of
datapoints.

Contrary to what one could expect, the perturba-
tion of the dataset —within the same corpus— does
not bring more variability on the results of the met-
rics than the perturbation of the model as measured
by the standard deviations (Table 2). The trends
with respect to the number and types of points are
also similar to the previous case; the global scores
are slightly worse but compatible within the 1σ CIs
for GH and EV; differences are larger for RS. Ide-
ally, a good metric would score a distance of 0 (EV
and GH) and correlation 1 (RS); EV achieves this at
2σ level, especially when using the most frequent
words. We consider this configuration, EV (MFW
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Corn is choclo in Chile, mazorca
in Spain, and elote in Mexico.

→

You is vos in countries with
voseo, as in Argentina, and tú in
countries without, as in Spain. ↓

(a) cl: choclo (b) es: mazorca (c) mx: elote

(d) es: tú (e) es: vos (f) ar: tú (g) ar: vos

Figure 2: t-SNE projections (van der Maaten and Hinton, 2008) of the neighbourhood for the Spanish words
equivalent to corn (top plots) and you (bottom plots).

100), the best metric to measure isomorphism.
This setting is close to our case of study: lan-

guage varieties. We extract the data for training
the embeddings from the same corpus and use skip-
gram with the same configuration. Larger/smaller
scores and standard deviations for the isomorphism
metrics than the ones we see here should be at-
tributed to language differences and to the quality
of the embeddings given by the amount of training
data per variety.

7 Spanish Varieties Relations

Qualitative Behaviour Different lexicons and
cultural-dependent (near) synonyms change the
topology of the embedding spaces. Corn in
English translates into elote (from the Náhu-
atl elotitutl) in most of Mesoamerica, choclo
(from the Quechua chuqllu) in South America,
mazorca (from the Arabic masúrqa) in Colombia,
Cuba and Spain and jojoto in Venezuela. The im-
portance of this cereal in Spain is irrelevant in com-
parison to Mesoamerica, where it is so essential
that it goes beyond staple food, and that changes
the usage of the word.

This is reflected in Figure 2 (top plots), which
shows the 10-nearest neighbours for choclo in cl,
mazorca in es, and elote in mx. For cl and mx,
choclo and elote are surrounded by other food-
related words, but the intersection is almost null.

For es, mazorca is surrounded mostly by words
related to another sense of the word (a kind of light
bulb). Appendix B, shows the same three words as
located in all three embedding spaces —the three
synonyms never appear in the same region of the
space and elote does not even appear in cl. The
surrounding words also vary from being local food
when the word is shown in its native embedding
space to foreign food when the word is in the em-
bedding space corresponding to another country.
Similarly, there are differences across varieties in
the verbal forms usage and other grammatical is-
sues, such as voseo, which also distort the embed-
ding spaces. As Figure 2 (bottom plots) shows, for
countries without voseo, such as Spain, the word
vos is surrounded mostly by non-Spanish words
(since it is a nearly-deprecated pronoun for this va-
riety). In Argentina, we observe verbal voseo, that
is, the usage of the modified 5th inflexion and the
7th verbal inflection instead of the 2nd inflection
(e.g., sabés or decís rather than sabes or dices).

Isomorphism Following the results of Section 6,
we select EV (MFW 100) for the main analysis
and include the top-2 performing configurations
per metric in the Appendix C as they give more
insights on the behaviour of the metrics.

Figure 3 shows the results for EV. The heatmap
combines the results with our CEREAL embeddings
(top–right triangle) and the publicly available Twit-
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Figure 3: EV with 100 most frequent words for the 24 Spanish varieties. Top–right triangles (orange) correspond to
the mean results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.

ter embeddings (bottom–left triangle). With our
in-house embeddings, we calculate mean and stan-
dard deviation over 9 combinations per language
pair, as we have three runs per variety. This is not
possible with Twitter, so we expect more robust
results with CEREAL.

