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Abstract
The ability to understand emotions is an es-
sential component of human-like artificial in-
telligence, as emotions greatly influence hu-
man cognition, decision making, and social
interactions. In addition to emotion recog-
nition in conversations, the task of identify-
ing the potential causes behind an individ-
ual’s emotional state in conversations, is of
great importance in many application sce-
narios. We organize SemEval-2024 Task 3,
named Multimodal Emotion Cause Analysis
in Conversations, which aims at extracting
all pairs of emotions and their correspond-
ing causes from conversations. Under differ-
ent modality settings, it consists of two sub-
tasks: Textual Emotion-Cause Pair Extraction
in Conversations (TECPE) and Multimodal
Emotion-Cause Pair Extraction in Conversa-
tions (MECPE). The shared task has attracted
143 registrations and 216 successful submis-
sions. In this paper, we introduce the task,
dataset and evaluation settings, summarize the
systems of the top teams, and discuss the find-
ings of the participants.

1 Introduction

Understanding emotions is crucial to achieve
human-like artificial intelligence, as emotions are
intrinsic to humans and significantly influence our
cognition, decision-making, and social interac-
tions. Conversation is an important form of hu-
man communication and contains a large number
of emotions. Furthermore, given that conversa-
tion in its natural form is multimodal, many stud-
ies have explored multimodal emotion recognition
in conversations (ERC), using language, audio and
vision modalities (Poria et al., 2019b; Mittal et al.,
2020; Lian et al., 2021; Zhao et al., 2022; Zheng
et al., 2023).

However, emotion recognition alone is not suf-
ficient to fully understand the intricacies of hu-
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man emotions. Emotion cause analysis (ECA), the
process of identifying the potential causes behind
an individual’s emotion state, has broad applica-
tion scenarios such as human-computer interac-
tion, commerce customer service, empathetic con-
versational agents, and automatic psychotherapy.
For example, conversational agents equipped with
emotion cause analysis can better understand the
user’s emotional state, offer empathetic responses,
and provide more personalized services. By iden-
tifying the cause of the emotional state of a patient,
a psychotherapy system can provide more accu-
rate and customized treatments. ECA has gained
increasing attention both in academic and practi-
cal fields (Ding et al., 2019; Xia et al., 2019; Xia
and Ding, 2019; Ding et al., 2020a,b; Poria et al.,
2021; Li et al., 2022; An et al., 2023; Wang et al.,
2023b). However, to our knowledge, there has not
been any evaluation competition conducted specif-
ically for emotion cause analysis in conversations.

To promote research in this direction, we orga-
nize a shared task in SemEval-2024, named Multi-
modal Emotion Cause Analysis in Conversations.
Our task consists of two subtasks: Subtask 1 (Tex-
tual Emotion-Cause Pair Extraction in Conversa-
tions, TECPE) focuses on extracting emotion and
textual cause spans solely based on text; Sub-
task 2 (Multimodal Emotion-Cause Pair Extrac-
tion in Conversations, MECPE) involves extract-
ing emotion-cause pairs at the utterance level con-
sidering three modalities.

For this shared task, we provide a multimodal
emotion cause dataset ECF 2.0 sourced from the
sitcom Friends. This dataset contains 1,715 con-
versations and 16,720 utterances, where 12,256
emotion-cause pairs are annotated at the utter-
ance level, covering three modalities (language,
audio, and vision). Specifically, in our prelim-
inary work (Wang et al., 2023a), we have con-
structed a benchmark dataset, Emotion-Cause-in-
Friends (ECF 1.0), which contains 1,374 conver-



Utterance 1

Chandler:
Hey Pheebs!

Utterance 2

Phoebe:
Ohh! You made up!

Monica:
Yeah, I couldn't be mad 
at him for too long.

Utterance 3

Phoebe: 
Ohh, get a room.

Utterance 5Utterance 4

Chandler:
Yeah, she couldn't live
without the Chan Love.

Joy Surprise Joy Joy Disgust

Figure 1: An example of our task and annotated dataset. Each arc points from the cause utterance to the emotion it
triggers. The textual cause spans and the visual cause evidence are highlighted in yellow. Background: Chandler
and his girlfriend Monica walked into the casino (they had a quarrel earlier but made up soon) and then started a
conversation with Phoebe.

sations and 13,619 utterances. On this basis, we
have furthermore annotated an extended test set
as the evaluation data and provided the span-level
annotations of emotion causes within the textual
modality.

