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Abstract

The objective of the SHROOM shared task
(Mickus et al., 2024) is to identify sequences of
text generated by Large Language Models that
contain incorrect, nonfactual, or fabricated in-
formation. These sequences, referred to as ’hal-
lucinations’, are characterized by lower proba-
bilities assigned to the outputs, as demonstrated
by research (Varshney et al., 2023). This dis-
crepancy highlights a possible contrast in the
language used between hallucinated and non-
hallucinated texts. The aim of this paper is to
investigate whether hallucinated responses ex-
hibit phrasing and patterns that more closely re-
semble those of machine-generated text rather
than coherent, human-like language.

1 Introduction

The SHROOM shared task, as described by Mickus
et al. (2024), has as its objective ’detecting gram-
matically sound output that contains incorrect se-
mantic information (i.e. unsupported or inconsis-
tent with the source input), with or without having
access to the model that produced the output’. This
type of output is encompassed by generations often
referred to as "hallucinations". According to Varsh-
ney et al.,in the context of language models, hallu-
cinations refer to the generation of text or responses
that seem syntactically sound, fluent, and natural
but are factually incorrect, nonsensical, or unfaith-
ful to the provided source input. (Maynez et al.,
2020; Holtzman et al., 2023; Koehn and Knowles,
2017) With the advent of mainstream Large Lan-
guage Models brought upon by OpenAIs ChatGPT
(Brown et al., 2020), it is a relatively new and im-
portant topic in this context. Apart from the possi-
ble spread of misinformation, being able to make
this distinction is crucial for the adoption of Large
Language Models in domains highly sensitive to
misinformation, such as the medical, jurisdictional
or financial fields. Possible repercussions include
medical misdiagnosis, fictitious financial or legal

advice, or exploitation by bad actors in order to
deceive users.

In our approach to solving this task, we employ
two methods. The first method involves utilizing
models trained for detecting machine-generated
text in order to distinguish between regular and
hallucinated sequences. The other involves using
looking at the loss of the hypothesis as scored by
an LLM(Large Language Model), in the hope that
generations with low probabilities can be properly
tagged as hallucinations. This method was intro-
duced by Fu et al. (2020) as GPTScore as a way to
get a numerical assessment of an aspect in a given
text.

When it comes to the first method, the hypothesis
to be tested is that patterns which help differenti-
ate machine generated texts will be transferable to
the task at hand. The rationale is as follows: the
training data of the model is human-written text,
therefore deviations from the training set could be
detected in this manner. From the experimental
results on the model aware track, the performance
of this method yielded a score of 0.483. This is
below the baseline achieved using an LLM to label
the generations. These results could stem from the
hypothesis itself, or the fact that the model is not
able to differentiate the texts of newer LLMs.

The second method was employed after the end
of the competition, as a way to further explore the
dataset and its characteristics. It was based on the
success of Ji et al., who used a similar approach in a
reprompting system meant to reduce hallucinations.
On the validation data, it yielded an accuracy of
0.686 without the target reference and 0.702 when
it was included in the prompt on the model aware
track.

2 Background and Dataset

The objective of the SHROOM shared task is to
detect hallucinations in two distinct datasets: one
that is model agnostic and one that is model aware.
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Both of the datasets consist of text pertaining
to 3 tasks: DM - ’Definition Modeling’ - which
involves providing the definition of a word given
surrounding context, PG - ’Paraphrase Generation’
- in which the generated text is meant to be a
paraphrase of the input, and MT - ’Machine Trans-
lation’ - in which the task is to translate a given
sequence. The text provided for the definition
modeling and the paraphrase generation task types
is in English. For the machine translation task,
the prompt is provided in the native language
and the hypothesis and target are both in English.
The model-aware validation dataset consists of
499 datapoints, while the model-agnostic version
has 501 datapoints. The test sets both have 1500
samples.

Train Model Aware

Column Name Description Data Type

hyp Generated sequence String
tgt Desired target sequence String
src Prompt sequence String
ref Target column Categorical
task Prompt task type Categorical
model LLM model name Categorical

Table 1: Description of Model Aware Dataset Columns

The main difference between the datasets is that
the ’model’ column is not present in the model
agnostic version. This distinction is not relevant to
the experiments presented in this paper, as no data
is used apart from the ’hyp’ - generated sequence
column.

The datasets are split by the organizers in train,
validation and test sets respectively, with the val-
idation and test sets containing human-annotated
labels. The probability of hallucination is defined
as the average of the label given by each annotator,
and the final label is chosen by majority vote from
said labels. The validation and test set have 5 such
labels per entry.