Comparing the heatmap of EV with those of RS
and GH, one sees that both but especially GH are
sensitive to the size of the training data. The fact
that GH needs to use more datapoints (5,000 MFW
in contrast to the 100 for EV/RS) might make the
effect of the data size stronger on GH. Varieties ad,
gq and ph for CEREAL and gq for Twitter include
less than 15 k training sentences. Pairs involving
these varieties have statistically significant higher
GH and lower RS values (and to a lesser extent
also higher EV values) systematically for all the
pairs. Vulić et al. (2020) showed in their correla-
tion analysis between the isomorphism metrics and
BLI accuracy that one needs at least 500 k training
sentences to convergence in BLI accuracy. There-
fore isomorphism scores with embeddings trained
with less data might be suboptimal.

The results with CEREAL and Twitter are signif-
icantly different both in the absolute magnitude of
the scores for pairs of varieties and in the relations
between the varieties. This could be a consequence
of the different volumes of training data but also
of the differences in the register used in both gen-
res. As Lipski (2012) notes, social factors are also
relevant in the variation and both genres might be
representative of different population profiles. The

standard deviations in Figure 3 are of the same or-
der of magnitude as in our calibration experiments
(Section 6) and do not depend on the quality of the
embeddings as measured by the data size. There-
fore, differences in the scores across language pairs,
that is, different departures from isomorphism, are
representative of the distances (relations) among
varieties. Next, we use hierarchical clustering to
have a clearer overview of these relations.

Phylogenetic (Relational) Trees Clustering
these results over varieties allows for building a
Spanish phylogenetic tree. Notice that, strictly
speaking, we do not construct a phylogenetic tree
but a relational tree. Spanish was acquired in most
American countries almost simultaneously, and va-
rieties have been evolving in parallel since then.
Also, word embeddings are static (in time) and
they do not provide evolutionary relationships but
an average snapshot of the language relationships.
Following Dutta Chowdhury et al. (2020), we use
agglomerative clustering with variance minimisa-
tion (Ward Jr, 1963) for this purpose.

We show the results for all the varieties and the
best configuration option for RS and GH in Figure 4
as the comparison among metrics is especially rel-
evant. Appendix D includes the remaining config-
urations. This representation makes more evident
the fact that GH groups the varieties according to
the amount of training data —and therefore the
quality of the embeddings. On the left-hand side
of the GH dendrogram are the least resourced va-
rieties: ph, ad and gq. On the right-hand side are
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(a) RS (BiDict 100)

(b) GH (MFW 5,000)

Figure 4: Relational trees derived from the CEREAL em-
beddings. The distribution of data is shown on top of
the dendrograms as an illustration.

the highest resourced ones: cl, es, ar, mx, cu, co
and pe. RS also clearly clusters ad, gq and ph and
puts all the other varieties at a similar level. The
Spearman rank correlation between the number of
segments used to train the embeddings and the flat-
tened version of the hierarchical clustering output
is 0.8 for GH, 0.2 for RS and -0.1 for EV. The
limitations with GH and RS are in agreement with
the observations of the previous sections.

In Figure 5, we analyse in detail EV for CEREAL
and Twitter for the highest resourced varieties. A
visual representation on a map is in Appendix D.
None of these trees groups the varieties according
to their geographical position or the linguistic zones
described by RAE (cf. Figure 1). It is worth point-
ing out that phonetic differences are in principle
not observable with word embeddings on textual
data but might leave traces on Twitter embeddings
as a result of misspellings. This translates into Ar-
gentina (ar) and Uruguay (uy) —countries where
zheísmo is present— lying apart in the CEREAL den-
drogram, but not in the Twitter one.6 Trends re-
lated to grammar are more evident. The right-hand
side of the plots group together varieties without
voseo: in the case of CEREAL, the exceptions are
Uruguay (uy) and Dominican Republic (do) which
should be swapped according to this characteristic;
in the case of Twitter, Spain (es) sneaks in the
region with voseo.

Different substrates are in general not observed.
Contrary to voseo and the grammatical differences
it implies, different substrates or neologisms are

6Both countries also share an Italian substrate.

(a) CEREAL

(b) Twitter

Figure 5: Relational trees for the subset of the highest
resourced varieties with EV (MFW 100).

not global: Quechuan languages were/are spoken
in what is today Argentina, Bolivia, Chile, Colom-
bia, Ecuador and Peru; but in Bolivia there are 36
other languages such as Quechua but also Aimara,
Chiquitano, etc.