Our task has attracted 143 registrations and a
total of 216 successful submissions during the
16-day evaluation phase. Participants tended
to decompose our task into emotion recogni-
tion and cause prediction, proposing numerous
well-designed pipeline systems. Moreover, many
teams applied advanced Large Language Models
(LLMs) for emotion cause analysis and achieved
promising results. After the evaluation, 18 teams
finally submitted system description papers.

2 Task

We clarify the definitions of emotion and cause be-
fore introducing the task and dataset. Emotion is a
psychological state associated with thought, feel-
ing, and behavioral response (Ekman and David-
son, 1994). In computer science, emotions are of-
ten described as discrete emotion categories, such
as Ekman’s six basic emotions, including Anger,
Disgust, Fear, Joy, Sadness and Surprise (Ekman,
1971). In conversations, emotions were usually
annotated at the utterance level (Li et al., 2017;
Hsu et al., 2018; Poria et al., 2019a). Cause
refers to the objective event or subjective argument
that triggers the corresponding emotion (Lee et al.,
2010; Russo et al., 2011).

The goal of our shared task, named Multimodal
Emotion Cause Analysis in Conversations, is to
extract potential pairs of emotions and their corre-

sponding causes from a given conversation. Figure
1 illustrates a typical multimodal conversation sce-
nario, which involves multiple emotions and their
corresponding causes. Under different modality
settings, we define the following two subtasks:

Subtask 1: Textual Emotion-Cause Pair Ex-
traction in Conversations (TECPE). Extract-
ing all emotion-cause pairs from the given conver-
sation solely based on text, where each pair con-
tains an emotion utterance along with its emotion
category and the textual cause span, e.g., (U3_Joy,
U2_“You made up!”) in Figure 1.

Subtask 2: Multimodal Emotion-Cause Pair
Extraction in Conversations (MECPE). It
should be noted that sometimes the cause cannot
be reflected only in text. As shown in Figure 1, the
cause for Phoebe’s Disgust in U5 is that Monica
and Chandler were kissing in front of her, which is
reflected in the visual modality of U5. Therefore,
we accordingly define this multimodal subtask to
extract all emotion-cause pairs in consideration of
three modalities (language, audio, and vision). In
this subtask, the cause is defined at the utterance
level, and each pair contains an emotion utterance
along with its emotion category and a cause utter-
ance, e.g., (U5_Disgust, U5).

3 Dataset

3.1 Data Source

Sitcoms come with real-world-inspired inter-
human interactions and usually contain more emo-
tions than other TV series or movies. Based
on the famous American sitcom Friends, Poria



et al. (2019a) constructed the multimodal conver-
sational dataset MELD by extracting audiovisual
clips corresponding to the scripts of the source
episodes and annotating each utterance with one
of six basic emotions (Anger, Disgust, Fear, Joy,
Sadness and Surprise) or Neutral. MELD has re-
cently become a widely used benchmark for ERC.

In our preliminary work (Wang et al., 2023a),
we chose MELD as the data source and further
annotated the causes given emotion annotations,
thereby constructing the ECF 1.0 dataset. For this
SemEval competition, we release the entire ECF
1.0 dataset as a training set and additionally create
a test set as evaluation data, which is also sourced
from Friends.

3.2 Data Collection
To construct the extended test set, we first crawl
the subtitle files of all the episodes of Friends,
which contains the utterance text and the corre-
sponding timestamps. The subtitles are then sep-
arated by scene (scene descriptions are written
in square brackets in the subtitle files), and each
scene in every episode is viewed as a conversa-
tion. If the length of a conversation exceeds 40
utterances, we further divide it into several conver-
sations of random lengths. Conversations included
in the ECF 1.0 are removed. Next, we divide the
collected conversations into several parts accord-
ing to their lengths, with each part falling within
the length ranges [1, 5], [6, 10], [11, 15], [16, 20],
[21, 25], and [26, 35], respectively. Finally, we
randomly sample conversations from each part ac-
cording to the distribution probability of conversa-
tion lengths in ECF 1.0, and a total of 400 conver-
sations are sampled for annotation.