An example datapoint consists of the input ’Re-
sembling or characteristic of a weasel.’ - corre-
sponding to this input, the output is structured as
per Table 2.

3 Related Work

Due to the importance and the relative novelty of
the LLM hallucination detection task, there are

Output

label p(Hallucination) id

Not Hallucination 0.470 1

Table 2: Example of Model Aware Dataset Row

many recently proposed ways to alleviate the issue.
Ji et al. proposed a system for preventing halluci-
nations via self reflection, by using GPTScore as a
way to gauge aspects such as factuality and consis-
tency. Using a community sourced body of knowl-
edge, for example wikipedia, in order to greatly en-
hance context (Semnani et al., 2023). Perturbations
to the input to check for model self consistency
(Zhang et al., 2023). Segmenting the generations
and reprompting to check for consistency also ap-
pears to have lead to good results. (Wei et al., 2023;
Zhou et al., 2023; Khot et al., 2023) Looking at the
log probabilities of the output words to detect low-
confidence generations (Varshney et al., 2023) has
also been proposed, an approach very similar to
one of the two methods used.

4 Methodology

4.1 Method 1: Generated Text Detection

The first method involves using a pretrained model
for distinguishing machine-generated text. The de-
cision to use this type of model stemmed in part
from the similarity of the two tasks. Considering
the fact that the training set for Large Language
Models is often entirely human-written, deviations
from the dataset - which are a possible cause of
hallucinations - should appear as machine-like gen-
erations.

The model used during inference is ’roberta-
large-openai-detector’ (Solaiman et al., 2019). It is
a a RoBERTa-large (Liu et al., 2019) model that has
been trained in order to differentiate between texts
generated by the Large Language Model GPT2
(Radford et al., 2019) after its inception. As the
authors explain, it is able to distinguish texts gen-
erated by the LLM with 95% accuracy. The use
of this model is, however, a limitation of the ex-
periment. As cited by the authors (Solaiman et al.,
2019) ’The model developers also report finding
that classifying content from larger models is more
difficult, suggesting that detection with automated
tools like this model will be increasingly difficult
as model sizes increase.’ It should also be noted
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that due to the nature of the MT - Machine Transla-
tion task, hallucinations of this type are unlikely to
be picked up by the model.

Input is taken as the ’hyp’ hypothesis column in
the dataset. Since it is under the form of simple text,
it will be tokenized using the ’roberta-large-openai-
detector’ tokenizer with padding and truncation.
No other changes were made to the text.

Outputs are represented by the logits result-
ing from passing the tokenized input sequences
through the model. The logits are then passed
through a softmax function in order to obtain prob-
abilities attributed to each class (0 - not gener-
ated/not hallucinated, 1 - generated/hallucinated).
The class with the highest probability is saved as
the ’label’ and the probability of the input belong-
ing to the ’hallucinated’ label is ’p(hallucination)’.
In the case of the test set, the id of the sequence is
added to the structure to be added to the json.

4.2 Method 2: GPTScore

The second method involves prompting a pre-
trained LLM with a task and checking the loss
attributed to the predefined output.

The prompt is comprised of: instruction, demos,
input and output.

Instruction prompts were constructed for each
of the 3 tasks in the dataset, for example: "The
following is a Definition Modeling task. Please
focus on capturing the correct meaning based on
the surrounding context in the original text. "

For each of the 3 tasks, demos were constructed
by randomly sampling 3 datapoints from a subset
of the validation dataset. This subset involves rows
labeled "Not hallucination" by all five human an-
notators, in the case of the positive examples, and
"Hallucination" in the case of the negative exam-
ples.

The input is the prompt sequence provided in the
dataset. The output is the response provided in the
same datapoint.

As an example, a prompt with no demos would
be: Give the definition for the specified words in
the given context. The answer for "The sides of the
casket were covered with heavy black broadcloth
, with velvet caps , presenting a deep contrast to
the rich surmountings . What is the meaning of
surmounting ?" is "A sloping top ."

The resulting output of the method is defined as
the average of the logprobs of the output sequence

(i.e. "A sloping top"). Naturally, the output score is
predicated on the model doing the evaluation, with
more accurate models having a higher chance of
giving better results.

Optionally, the target sequence can be added
to the prompt. Although this increases perfor-
mance, as we would expect, it changes the use
of the method to that of evaluation.