8 Conclusions

Spanish is not a monolithic language. Five cen-
turies of distinct but related evolution across terri-
tories have created a rich set of varieties. We study
these varieties from a data-based perspective, build-
ing specific embeddings with textual data for 24
countries. We then relate the similarities and differ-
ences among embedding spaces to the divergences
among varieties.

Divergences are subtle in comparison to diver-
gences among languages. Because of this, we ex-
plore three common isomorphism metrics in quasi-
isomorphic settings. Our results show that EV is
the best performing metric in the controlled sce-
nario (data perturbation). GH does not perform
far, but subsequent experiments with the variety of
embeddings show that it is the metric that depends
the most on the amount of training data. RS rapidly
degrades when we depart from the controlled ex-
periments and it is less sensitive to the variations.

Lots of characteristics of the language coexist
in written documents. The indigenous language
substrate and other borrowings, grammatical char-
acteristics such as voseo, and verbal tense changes
are manifested in word embeddings. Voseo showed
to be the strongest feature and its imprint is clearly
seen in the relational trees we build from the depar-
tures from isomorphism obtained with EV. Infor-
mal (and sometimes incorrect) text used to create
Twitter embeddings also reflects distinctive pho-
netic traits such as zheísmo.
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Limitations

We have done an exhaustive exploration of the be-
haviour of the isomorphism metrics when the same
language (Spanish from Spain) is used. The ef-
fect of the training domain and data size has been
explored before in bilingual settings (Vulić et al.,
2020). In this work, we do not systematically quan-
tify the effect that the different sizes in the training
data per variety imply, further than removing the
varieties with less data according to the conclusions
in Vulić et al. (2020). Differences in the amount
of data can also imply differences in the domain
(especially when few data are available) and these
variations have to be taken into account when draw-
ing conclusions.
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A Calibration of the Isomorphism Metrics

Tables 3 to 8 show the detailed results for the experiments in Section 6. In all cases, tables report the
results for a given isomorphism metric (either RS, EV or GH) using the 5 types of data points and 5
different number of points defined in Section 4. Metrics are evaluated on pairs of embeddings spaces
{Ei, Ej} all of them belonging to Spanish from Spain under the two training conditions of Section 6:
model perturbation (Tables 3, 4 and 5) and data perturbation (Tables 6, 7 and 8).

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.989± 0.000 0.989 0.988 0.988 0.989 0.990 0.989 0.990 0.989 0.990 0.989
500 0.982± 0.001 0.981 0.981 0.981 0.981 0.984 0.981 0.985 0.981 0.984 0.981
1000 0.979± 0.002 0.978 0.977 0.978 0.978 0.982 0.978 0.983 0.978 0.982 0.977
2500 0.976± 0.002 0.974 0.974 0.975 0.974 0.979 0.974 0.981 0.975 0.980 0.974
5000 0.974± 0.003 0.973 0.972 0.974 0.972 0.979 0.973 0.981 0.973 0.980 0.972

Random 100 0.000± 0.008 0.014 -0.005 0.002 0.000 0.009 0.016 0.002 0.000 0.001 -0.013
500 0.000± 0.002 0.000 -0.004 0.002 -0.004 0.002 0.003 0.000 -0.001 0.000 0.001
1000 0.000± 0.000 -0.001 -0.001 0.000 -0.001 0.000 0.001 0.000 -0.001 0.000 0.000
2500 0.000± 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
5000 0.000± 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Random 100 0.959± 0.002 0.960 0.957 0.955 0.957 0.963 0.958 0.964 0.957 0.963 0.958
BiDict 500 0.959± 0.002 0.959 0.958 0.956 0.958 0.963 0.959 0.965 0.959 0.963 0.958

1000 0.959± 0.002 0.959 0.958 0.956 0.958 0.963 0.959 0.965 0.958 0.963 0.958
2500 0.960± 0.002 0.960 0.958 0.957 0.959 0.963 0.959 0.965 0.958 0.963 0.958
5000 0.960± 0.002 0.960 0.959 0.957 0.959 0.964 0.959 0.965 0.959 0.964 0.959

Numbers 100 0.997± 0.000 0.997 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997
500 0.994± 0.000 0.995 0.994 0.994 0.995 0.996 0.994 0.996 0.996 0.994 0.994
1000 0.993± 0.001 0.993 0.993 0.992 0.993 0.994 0.992 0.995 0.993 0.995 0.993
2500 0.988± 0.001 0.988 0.988 0.987 0.988 0.990 0.988 0.990 0.988 0.990 0.988
5000 0.985± 0.001 0.986 0.985 0.984 0.985 0.987 0.985 0.987 0.985 0.987 0.985