3.3 Data Annotation
We employ three graduate students involved in
the annotation of the ECF 1.0 dataset to annotate
the extended test set. Given a multimodal con-
versation, they first need to annotate the speaker
and emotion category for each utterance, and then
further annotate the utterances containing corre-
sponding causes for each non-neutral emotion. If
the causes are explicitly expressed in the text, they
should also mark the textual cause spans. After
annotation, we determine the emotion categories
and cause utterances by majority voting, and take
the largest boundary (i.e., the union of the spans)
as the gold annotation of the textual cause span. If
disagreements arise, another expert is invited for

Dataset Modality Scene # Ins
Emotion-Stimulus (Ghazi et al., 2015) T – 2,414 s
ECE Corpus (Gui et al., 2016) T News 2,105 d
NTCIR-13-ECA (Gao et al., 2017) T Fiction 2,403 d
Weibo-Emotion (Cheng et al., 2017) T Blog 7,000 p
REMAN (Kim and Klinger, 2018) T Fiction 1,720 d
GoodNewsEveryone (Bostan et al., 2020) T News 5,000 s
RECCON-IE (Poria et al., 2021) T Conv 665 u
RECCON-DD (Poria et al., 2021) T Conv 11,104 u
ConvECPE (Li et al., 2022) T,A,V Conv 7,433 u
ECF 1.0 (Wang et al., 2023a) T,A,V Conv 13,619 u
ECF 2.0 T,A,V Conv 16,720 u

Table 1: Comparison of existing ECA datasets. T, A,
and V refer to text, audio, and video. Blog and Conv
represent microblog and conversation, and s, d, p and u
denote sentence, document, post and utterance.

Items ECF 1.0 Extended Test ECF 2.0
Conversations 1,374 341 1,715
Utterances 13,619 3,101 16,720
Emotion (utterances) 7,690 1,821 9,511

Subtask 1 (TECPE)
Emotion (utterances) with causes 6,761 1,626 8,387
Emotion-cause (span) pairs 9,284 2,256 11,540

Subtask 2 (MECPE)
Emotion (utterances) with causes 7,081 1,746 8,827
Emotion-cause (utterance) pairs 9,794 2,462 12,256

Table 2: Statistics of our dataset.

the final decision.

Annotation Cost. The average duration of each
conversation in our dataset is 31.6 seconds and it
takes about 10 minutes to annotate a conversation.
Each annotator would be paid CNY 300 when fin-
ishing every 50 conversations, which leads to the
basic salary of CNY 36 (USD 5.2) per hour, which
is higher than the current average salary in Jiangsu
Province, China.

Data Post-processing. We conduct the follow-
ing post-processing and cleaning of the data:

• Correct the utterance text that does not match
what the speaker said in the video;

• Correct the timestamps that are not aligned
with utterance text;

• Separate the utterance whose segment of
timestamps covers two speakers’ utterances
and modify their timestamps;

• Separate the conversation which spans
scenes;

• Discard conversations if there is significant
disagreement in annotations and the expert
also finds it difficult to determine.

After these steps, we store the text data in JSON
files separately for each subtask. For Subtask 2,
we use the FFmpeg1 tool to extract video clips of

1https://www.ffmpeg.org

https://www.ffmpeg.org


(a) ECF 1.0

(b) Extended Test set for SemEval-2024

Figure 2: The distribution of conversation lengths. The
horizontal axis represents the number of utterances,
and the vertical axis represents the number of conver-
sations.

each utterance from the source episodes based on
the start and end timestamps.

3.4 Dataset Statistic

In our preliminary work (Wang et al., 2023a),
we have already constructed the ECF 1.0 dataset
that contains 1,374 conversations and 13,619 ut-
terances. Furthermore, we have annotated an ex-
tended test set specifically for this SemEval eval-
uation, which together with ECF 1.0 constitutes
the ECF 2.0 dataset2 that contains 1,715 conver-
sations and 16,720 utterances.

In Table 1, we compare our dataset with the
related datasets for ECA, in terms of modality,
scene, and size. It is evident that ECF 2.0 is cur-
rently the largest available emotion cause dataset.

Table 2 presents the detailed statistics of our
dataset for the two subtasks. It can be seen that,
in the entire ECF 2.0 dataset, 56.88% of the ut-
terances are labeled with one of the six basic
emotions, 92.81% of the emotion utterances have
corresponding cause utterances, and 88.18% of
the emotion utterances are annotated with textual
cause spans.