The models used include a quantized version
of Mistral-7B and OpenHermes-13B. After gen-
erating the scores for each of the inputs, the goal
is to employ simple binary classification. Logis-
tic regression and SVM were tested, with logistic
regression consistently giving superior results.

5 Experimental Setup

The first method is fully unsupervised, and there-
fore does not require calibration on the training set.
The second method requires us to have a subset of
labeled data to determine the score threshold.

For evaluating our models, we used the met-
rics proposed by the organizers: accuracy, based
on the labels and Spearman’s Rho, based on the
probabilities assigned to each entry.

6 Results

The outputs on the test set model-aware track
yielded a score of 0.483. The results on the valida-
tion dataset were the following:

Validation Set Results

Track Accuracy Rho

Model Agnostic 0.545 0.033
Model Aware 0.465 -0.145

Table 3: Valdiation dataset results

The results for method 2 are shown in Tables 4
and 5:

Model Aware Track Validation Set Results

Model Total PG MT DM

Mistral-7B 0.686 0.776 0.696 0.638
OpenHermes-13B 0.688 0.808 0.691 0.643

Table 4: Validation model aware dataset accuracy results
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Model Aware Track Validation Set Results

Model Total PG MT DM

Mistral-7B 0.687 0.704 0.812 0.657
OpenHermes-13B 0.701 0.688 0.802 0.625

Table 5: Validation model agnostic dataset accuracy
results

6.1 Track results analysis

As evident, the model agnostic accuracy surpasses
that of the model-aware track by a considerable
margin. This difference could be due to statistical
noise, as both results seem to be within 5% of the
expected value for random binary attribution i.e.
50%. One competing hypothesis would be that the
hidden distribution of the agnostic track allows for
the model to better differentiate between the two
classes.

Inferred sample label distributions in the form
of ’Hallucinated’/’Not Hallucinated’ are the fol-
lowing: 177/322 for model agnostic and 240/261
for model aware. For comparison, the real dis-
tributions are 218/281 model-agnostic track and
206/295. The fact that the model-aware results
exhibit a near 50-50 split, in contrast to the model-
agnostic track, whose distribution is closer to that
of the real set, leads some credence to the hypoth-
esis that the inference model is be able to detect
relevant patterns.

Spearman correlation is calculated using the
’p(hallucination)’ column. In the context of the
proposed model, this is the probability assigned to
class 1 (’Hallucination’). From the resulting values,
it is evident that the probabilities of the reference
and input display little to no correlation, with both
values being near 0. From this, we come to the
conclusion that the proposed method is not suitable
for inferring the probability of hallucination.

6.2 Task-aware results

In order to investigate if the task had any impact
on the performance of the model, standard accu-
racy was calculated for each separate subset of
sequences. This was done on both the model aware
and model agnostic track. The results are as per
Table 6:

6.3 Task-aware results analysis

DM - ’Definition Modeling’ showcases better per-
formance on the agnostic dataset. As stated above,

Valdiation task aware results

Track DM PG MT

Model Agnostic 0.540 0.624 0.497
Model Aware 0.489 0.608 0.345

Table 6: Valdiation dataset task-aware accuracy results

this could be attributed to random noise, or a differ-
ence in the distribution of the dataset.

PG - ’Paraphrase Generation’ displayed the
highest accuracy out of all three tasks on both the
model-agnostic and model-aware tracks. It is a
consistent and large enough improvement from the
random baseline to be considered significant.

MT - ’Machine Translation’ task results were
the lowest, with the model reaching the expected
random outcome of 50% on the model agnos-
tic track. The results for the Model Aware Track
showed an unexpected and significant difference,
15.5% from the random baseline. Low performance
is to be expected, as this task requires the least free
generation. These results could be due to the fact
that the LLM is simply translating sequences that
have been written by humans, and this requires less
’creative’ generation on its part.

One plausible explanation for why the method
has displayed superior performance on the PG task
could be attributed to its inherently free-form na-
ture compared to the other tasks. Definition Mod-
eling is an information retrieval adjacent task, and
Machine Translation leaves little room for inter-
pretation, apart from cases of ambiguous word-
ing. This suggests that the proposed method may
have potential applications in specific tasks given
to LLMs.

As per the results showcased in 4 and 5, we
notice the increased performance when using
OpenHermes-13B. This is to be expected, as it is
the larger model, and the efficacy of the method is
predicated on the quality of the certainty attributed
by each model. We notice a leap in accuracy for
certain tasks, Paraphrase Generation in the case of
the model aware track, and Machine Translation in
the case of the model agnostic track. This may once
again be due to a difference in the distributions of
the two tracks.