NEs 100 −0.003± 0.013 -0.018 0.013 0.000 0.001 0.013 0.006 -0.011 -0.017 0.007 -0.027
500 0.002± 0.007 0.002 0.002 -0.003 -0.010 0.011 0.015 0.007 0.006 0.007 -0.008
1000 0.002± 0.006 0.000 0.004 -0.005 -0.010 0.002 0.015 -0.002 0.007 0.005 0.004
2500 0.000± 0.003 0.001 0.000 -0.003 0.000 -0.001 0.004 -0.005 0.007 0.000 -0.002
5000 – – – – – – – – – – –

Table 3: Complete results for the RS metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3E5 E4E5

Frequent 100 2± 1 2.3 2.8 2.6 3.3 1.8 2.2 1.6 0.9 1.0 1.5
500 2± 1 4.5 2.8 4.3 3.8 2.4 1.5 1.7 1.6 1.5 2.0
1000 3± 1 3.7 2.8 3.6 5.8 3.5 3.5 2.5 2.0 5.9 4.4
2500 3± 1 3.0 3.6 3.2 4.9 2.3 2.6 2.6 2.5 3.3 5.9
5000 5± 2 6.8 7.9 7.8 9.4 6.7 1.7 1.6 8.6 1.7 6.9

Random 100 3± 1 3.5 3.1 4.9 3.2 2.3 5.1 4.3 2.5 1.7 2.2
500 5± 3 3.4 3.5 4.8 5.7 1.9 3.1 8.7 3.9 10.0 11.4
1000 6± 2 10.1 4.7 3.4 4.6 11.4 5.3 9.6 5.2 3.9 3.8
2500 10± 3 10.5 8.1 8.5 5.8 6.4 18.1 10.6 11.0 9.0 16.7
5000 14± 7 6.6 7.4 23.0 9.6 13.7 22.8 4.8 27.6 15.1 17.4

Random 100 1± 1 2.6 1.4 0.9 1.1 2.4 2.1 1.7 1.6 1.1 0.7
BiDict 500 3± 1 3.7 3.0 1.5 5.7 3.5 4.0 4.1 4.0 4.3 4.4

1000 4± 1 3.1 3.8 6.3 5.2 4.5 3.5 4.1 8.1 6.3 3.9
2500 7± 3 9.8 8.1 4.3 9.8 2.6 10.9 2.6 8.6 4.0 11.1
5000 5± 2 5.6 10.5 5.5 7.8 5.2 5.1 4.4 6.5 5.6 2.3

Numbers 100 3± 1 5.2 1.4 1.9 5.7 5.7 3.6 2.6 2.0 5.7 3.0
500 4± 1 3.4 1.3 3.1 4.6 4.0 7.7 3.6 2.3 3.9 6.9
1000 5± 2 9.6 4.3 9.1 6.2 5.2 4.7 3.9 5.7 3.0 2.7
2500 9± 5 11.8 13.4 13.4 20.9 1.9 4.6 7.2 6.2 8.4 8.3
5000 7± 1 6.4 4.3 8.6 8.5 8.9 9.3 8.4 6.9 8.3 3.2

NEs 100 3± 1 2.1 4.3 3.7 2.1 3.9 4.3 2.7 8.0 4.9 3.0
500 7± 3 7.5 10.8 11.3 8.9 7.7 9.7 6.9 3.7 2.4 2.5
1000 6± 3 2.0 6.5 5.7 7.3 8.2 6.4 6.4 10.3 13.5 2.7
2500 7± 3 12.7 7.3 4.9 5.5 14.8 7.4 7.8 6.3 6.8 2.7
5000 – – – – – – – – – – –