In addition, as shown in Figure 2 and Figure 3,
the newly annotated test set is basically consistent
with the original ECF 1.0 dataset in terms of con-

2Our dataset is available on Google Drive.

(a) ECF 1.0

(b) Extended Test set for SemEval-2024

Figure 3: The distribution of emotions. The horizontal
axis represents the number of utterances, and the verti-
cal axis represents emotion categories.

versation length and emotion distribution.

4 Evaluation

Our SemEval task runs on CodaLab3. We re-
leased the training data in September 2023, and
notified participants to commence model develop-
ment. The evaluation phase began on January 16,
2024, and ended on January 31, 2024. We mixed
the extended test set (consisting of 341 conversa-
tions with emotion and cause annotations; the la-
bels are not publicly available) with some noise
data (containing 324 conversations, not intended
for evaluation) and released them together. Each
team is allowed to submit their results up to three
times a day.

4.1 Evaluation Metrics
We evaluate the emotion-cause pairs of each emo-
tion category with F1 scores separately and further
calculate a weighted average of F1 scores across
the six emotion categories, denoted as “w-avg.
F1”. Specifically, for Subtask 1, which involves
the textual cause span, we adopt two strategies to
determine whether the span is extracted correctly:

• Strict Match: A predicted span is regarded as
correct if it’s the same as one of the annotated
spans;

3https://codalab.lisn.upsaclay.fr/
competitions/16141

https://drive.google.com/drive/folders/1TIRBiL8z4ZnoxtuKM8pnjtm2BxB5mS4Y
https://codalab.lisn.upsaclay.fr/competitions/16141
https://codalab.lisn.upsaclay.fr/competitions/16141


Rank User Name Team Name w-avg. S. F1 w-avg. P. F1 Main Technologies
1 Mercurialzs Samsung Research China-Beijing† 0.2300 0.3223 LLaMA2, SpanBERT
2 sachertort petkaz† 0.1035 0.2640 GPT 3.5, BERT
3 sharadC UIC NLP GRADS† 0.1839 0.2442 RoBERTa, SpanBERT
4 nicolay-r nicolay-r† 0.1279 0.2432 Flan-T5
5 Mahshid AIMA† 0.0218 0.2102 EmoBERTa, DeBERTa
6 jimar UWBA† 0.0639 0.2084 RoBERTa, BERT
7 Choloe_guo UIR-ISC† 0.1518 0.1963 BERT, SpanBERT
8 aranjan25 – 0.1431 0.1930 –
9 anaezquerro LyS† 0.0677 0.1823 BERT

10 wrafal PWEITINLP† 0.0449 0.0723 GPT-3, SpanBERT
11 ericcui -GPT 0.0033 0.0339 –
12 conner – 0.0000 0.0063 –
13 hpiotr6 – 0.0000 0.0046 –
14 deliagrigorita – 0.0005 0.0024 –
15 jpcf12 VerbaNexAI Lab† 0.0000 0.0000 Logistic Regression, SpaCy

Table 3: The leaderboard for Subtask 1 (TECPE). “†” indicates that the team has submitted a system description
paper to SemEval-2024.

Rank User Name Team Name w-avg. F1 Modality Main Technologies
1 Mercurialzs Samsung Research China-Beijing† 0.3774 T,A,V LLaMA2, RoBERTa, LLaVA
2 ZhanG_XD NUS-Emo† 0.3460 T,V ChatGLM3
3 SZTU-MIPS SZTU-MIPS† 0.3435 T,A,V MiniGPT-v2
4 arefa JMI† 0.2758 T,V GPT-4V, GPT-3.5
5 Mahshid AIMA† 0.2584 T EmoBERTa
6 jimar UWBA† 0.2506 T,A,V RoBERTa, BERT
7 julia-bel DeepPavlov† 0.2057 T,A,V Video-LLaMA
8 akshettrj LastResort† 0.1836 T BiLSTM, CRF
9 oliver_wang QFNU_CS† 0.1786 T,A,V BERT

10 MSurfer20 – 0.1708 – –
11 ayushg2000 – 0.1635 – –
12 Hidetsune Hidetsune† 0.1288 T SpaCy, BERT
13 DuyguA D-NLP 0.0521 – –
14 bbgame605065444 NCL† 0.0146 T,A,V MLP
15 joshuashunk – 0.0008 – –

Table 4: The leaderboard for Subtask 2 (MECPE). “†” indicates that the team has submitted a system description
paper to SemEval-2024.