7 Additional experiments

Post competition, in addition to method 2, we have
attempted to further finetune the RoBERTa model
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to see if we can improve performance. In order to
do this, we have used the dataset provided by Liang
et al.. It is comprised of 749 datapoints, containing
text generated by GPT3 and GPT4, as well as hu-
man written text. Before any additional operations,
the model has an accuracy of 0.539 on this set, fur-
ther confirming the fact that more powerful models
and methods of detecting machine generated text
are needed for use on newer LLMs. The dataset
was split in a 9-1 ratio of training-validation data.
After finetuning for 3 epochs the accuracy on the
evaluation dataset reached an accuracy of 0.591.
From this we can conclude the model is not able
to properly learn. The results of the finetuning are
shown in Table 7.

Validation Set Results

Track Accuracy

Model Agnostic 0.436
Model Aware 0.411

Table 7: Validation Set Results

The reason for why the model does not seem to
learn can either be due to the model itself, or the
generations are too humanlike to be told apart. As
for the results of the finetuning, the performance
of the model has dropped significantly on both
datasets.

8 Conclusions

We have proposed two methods, the first based on
using models pretrained on generated text detec-
tion, and the second based on looking at the con-
fidence displayed by the LLM under the form of
logits. Reviewing the results, we can assess that the
tasks of generated text detection and hallucination
detection showcase too large of a divergence for the
approaches to generally be used interchangeably.
However, the results on the Paraphrase Generation
task may warrant further investigation into the use
of models pretrained for text generation detection
for the hallucination detection task. Concerning the
second method we have explored, it has showcased
promising results on specific tasks in each track,
which may warrant use in an ensemble method.

8.1 Limitations
The main limitation of this experiment was the
model used for inference. As it was trained to
discriminate the generations of GPT2, which is a

significantly smaller model compared to the current
Language Models.

8.2 Future Work
In future work, we might explore model finetun-
ing on newer datasets used for discerning between
human and machine-generated texts, as well as fine-
tuning pretrained models on labeled hallucination
related tasks.

Another simple improvement would be utiliz-
ing pretrained models able to better distinguish
between generated and human written texts.

We may test the first method on other free-form
generation tasks, as this seems to be a strong suit.

We may also look into newer methods for de-
tecting machine generated text, that account for the
leaps made by the recent advancements in LLMs.

We may further investigate the discrepancy in
accuracy for the provided datasets when using
GPTScore.

Acknowledgements

I would like to thank Ana Sabina Uban for kick-
starting the idea for this work.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. arXiv:2005.14165v4.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2020. Gptscore: Evaluate as you desire.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2023. The curious case of neural text
degeneration.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
llm hallucination via self reflection.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu,
Kyle Richardson, Peter Clark, and Ashish Sabharwal.
2023. Decomposed prompting: A modular approach
for solving complex tasks.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation.

1164



Weixin Liang, Mert Yuksekgonul, Yining Mao,
Eric Wu, and James Zouv. 2023. Gpt detec-
tors are biased against non-native english writers.
arXiv:2304.02819.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv:1907.11692.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, , and
Ryan McDonaldr. 2020. On faithfulness and factual-
ity in abstractive summarization.

Timothee Mickus, Elaine Zosa, Raúl Vázquez, Teemu
Vahtola, Jörg Tiedemann, Vincent Segonne, Alessan-
dro Raganato, and Marianna Apidianaki. 2024.
SemEval-2024 Task 6: SHROOM, a shared-task on
hallucinations and related observable overgeneration
mistakes. In Proceedings of the 18th International
Workshop on Semantic Evaluation (SemEval-2024),
Mexico City, Mexico. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sina Semnani, Violet Yao, Heidi Zhang, and Monica
Lam. 2023. Wikichat: Stopping the hallucination of
large language model chatbots by few-shot grounding
on wikipedia.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris
McGuffie, and Jasmine Wang. 2019. Release strate-
gies and the social impacts of language models.
arXiv:1908.09203v2.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian-
shu Chen, , and Dong Yu. 2023. A stitch in time saves
nine: Detecting and mitigating hallucinations of
llms by validating low-confidence generation. arXiv
preprint arXiv:2307.03987.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley A.
Malin, and Sricharan Kumar. 2023. Sac3: Reliable
hallucination detection in black-box language models
via semantic-aware cross-check consistency.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chii. 2023. Least-to-most prompting enables com-
plex reasoning in large language models.

1165