Table 4: Complete results for the EV metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.02± 0.00 0.027 0.031 0.038 0.033 0.025 0.037 0.025 0.020 0.017 0.036
500 0.02± 0.00 0.025 0.021 0.021 0.017 0.025 0.023 0.030 0.020 0.022 0.018
1000 0.02± 0.00 0.025 0.026 0.020 0.018 0.025 0.018 0.026 0.017 0.022 0.015
2500 0.01± 0.00 0.018 0.020 0.016 0.015 0.021 0.024 0.023 0.019 0.018 0.013
5000 0.01± 0.00 0.017 0.019 0.014 0.015 0.021 0.018 0.010 0.015 0.012 0.013

Random 100 0.17± 0.12 0.086 0.073 0.244 0.127 0.072 0.317 0.054 0.318 0.053 0.371
500 0.15± 0.06 0.100 0.256 0.160 0.273 0.171 0.128 0.189 0.107 0.029 0.118
1000 0.16± 0.07 0.084 0.245 0.080 0.270 0.160 0.100 0.185 0.202 0.052 0.226
2500 0.11± 0.03 0.123 0.136 0.125 0.068 0.079 0.075 0.125 0.127 0.205 0.077
5000 0.07± 0.01 0.044 0.076 0.046 0.095 0.052 0.064 0.089 0.086 0.086 0.077

Random 100 0.03± 0.01 0.018 0.021 0.039 0.021 0.030 0.042 0.029 0.061 0.026 0.035
BiDict 500 0.02± 0.00 0.021 0.032 0.017 0.022 0.016 0.019 0.020 0.029 0.034 0.035

1000 0.02± 0.00 0.031 0.032 0.029 0.027 0.020 0.036 0.017 0.039 0.030 0.038
2500 0.02± 0.00 0.022 0.017 0.016 0.027 0.020 0.021 0.019 0.014 0.022 0.031
5000 0.01± 0.00 0.028 0.026 0.018 0.018 0.013 0.019 0.015 0.015 0.012 0.014

Numbers 100 0.05± 0.05 0.030 0.043 0.055 0.038 0.015 0.025 0.027 0.039 0.208 0.035
500 0.02± 0.00 0.023 0.027 0.025 0.027 0.031 0.032 0.021 0.025 0.019 0.022
1000 0.02± 0.00 0.020 0.025 0.028 0.019 0.014 0.026 0.019 0.040 0.024 0.020
2500 0.02± 0.00 0.031 0.025 0.019 0.019 0.022 0.028 0.023 0.025 0.020 0.028
5000 0.02± 0.00 0.019 0.022 0.024 0.024 0.020 0.017 0.021 0.032 0.032 0.026

NEs 100 0.10± 0.03 0.151 0.080 0.093 0.062 0.125 0.170 0.135 0.121 0.105 0.041
500 0.07± 0.03 0.049 0.073 0.072 0.080 0.061 0.032 0.107 0.079 0.154 0.076
1000 0.09± 0.03 0.120 0.053 0.068 0.134 0.094 0.132 0.031 0.063 0.102 0.146
2500 0.03± 0.00 0.029 0.045 0.033 0.029 0.039 0.027 0.017 0.040 0.035 0.025
5000 – – – – – – – – – – –

Table 5: Complete results for the GH metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.860± 0.056 0.839 0.837 0.768 0.882 0.901 0.871 0.943 0.787 0.945 0.828
500 0.314± 0.032 0.333 0.312 0.264 0.331 0.329 0.329 0.347 0.277 0.357 0.263
1000 0.131± 0.014 0.151 0.123 0.119 0.147 0.132 0.129 0.138 0.109 0.152 0.114
2500 0.038± 0.000 0.040 0.039 0.033 0.045 0.042 0.037 0.041 0.030 0.043 0.031
5000 0.015± 0.001 0.017 0.015 0.014 0.017 0.016 0.013 0.015 0.013 0.018 0.014

Random 100 0.002± 0.015 0.014 -0.010 0.009 0.026 0.004 -0.007 0.003 -0.033 0.013 0.008
500 0.000± 0.001 -0.001 0.000 -0.002 -0.004 0.001 0.000 0.001 0.000 -0.003 0.003
1000 0.000± 0.000 0.000 0.000 0.000 0.000 0.001 -0.001 0.000 0.000 0.000 0.000
2500 0.000± 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5000 0.000± 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Random 100 0.884± 0.008 0.870 0.894 0.894 0.882 0.889 0.892 0.879 0.889 0.883 0.869
BiDict 500 0.882± 0.004 0.880 0.881 0.878 0.886 0.881 0.885 0.878 0.891 0.889 0.879