• Proportional Match: Calculate the overlap
proportion of the predicted span and the an-
notated one.

The evaluation metrics for the two strategies are
“w-avg. S. F1” and “w-avg. P. F1”, respectively.
Taking into account the complexity of Subtask 1,
we choose “w-avg. P. F1” as the main metric4 for
the ranking.

4.2 Baselines
As mentioned in our previous work (Wang et al.,
2023a), for Subtask 2 we also employed the
BiLSTM-based ECPE-2steps model as our base-
line system. Specifically, we maintain the vali-
dation set of the ECF 1.0 datset unchanged and
merge the test set into the training set to train the

4Specific calculation details can be found on GitHub.

model. The evaluation of the model predictions on
the extended test set achieves a weighted average
F1 of 0.1926.

For Subtask 1, based on the same model, we
just convert the cause extraction module in Step
1 from the cause utterance prediction to the pre-
diction of the start index and end index within the
utterance, then simply match the indexes as candi-
date cause spans, followed by emotion-cause pair-
ing and filtering in Step 2. The evaluation result
for the weighted average proportional F1 on the
extended test set is 0.1801.

4.3 Participating Systems and Results

Our competition was created on Codalab in
November 2023, and has attracted 143 registra-
tions and a total of 216 submissions. After the
evaluation, 18 teams have submitted system de-

https://github.com/NUSTM/SemEval-2024_ECAC/tree/main/CodaLab/evaluation


scription papers.
Team Samsung Research China-Beijing (Zhang

et al., 2024) won first place in both subtasks, hold-
ing a significant lead over the second-place team.
Teams petkaz (Kazakov et al., 2024) and UIC NLP
GRADS (Chandakacherla et al., 2024) respectively
captured the second and third places in Subtask
1. Teams NUS-Emo (Luo et al., 2024) and SZTU-
MIPS (Cheng et al., 2024) attained second and
third positions in Subtask 2. The official leader-
boards for Subtask 1 and Subtask 2 are shown in
Table 3 and Table 4, respectively.

4.3.1 System Overview
Almost all systems have implemented our task
through a two-step framework, first performing
the ERC task and then predicting the causes based
on emotions. In the following, we briefly intro-
duce the systems from the top teams and some
other notable approaches.

Team Samsung Research China-Beijing (Zhang
et al., 2024) achieved first place in both subtasks
with a pipeline framework. They fine-tuned the
LLaMA2-based InstructERC (Lei et al., 2023) to
extract the emotion category of each utterance
in a conversation. For further data augmenta-
tion, they added three additional auxiliary tasks
based on the original training data strategy of In-
structERC. Then, the MuTEC (Bhat and Modi,
2023) and TSAM (Zhang et al., 2022) models are
used, respectively, to extract cause spans for Sub-
task 1 and cause utterances for Subtask 2. They
also obtained different multimodal representations
through openSMILE (Eyben et al., 2010), LLaVA
(Liu et al., 2024), and a self-designed face mod-
ule to explore the integration of audio-visual in-
formation. It should be noted that they used vari-
ous models for ensemble learning to determine the
final prediction.

Team petkaz (Kazakov et al., 2024) ranked sec-
ond in Subtask 1. They fine-tuned GPT 3.5
(Ouyang et al., 2022) for emotion classification
and then used a BiLSTM-based neural network to
detect cause utterances. The cause extractor model
is initialized with BERT (Devlin et al., 2019), fol-
lowed by three BiLSTM layers. They treat the en-
tire cause utterance as a cause span.

Team NUS-Emo (Luo et al., 2024) achieved the
second highest score in Subtask 2. First, they con-
ducted zero-shot testing experiments to evaluate
multiple LLMs, including OPT-IML3 (Iyer et al.,
2022), Instruct-GPT4 (Peng et al., 2023), Flan-T5

(Chung et al., 2022), and ChatGLM (Du et al.,
2022). ChatGLM3-6B is ultimately selected as
its backbone model based on its superior perfor-
mance. They designed an emotion-cause-aware
instruction-tuning mechanism to update the LLM
and incorporated the visual representation from
the ImageBind (Girdhar et al., 2023) encoder.