1000 0.883± 0.002 0.885 0.885 0.883 0.883 0.883 0.883 0.878 0.887 0.886 0.881
2500 0.883± 0.001 0.884 0.883 0.882 0.886 0.884 0.883 0.880 0.885 0.885 0.881
5000 0.883± 0.000 0.882 0.884 0.885 0.885 0.883 0.884 0.883 0.885 0.884 0.884

Numbers 100 0.604± 0.087 0.809 0.687 0.631 0.533 0.639 0.516 0.539 0.549 0.534 0.604
500 0.116± 0.012 0.133 0.119 0.134 0.104 0.131 0.098 0.112 0.113 0.100 0.120
1000 0.061± 0.008 0.049 0.068 0.073 0.071 0.067 0.057 0.058 0.049 0.060 0.067
2500 0.037± 0.007 0.042 0.045 0.036 0.055 0.036 0.040 0.034 0.028 0.037 0.026
5000 0.022± 0.003 0.021 0.028 0.022 0.026 0.021 0.029 0.017 0.019 0.021 0.021

NEs 100 −0.001± 0.018 0.029 0.008 -0.005 -0.007 -0.005 0.003 -0.029 -0.011 -0.027 0.030
500 −0.003± 0.007 -0.002 0.006 0.008 -0.008 -0.015 -0.008 -0.008 -0.002 -0.011 0.002
1000 −0.002± 0.004 -0.008 0.004 0.0 -0.008 -0.006 -0.005 0.000 -0.003 -0.005 0.003
2500 −0.002± 0.002 0.000 0.003 -0.004 -0.004 0.000 -0.003 0.001 -0.002 -0.006 -0.005
5000 – – – – – – – – – – –

Table 6: Complete results for the RS metric with combinations of 5 embedding spaces build from 5 different random
partitions of the CEREAL corpus.

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 2± 1 2.7 3.0 3.4 2.9 0.9 1.2 1.9 0.7 1.5 2.0
500 3± 1 6.7 4.0 5.5 1.8 2.8 4.4 4.6 3.0 2.2 3.7
1000 2± 1 3.6 3.5 3.8 5.8 1.8 1.6 2.6 2.2 2.6 1.6
2500 4± 1 3.8 4.4 1.5 5.3 1.6 5.1 7.6 5.9 6.1 6.6
5000 5± 4 1.1 3.3 2.8 11.8 2.1 2.3 10.9 3.8 11.1 9.0

Random 100 5± 1 6.1 3.5 5.6 2.8 9.7 5.9 5.0 5.6 3.9 6.8
500 5± 2 8.0 5.4 4.7 4.8 3.9 10.3 3.1 4.6 1.5 5.6
1000 5± 1 3.7 6.4 3.8 5.4 5.4 4.2 5.5 6.4 8.8 5.1
2500 7± 1 3.3 6.4 8.1 6.4 6.9 7.4 6.6 11.2 9.6 6.6
5000 14± 5 19.1 13.1 6.6 8.6 10.3 16.1 25.3 6.9 21.1 14.1

Random 100 3± 2 2.9 2.2 8.0 2.8 7.6 1.7 2.8 1.3 1.7 5.5
BiDict 500 4± 1 2.0 5.6 4.1 3.3 6.6 2.6 3.3 2.2 4.7 6.1

1000 6± 4 10.9 15.0 7.5 1.6 1.8 9.6 3.9 4.0 5.1 10.3
2500 7± 2 5.2 7.5 13.3 9.5 9.1 6.8 8.3 9.1 4.6 5.0
5000 8± 4 6.0 9.1 4.5 4.9 5.1 21.1 6.2 9.5 10.4 6.0

Numbers 100 3± 1 3.2 7.1 3.5 1.6 2.6 2.0 3.1 2.0 7.4 4.3
500 5± 2 1.8 4.6 8.7 5.0 5.3 8.6 5.7 8.8 3.0 5.3
1000 9± 6 3.6 3.2 20.1 8.0 2.8 15.3 4.6 17.0 6.9 16.3
2500 12± 4 12.3 17.3 15.2 19.0 14.2 14.1 6.6 5.1 11.6 14.4
5000 11± 3 16.2 6.8 9.3 15.8 12.6 10.1 6.1 13.7 11.3 15.3