Team UIC NLP GRADS (Chandakacherla et al.,
2024) achieved the third place in Subtask 1, and
their system performed well in the strict metric,
ranking second. They fine-tuned RoBERTa (Liu
et al., 2019) for emotion classification, and then
further fine-tuned a SpanBERT (Joshi et al., 2019)
model that had been fine-tuned in SQuAD 2.0 (Ra-
jpurkar et al., 2018), to predict cause spans in QA
format.

Team SZTU-MIPS (Cheng et al., 2024) ranked
third in Subtask 2. They integrated text, au-
dio, and image modalities for emotion recognition
and adopted the MiniGPTv2 model (Chen et al.,
2023) for multimodal cause extraction. Specifi-
cally, textual features are obtained from Instruc-
tERC, while acoustic features are extracted using
HuBERT (Hsu et al., 2021). For visual modality,
faces are first extracted using OpenFace (Baltru-
saitis et al., 2016) from video frames, followed
by extraction of facial features using expMAE
(Cheng et al., 2023).

Team nicolay-r (Rusnachenko and Liang, 2024)
finetuned Flan-T5 by designing the chain of
thoughts for emotion causes based on the Three-
Hop Reasoning (THOR) framework (Fei et al.,
2023), to predict the emotion of the current utter-
ance and the emotion caused by the current utter-
ance towards the target utterance. Their reasoning
revision methodology and rule-based span correc-
tion technique bring further improvements.

Team JMI (. et al., 2024) implemented two
different approaches. In their best system, they
used in-context learning using GPT 3.5 for emo-
tion prediction and cause prediction, respectively.
Conversation-level video descriptions were ex-
tracted via GPT-4V (Yang et al., 2023) to provide
more context to GPT 3.5. In addition, they also
fine-tuned two separate Llama2 (Touvron et al.,
2023) models to recognize emotions and extract
causes.

Team AIMA (Ghahramani Kure et al., 2024)
fine-tuned EmoBERTa (Kim and Vossen, 2021)
for emotion classification and then obtained the
emotion-cause pairs via a Transformer-based en-
coder. After finding the pairs, they further fine-



tuned the DeBERTa (He et al., 2021) that had
been fine-tuned on SQuAD 2.0 to extract the cause
spans for Subtask 1.

Team UWBA (Baloun et al., 2024) fused the fea-
tures of three modalities at the utterance level and
then used them for emotion classification and pair
prediction. It is interesting that they summarized
five span categories (Whole Utterance, First part,
Last part, Middle part, Other) through observa-
tions of training data, and then trained a classifier
to further predict textual cause spans in cause ut-
terance.

Furthermore, Team DeepPavlov (Belikova and
Kosenko, 2024) investigated the performance of
Video-LLaMA (Zhang et al., 2023) in several
modes and found that model fine-tuning yields
notable improvements in emotion and cause
classification. Team PWEITINLP (Levchenko
et al., 2024) utilized GPT-3 for emotion clas-
sification. Some other Teams, including UIR-
ISC (Guo et al., 2024), LyS (Ezquerro and Vi-
lares, 2024), QFNU_CS (Wang et al., 2024) and
Hidetsune (Takahashi, 2024), all employed BERT-
based models to address our task, among which
LyS proposed an end-to-end model comprising a
BERT encoder and a graph-based decoder to iden-
tify emotion cause relations. Team LastResort
(Mathur et al., 2024) tackled our task as sequence
labeling problems and used BiLSTM followed by
a CRF layer to solve it. Team NCL (Li et al.,
2024) solely utilized pre-trained models to extract
features from three modalities. Team VerbaNexAI
Lab (Pacheco et al., 2024) demonstrated the inad-
equacy of machine learning techniques alone for
emotion cause analysis.

4.3.2 Discussion

Our task, Multimodal Emotion Cause Analysis in
Conversations, involves informal real-life conver-
sations and complex audio-visual scenes. Addi-
tionally, emotions exhibit strong subjectivity, and
we have observed that even humans sometimes
struggle to accurately identify emotions and their
causes. This complexity underscores the intri-
cate nature of human emotions and the nuanced
contexts in which they occur, posing a substan-
tial challenge for data annotation and subsequent
model development.