NEs 100 2± 1 4.2 1.1 1.8 1.1 3.9 5.5 3.5 1.7 2.0 3.3
500 3± 1 3.5 4.0 3.1 2.8 7.3 5.3 5.6 3.4 1.9 1.9
1000 7± 2 4.0 11.1 5.9 11.0 8.0 7.9 6.8 5.7 4.9 8.5
2500 7± 2 8.5 10.1 14.6 7.4 4.8 9.6 5.3 5.3 4.5 7.2
5000 – – – – – – – – – – –

Table 7: Complete results for the EV metric with combinations of 5 embedding spaces build from 5 different random
partitions of the CEREAL corpus.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.03± 0.01 0.026 0.058 0.023 0.024 0.038 0.028 0.034 0.035 0.062 0.027
500 0.02± 0.00 0.029 0.022 0.028 0.020 0.022 0.025 0.023 0.021 0.026 0.022
1000 0.02± 0.00 0.019 0.015 0.028 0.020 0.018 0.021 0.022 0.020 0.026 0.022
2500 0.01± 0.00 0.013 0.015 0.019 0.020 0.015 0.015 0.020 0.021 0.021 0.021
5000 0.01± 0.00 0.018 0.018 0.014 0.020 0.016 0.016 0.017 0.018 0.021 0.014

Random 100 0.15± 0.06 0.037 0.072 0.209 0.134 0.086 0.215 0.133 0.228 0.206 0.198
500 0.19± 0.10 0.373 0.299 0.188 0.332 0.107 0.184 0.075 0.133 0.074 0.155
1000 0.13± 0.05 0.065 0.153 0.176 0.073 0.129 0.123 0.070 0.253 0.146 0.132
2500 0.13± 0.03 0.143 0.091 0.188 0.160 0.129 0.116 0.067 0.186 0.146 0.103
5000 0.12± 0.04 0.090 0.068 0.163 0.116 0.085 0.160 0.096 0.166 0.102 0.195

Random 100 0.05± 0.02 0.036 0.031 0.045 0.106 0.033 0.088 0.029 0.040 0.051 0.057
BiDict 500 0.03± 0.01 0.044 0.039 0.028 0.030 0.027 0.080 0.031 0.052 0.025 0.028

1000 0.03± 0.01 0.069 0.023 0.034 0.036 0.031 0.025 0.031 0.037 0.035 0.036
2500 0.03± 0.01 0.036 0.032 0.043 0.022 0.019 0.065 0.031 0.024 0.023 0.037
5000 0.02± 0.00 0.016 0.019 0.024 0.028 0.025 0.027 0.030 0.023 0.022 0.024

Numbers 100 0.06± 0.04 0.031 0.040 0.125 0.030 0.028 0.124 0.022 0.120 0.028 0.114
500 0.05± 0.00 0.050 0.040 0.054 0.043 0.060 0.043 0.047 0.052 0.055 0.071
1000 0.02± 0.00 0.024 0.030 0.031 0.033 0.033 0.033 0.020 0.026 0.038 0.023
2500 0.02± 0.00 0.024 0.026 0.022 0.034 0.027 0.033 0.030 0.023 0.031 0.036
5000 0.05± 0.01 0.044 0.021 0.070 0.073 0.040 0.067 0.069 0.065 0.059 0.041

NEs 100 0.08± 0.02 0.063 0.123 0.053 0.057 0.129 0.055 0.121 0.098 0.101 0.066
500 0.07± 0.03 0.106 0.113 0.081 0.045 0.023 0.069 0.107 0.075 0.114 0.052
1000 0.07± 0.02 0.102 0.058 0.123 0.066 0.046 0.077 0.058 0.096 0.040 0.076
2500 0.05± 0.02 0.067 0.027 0.030 0.043 0.084 0.064 0.052 0.041 0.054 0.041
5000 – – – – – – – – – – –

Table 8: Complete results for the GH metric with combinations of 5 embedding spaces build from 5 different
random partitions of the CEREAL corpus.
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B Qualitative Behaviour of the Embedding Spaces

Figure 6 shows the 10-top nearest neighbours for three different varieties of Spanish words that would
translate into corn: elote, choclo, and mazorca (cf. Section 7). The results with respect to three
embedding spaces —cl, es and mx— show the differences associated to the three concepts. For instance,
elote goes from inexistence in cl to all the way into a neighbourhood of regional ingredients and dishes
in mx, passing through a concept more associated to foreign cuisine in es.

(a) cl: elote (b) cl: choclo (c) cl: mazorca

(d) es: elote (e) es: choclo (f) es: mazorca

(g) mx: elote (h) mx: choclo (i) mx: mazorca

Figure 6: t-SNE projections (van der Maaten and Hinton, 2008) for the neighbouring spaces for the word corn,
used as choclo in Chile (cl), mazorca in Spain (es) and elote in Mexico (mx).
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C Extended Isomorphism Results on the Variety-Specific Spanish Embeddings

Figures 7, 8 and 9 show the extended results for the experiments in Section 7. Here, in addition to
MFW 100 for EV (best configuration reported in the main text), we show the results for the top-2 best
configurations for the three isomorphism metrics, RS, EV and GH: RS on MFW 100 and random BiDict
100, EV on BiDict 100, and GH on the MFW 5,000 and random BiDict 5,000 (in cases where 5,000 points
are not available we use the maximum number of available points). In all cases, figures represent the
scores for a given isomorphism metric using the embeddings computed on CEREAL and on Twitter data.

EV (BiDict 100)

Figure 7: EV with random BiDict 100 words for the 24 Spanish varieties. Top–right triangles (orange) correspond
to the results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.
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(a) RS (MFW 100)

(b) RS (BiDict 100)

Figure 8: RS with (a) 100 most frequent words (MFW) and (b) BiDict entries multiplied by 100 for better readability.
Top–right triangles (orange) correspond to the mean results with the CEREAL corpus and bottom–left triangle (green)
to the Twitter corpus.
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(a) GH (MFW 5,000)

(b) GH (BiDict 5,000)

Figure 9: (GH with (a) 5,000 most frequent words (MFW) and (b) GH with 5,000 random BiDict words for the 24
Spanish varieties. Results are multiplied by 100 for better readability. Top–right triangles (orange) correspond to
the mean results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.
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D Extended Analysis on Phylogenetics

D.1 Visual Representation

Figure 10 focuses on EV and represents the regions that can be drawn on the basis of the resulting
clusters. A comparison against the Spanish linguistic zones as defined by RAE (see Figure 1) reveals some
divergences. Among them, Central America not necessarily being tied to Mexico as well as Colombia and
Venezuela, which here appear differentiated.

(a) CEREAL (b) Twitter

Figure 10: Geographical representation of the Spanish varieties clustered according the EV (MFW 100) score; es is
omitted from the plot for visibility reasons, but it is included in the legend together with the family it groups with.
Plots are done with MapChart (https://www.mapchart.net).

D.2 Extended Results on the Hierarchical Clustering Experiments

As in the previous sections, we show, for completeness, results for the top-2 best configurations for the
3 isomorphism metrics: RS, EV and GH. Figure 11 depicts the phylogenetic (relational) trees obtained
from scores on the embeddings built with CEREAL for the 2nd best performing configurations (1st one is
in the main text): RS on random BiDict 100, EV on BiDict 100, and GH on random BiDict 5,000. We
compare the trees for 24 varieties and the subset of the 17 highest resourced varieties. Figure 12 shows
the top-2 configurations for the scores derived from the embeddings computed on Twitter data.
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(a) RS (BiDict 100), all varieties

(b) RS (BiDict 100), high-resourced varieties

(c) EV (BiDict 100), all varieties

(d) EV (BiDict 100), high-resourced varieties

(e) GH (BiDict 5,000), all varieties

(f) GH (BiDict 5,000), high-resourced varieties

Figure 11: Hierarchical clustering on the outputs of the isomorphism measures obtained in Section 7 for the
embeddings computed using the CEREAL corpus.
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(a) RS (MFW 100)

(b) RS (BiDict 100)

(c) EV (MFW 100)

(d) EV (BiDict 100)

(e) GH (MFW 5,000)

(f) GH (BiDict 5,000)

Figure 12: Hierarchical clustering on the outputs of the isomorphism measures obtained in Section 7 with Twitter
embeddings.
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