Dataset Bias. Emotion category imbalance is an
inherent problem in the ERC task (Li et al., 2017;
Hsu et al., 2018; Poria et al., 2019a), aligning with

real-world phenomena where people tend to ex-
press positive emotions like joy more frequently
in their daily communications, while expressions
of disgust and fear are less common. Our dataset
is sourced from TV series that closely resemble
the real world, naturally also exhibiting an im-
balance in emotions, as illustrated in Figure 3.
However, such an imbalance may adversely affect
a model’s ability to learn and generalize across
different emotions, potentially leading to biases
towards frequently expressed emotions (Kazakov
et al., 2024; Chandakacherla et al., 2024). More-
over, emotion cause datasets often have a notice-
able pattern in the location of causes and emo-
tions. Some systems rely on this position bias,
either by using a fixed window size or by di-
rect post-processing to add the emotion utterance
as the cause (Rusnachenko and Liang, 2024; .
et al., 2024), which overlooks the effective seman-
tic connections between distant contexts and may
lead to poor generalization capabilities for unseen
data where the cause is not in proximity to the
emotion. In the future, LLMs can be leveraged
to assist with annotation to expand the diversity of
datasets available for fine-tuning, which encom-
pass a wider range of emotional expressions and
cultural backgrounds. This can mitigate existing
dataset biases and enhance the model’s applicabil-
ity and generalizability across various scenarios.

Utilization of LLMs. Recently, LLMs have ex-
hibited remarkable capabilities in a wide range of
tasks and are rapidly advancing the field of nat-
ural language processing. Therefore, LLMs are
allowed to be used in our competition. It is ev-
ident that about a third of the teams have used
LLMs for emotion cause analysis, and most of
them are ranked at the top. However, some par-
ticipants have observed that LLMs perform poorly
in zero-shot and few-shot settings on emotion and
cause recognition tasks (Kazakov et al., 2024; .
et al., 2024; Belikova and Kosenko, 2024), indi-
cating a crucial need for task-specific fine-tuning.
Furthermore, prompt engineering is essential, as
LLMs often produce hallucinations or unstruc-
tured outputs. Due to resource and cost con-
straints, most researchers cannot take full advan-
tage of the strongest capabilities of LLM. Future
research is encouraged to explore ways to enhance
lightweight models or to bridge the gap between
pre-training and downstream tasks, thereby aug-
menting LLMs’ ability to understand emotions.



Potential of Multimodal Information. Multi-
modal information is important for discovering
both emotions and their causes in conversations.
In our daily communications, we depend not only
on the speaker’s voice intonation and facial ex-
pressions to perceive his emotions, but also on
some auditory and visual scenes to speculate the
potential causes that trigger the emotions of speak-
ers beyond text. However, some participants found
that the introduction of audio or visual modali-
ties results in minimal improvements or even a de-
crease in system performance (Zhang et al., 2024;
Cheng et al., 2024; Baloun et al., 2024). This is-
sue arises partly due to the characteristics of our
dataset, which involves a large number of complex
visual scenes but few visual cause clues, leading to
the introduction of noise. Another limiting factor
might be that multimodal feature extraction meth-
ods are not advanced enough or fusion strategies
are not effective enough. The challenges that re-
quire further exploration include the effective in-
teraction and fusion of multimodal information, as
well as the perception, understanding, and utiliza-
tion of audiovisual scenes. Furthermore, there is a
demand for more high-quality data sets on multi-
modal emotion cause analysis to support research
in this area.

5 Conclusions

In this paper, we describe the SemEval-2024 Task
3 named Multimodal Emotion Cause Analysis in
Conversations, which aims to extract all potential
pairs of emotions and their corresponding causes
from a conversation. The shared task has attracted
143 registrations and 216 successful submissions.
We provide detailed descriptions of task definition
and data annotation, summarize participating sys-
tems, and discuss their findings.

As an important direction of affective comput-
ing, multimodal emotion cause analysis in conver-
sation plays an important role in many real-world
applications. We hope that our research and re-
sources can contribute towards the design of future
systems in this direction.

6 Ethics Statement

Our ECF 2.0 dataset is annotated on the basis of
the MELD dataset 5 which is licensed under the
GNU General Public License v3.0 and is used only
for scientific research. We do not share personal

5https://github.com/declare-lab/MELD

information and do not release sensitive content
that can be harmful to any individual or commu-
nity. Conducting multimodal emotion cause anal-
ysis will help us better understand emotions in
human conversations, build human-machine dia-
logue systems, and contribute to society and hu-
man well-being.
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